• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation of Ship Icebreaking in Level Ice based on Nonlinear Finite Element Method

    2016-05-16 02:41:56WANGJinweiZOUZojin
    船舶力學(xué) 2016年12期
    關(guān)鍵詞:冰體冰區(qū)破冰船

    WANG Jin-wei,ZOU Zo-jin,b

    (a.School of Naval Architecture,Ocean and Civil Engineering;b.State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    Numerical Simulation of Ship Icebreaking in Level Ice based on Nonlinear Finite Element Method

    WANG Jian-weia,ZOU Zao-jiana,b

    (a.School of Naval Architecture,Ocean and Civil Engineering;b.State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    Numerical simulation of an icebreaker advancing in level ice is carried out by using the nonlinear finite element method.An ice material model is verified by comparing the simulation results with experimental data.Using the ice material model,the dynamic response of the ship during icebreaking in level ice of different thicknesses at different speeds is numerically studied.The deformations of level ice,the magnitudes of ice force,the changes of ice deformation energy and kinetic energy during the icebreaking process are presented,and the influences of the ship speed and level ice thickness on the icebreaking resistance are analyzed.The results have a certain reference value for analyzing the dynamic response of an icebreaker in level ice.

    icebreaker;level ice;icebreaking resistance;nonlinear FEM; numerical simulation

    0 Introduction

    Due to the climate change,the melting speed of ice in Arctic region has been accelerating,which makes the marine transportation in Arctic region possible.In these waters,merchant ships need to clear channel with the help of icebreakers to ensure a successful navigation. Besides,since the global economy is developing rapidly,the resource requirements have been increasing.As the land resources being exhausted,the exploitation of energy in ocean and polar becomes urgent,and the scientific investigation of polar energy is only possible by means of icebreaking.Nowadays,a new generation of icebreaker is under researching and developing all over the world;to accurately predict the dynamic performance of an icebreaker in level ice is of particular importance for icebreaker design,and relevant researches have a practical significance.

    In recent years,some researchers have studied icebreaking resistance of polar ships.Wang et al[1]used two commercial finite element codes(ANSYS and LS-DYNA)to present numerical results of resistance prediction for an icebreaker in level ice.Park et al[2]applied three methods including empirical analysis,numerical analysis and physical model experiments toobtain icebreaking resistance of three ore carriers that have different hull forms under the same ship speed and ice thickness.Considering the coupling between continuous ice forces and ship motions,Su et al[3]used a numerical method to simulate ship maneuvers in level ice and solved the equation of three degree-of-freedom rigid body surge,sway and yaw motions.Some other researchers have studied the issues related to structural response of ship-ice collision.Wang et al[4]developed a collision model for nonlinear dynamic finite element analysis on a LNG ship and crushable ice using commercial code DYTRAN.Lee et al[5]established the finite element model of Arctic LNG carriers and predicted impact loadings from ship and iceberg collision. Liu[6]studied the numerical model of ice materials and applied it to dynamic analysis of shipiceberg collision.Kim et al[7]used finite element model and scale model test to investigate the resistance performance of an icebreaking cargo vessel in pack ice conditions.Yang et al[8]adopted the method of fluid-structure interaction and established the nonlinear finite element model of collision between ship and ocean platform by taking sea ice as medium.They simulated the collision process numerically,compared the results of collision under conditions with and without sea ice medium and analyzed the influence of the range of sea ice on platform. Zhang et al[9-10]performed a numerical simulation of ship-ice collision by using a nonlinear finite element method.

    This paper conducts a numerical simulation study on the dynamic response of an icebreaker in level ice by using the commercial software LS-DYNA based on the nonlinear finite element method.The reliability of the proposed ice material model is firstly verified;the 3D finite element models of ship and level ice are established.The deformation of level ice,the ice force and the ice deformation energy and kinetic energy during the icebreaking process are predicted by numerical simulation,and the influences of ship speed and ice thickness on the icebreaking resistance are analyzed.

    1 Mathematical model

    In the finite element method,the motion equation of ship in level ice can be described as

    where M is the mass matrix,C is the damping matrix,K is the stiffness matrix,x is the displacement vector,and Fextis the external load vector.

    It is assumed that the acceleration remains the same in one time step.The explicit central difference method is used to discretize the motion equation,and the solving formula can be derived as

    2 Numerical modeling of ice material

    Tab.1 Ice model characteristics

    In order to verify the ice material,the reaction generated from the extrusion on ice cone by steel plate is calculated.The finite element model is shown in Fig.1.The fixed boundary condition(fixed B.C.)is applied at ice cone bottom to implement the conditions attached to the testing machine.A steel plate attached on the top of the testing machine is moving downwards at a specified velocity v.Two body contact simulation is performed.The material property of the steel plate is taken as a rigid body,because the plate is thick enough to be considered as rigid.The characteristics of the steel material model are shown in Tab.2.

    Fig.1 FE model of ice cone and steel plate

    Tab.2 Steel material model characteristics

    The numerical simulation model developed in this study is verified by comparing the results of numerical simulation with the test results of Ref.[11].An ice cone with 10cm diameter and 120°coning angle is chosen for the test.The main focus of developing a numerical simulation model is to create a model that can be directly applied to a diverse condition such asdifferent strain-rate or ice size.In other words,the aim is to create a numerical simulation model that can be used in multiple conditions without any modification of ice material properties or simulation conditions.The application of the ice material model under different strainrate conditions are investigated firstly,setting steel plate speed v=1 mm/s and 100 mm/s respectively.The comparison of the ice force-displacement curves at different steel plate speeds is shown in Fig.2.

    Fig.2 Comparison of ice force-displacement curves at different steel plate speeds,case 1

    From Fig.2 it can be seen that the numerical and experimental results agree well to a certain extent and the error at low speed is smaller than that at high speed.No matter at low speed or at high speed,the calculated results exhibit the correct growth trend of ice force with displacement.The ice force fluctuates at some displacement,because that as the steel plate is pressing the ice body,the phenomenon of broken occurs,causing immediately the drastic changes of ice force.

    In order to verify the reliability of the ice material model further,it is applied to a larger ice cone with 25 cm diameter and 130°coning angle.The numerical and experimental results of ice force-displacement curves at the steel plate speed 1 mm/s and 100 mm/s are compared in Fig.3.From this figure it can be seen that the growth trends of the calculated and experimental ice forces agree well,and they both show the fluctuation generated from the ice body’s fracture.The higher the steel plate speed is,the larger the fluctuation amplitude is.These results indicate that the ice material model selected in this paper can be used for numerical sim-ulation of the collisions between ship and ice.

    Fig.3 Comparison of ice force-displacement curves at different steel plate speeds,case 2

    3 Numerical simulation of ship in level ice

    3.1 3D finite element model of an icebreaker

    An icebreaker is selected in this paper,whose particulars are listed in Tab.3.

    For the real ship,high-strength steel is used in ship bow,whose deformation can be ignored during the icebreaking process.Therefore,in order to simplify the model,the hull plate is regarded as rigid and the internal structure is ignored in the numerical simulation.For the motion states of the ship, regardless of the influence on ship motion in icebreaking process,the ship is set to move forward at a constant speed,and the other five degrees of freedom of motionare constrained.

    3.2 3D finite element model of level ice

    During the icebreaking process,the mechanical properties of level ice are internal factors which affect fracture of level ice and are the basis of study on icebreaking resistance. During the process of ship-ice collision,ice will be broken when the ice stress reaches a certain value.The interaction between ice and ship will show different damage forms,which immediately influence the ice load on ship.In general,there are four forms of ice failure,including crushing failure,buckling failure,shear failure and bending failure[12].

    For establishing 3D finite element model of level ice,solid element is used considering the ice thickness and generation as well as extension of cracks.There are two methods to simulate the generation and extension of cracks.One is that cracks are generated in the structure by element failure;the other one is that cracks are generated by defining the failure of constraint nodes.The first method requires that there is a dense grid in cracks of the model;the shortcomings of the second method is that the process of establishing the model is relatively complex[13].In this paper,the first method is chosen to establish the model.When the stress and strain of the finite element model exceed a certain value,the element will be of failure, and the element will be deleted from the model.Cracks occur when numerous elements are deleted from a path.That is why the grids of level ice should be divided densely.In this paper,the size of the solid element is 125 mm×125 mm×125 mm.

    The icebreaking resistance when the ship sails in infinite level ice is studied.Different from floating ice,infinite level ice can be regarded as fixed.Limited by the conditions of numerical simulation,size of the level ice cannot be established infinitely.In this paper,the length of the level ice along the longitudinal direction(X-direction)is taken as 40 m,and the length perpendicular to the longitudinal direction(Y-direction)is 80 m.The boundary that collides with the ship is the free end.The influence of the collision area on far-field of the level ice is so small that it can be neglected;hence the far-field boundary is simplified as rigid fixed.

    Tab.3 Ship characteristics

    3.3 Application of fluid-structure interaction

    In the icebreaking process,the buoyancy and gravity of ice need to be considered.Gravity is loaded through body force and the gravitational acceleration is 9.81 N/kg.The load of buoyancy is realized by utilizing fluid-structure interaction.

    There are three basic algorithms about 3D finite element in LS-DYNA.They are Lagrange, Euler and ALE(Arbitrary Lagrange-Euler)formulations.Solid structures usually adopt Lagrange formulation,whose element is attached to the material and is deformed with the change of the structure’s form.As for fluid-structure interaction,the flow of material may result in serious deform of finite element.Thus it may cause the difficulty of numerical simulation and end the operation of the program.Euler formulation can be understood as the fact that two layers of mesh overlap with each other.One layer is fixed in the space and the other one is attached to the material;it flows in the space grid with the material and is achieved through the following two steps:The material grid firstly performs a Lagrange step,and then the state variables of Lagrange elements are reflected in or transported to the fixed space grid.This grid is always fixed and indeformable,just as material flowing in the grid.Like the Euler formulation,in ALE the space grid can be interpreted as two layers of grids overlapping.But it can freely flow in the space.ALE and Euler formulations can overcome the difficulty of numerical simulation caused by serious deforms of element and implement the dynamic analysis of fluid-structure interaction.

    This paper simulates the dynamic process of fluid-structure interaction with LS-DYNA and ALE formulation.Through the load of gravity on water and air,pressure gradient is generated in the vertical direction and the buoyancy on the ice is simulated.

    Fluid materials in the numerical model include water and air.In the finite element model,these two materials have the same nodes.The length and width of water and air are the same as those of level ice.However,the height of water is 4 times of the draft and the height of air is 1.5 times of the draft.

    Both of water and air adopt null material model to simulate the materials having fluid behaviors and linear polynomial state equation,whose pressure is calculated as

    where ci(i=0,1,2,…6)are the coefficients;E is the internal energy of unit volume, V is the relative volume.

    3.4 Ship-ice contact model

    There are a lot of contact models in LS-DYNA,including node-to-surface contact,surface-to-surface contact and single-surface contact.Considering the failure of ice material and the penetration phenomenon generated during the collision,this paper adopts eroding-surfaceto-surface contact model.This model is very useful and is generally applied in the contacts of various shapes and large contact areas.

    4 Results and analysis of numerical simulation

    As shown in Fig.4,the water plane of the level ice is consistent with that of the ship.In the simulation,the ship speed is 2 m/s.The distance between the ship and the level ice is 0.1 m before simulation and simulation time is 8.0 s.

    Fig.4 FE model of ship icebreaking in level ice

    4.1 Results of numerical simulation of icebreaking process

    The deformations of the level ice at 2.0 s,4.0 s,6.0 s and 8.0 s are shown in Fig.5.It can be seen in Fig.5 that the deformation mainly occurs in the area of ice contacting and colliding with the icebreaker.After colliding with the ship,the ice failure occurs when the failure pressure is reached.The cracks are generated by elements deleted for failure.During the icebreaking process,because of the brittleness of the ice material,some ices are separated from the level ice and flow in the water.

    Fig.5 Deformation of the level ice

    Fig.6 Time history of ice force on ship in Y direction

    Fig.7 Time history of ice force on ship in Z direction

    The time histories of ice force on the ship in Y direction and Z direction are shown in Fig.6 and Fig.7,respectively.From these figures it can be seen that during the whole period, the ice force presents highly nonlinear characteristics and changes violently with time,with a general rising trend.From the analysis of the time histories of ice force in Fig.6 and Fig.7 and the deformation of level ice in Fig.5,it is known that the unloading phenomenon is generated by ice failure as the ship moves in the level ice.

    4.2 Influence of ship speed

    In order to study the influence of ship speed on the icebreaking resistance,numerical simulation is carried out for the ship sailing in the level ice of thickness 0.5 m at the speed 2 m/s,3 m/s and 4 m/s.

    The time histories of the icebreaking resistance at different ship speeds are shown in Fig.8.It can be seen that the ship speed has a significant influence on the icebreaking resistance and the amplitude and peak value of icebreaking resistance increase with the ship speed. The common point of the time histories at different ship speeds is that as the icebreaking resistance rises,it will suddenly drop.It shows an unloading phenomenon during the icebreaking process because of the ice element failure.

    Fig.8 Time histories of the icebreaking resistance at different ship speeds

    The time histories of the level ice deformation energy and kinetic energy at different ship speeds are shown in Fig.9.It can be seen that the level ice deformation energy and kinetic energy increase with the ship speed.

    Fig.9 Time histories of level ice deformation energy and kinetic energy at different ship speeds

    4.3 Influence of ice thickness

    In order to study the influence of ice thickness on the icebreaking resistance,numerical simulation is carried out for the ship sailing at the speed of 2 m/s in the level ice of thickness 0.25 m,0.50 m,0.75 m.The time histories of icebreaking resistance under different ice thicknesses are shown in Fig.10.It can be seen that the peak value of icebreaking resistance increases with the ice thickness.Besides,the time histories show the different degrees of fluctuation for the level ice with different thicknesses.It also shows the unloading phenomenon in icebreaking resistance during the icebreaking process because of the ice element failure.

    Fig.10 Time histories of the icebreaking resistance under different ice thicknesses

    The time histories of level ice deformation energy and kinetic energy under different ice thicknesses are shown in Fig.11.It can be seen that the level ice deformation energy and kinetic energy increase with the ice thicknesses.

    Fig.11 Time histories of level ice deformation energy and kinetic energy under different ice thicknesses

    5 Conclusions

    This paper carries out a numerical simulation study on the dynamic response of an icebreaker during icebreaking process in level ice by using finite element method.The ice material model used in the numerical simulation is firstly verified.Systematic numerical simulationis are then carried out for the icebreaker at different forward speeds in the level ice of different thicknesses.The following conclusions can be drawn from this study:

    (1)The ice material model proposed in this paper is used in numerical simulation underdifferent conditions.The validity of the model is verified by comparing the simulation results with those of experiment.It is shown that the material model can be applied in numerical simulation of icebreaking process;

    (2)Keeping the ice thickness unchanged,the peak values of ice force,level ice deformation energy and kinetic energy increase with ship speed;

    (3)Keeping the ship speed unchanged,the peak values of ice force,level ice deformation energy and kinetic energy increase with ice thicknesses;

    The results of this study can provide a certain reference for the design of icebreakers to be served as icebreaking in level ice.

    [1]Wang J,Derradji-Aouat A.Numerical prediction for resistance of Canadian icebreaker CCGS Terry Fox in level ice[C]// ICSOT2009,International Conference on Ship and Offshore Technology.Busan,Korea,2009:9-15.

    [2]Park K D,Chung Y K,Jang Y S,et al.Development of hull forms for a 190,000 DWT icebreaking ore carrier[C]// OMAE2011,30th International Conference on Ocean,Offshore and Arctic Engineering.Rotterdam,the Netherlands, 2011,1:949-955.

    [3]Su B,Riska K,Moan T.A numerical method for the prediction of ship performance in level ice[J].Cold Regions Science and Technology,2010,60(3):177-188.

    [4]Wang B,Yu H C,Basu R.Ship and ice collision modeling and strength evaluation of LNG ship structure[C]//OMAE2008, 27th International Conference on Offshore Mechanics and Arctic Engineering.Estoril,Portugal,2008,3:911-918.

    [5]Lee S G,Lee J S,Baek Y H,et al.Structural safety assessment in membrane-type CCS in LNGC under iceberg collisions [C]//ICSOT2009,International Conference on Ship and Offshore Technology.Busan,Korea,2009:69-81.

    [6]Liu Z.Analytical and numerical analysis of iceberg collisions with ship structures[D].Trondheim:Norwegian University of Science and Technology,2011.

    [7]Kim M C,Lee S K,Lee W J,et al.Numerical and experimental investigation of the resistance performance of an icebreaking cargo vessel in pack ice conditions[J].International Journal of Naval Architecture and Ocean Engineering,2013, 5(1):116-131.

    [8]Yang L,Ma J.Numerical simulation analysis for the collision between offshore platform under the sea ice medium[J].China Offshore Platform,2008,23(2):29-33.(in Chinese)

    [9]Zhang J,Wan Z Q,Chen C.Research on structure dynamic response of bulbous bow in ship-ice collision load[J].Journal of Ship Mechanics,2014,18(1):106-114.(in Chinese)

    [10]Zhang J,Zhang M R,Wan Z Q,et al.Research on ice material model applied in numerical simulation of ship structure response under iceberg Collision[J].Shipbuilding of China,2013(4):100-108.(in Chinese)

    [11]Kim H.Simulation of compressive‘cone-shaped’ice specimen experiments using LS-DYNA[C]//13th International LSDYNA Users Conference.Detroit,America,2014.

    [12]Wei W D,Ning J G.Critical load between sea ice and sea structure[J].Journal of Glaciology and Geocryology,2003,25 (3):351-354.

    [13]Bai Z J.Theoretical basis and example analysis of LS-DYNA3D[M].Beijing:Science Press,2005.(in Chinese)

    基于非線性有限元法的船舶冰區(qū)破冰數(shù)值模擬

    王健偉a,鄒早建a,b

    (上海交通大學(xué)a.船舶海洋與建筑工程學(xué)院;b.海洋工程國家重點實驗室,上海200240)

    應(yīng)用非線性有限元法進行了破冰船冰區(qū)破冰數(shù)值模擬。通過比較數(shù)值模擬結(jié)果和試驗結(jié)果,對冰體材料模型進行了驗證;采用該冰體材料模型,對破冰船以不同航速在不同厚度的層冰中破冰航行時的動態(tài)響應(yīng)進行了數(shù)值研究,給出了破冰過程中層冰的變形、冰力的大小以及冰的變形能和動能變化,分析了船速、冰層厚度對破冰阻力的影響。該研究結(jié)果對分析破冰船在層冰中破冰時的動態(tài)響應(yīng)特性具有一定的參考價值。

    破冰船;層冰;破冰阻力;非線性有限元法;數(shù)值模擬

    U661.4

    A

    王健偉(1989-),男,上海交通大學(xué)碩士;鄒早建(1956-),男,上海交通大學(xué)教授,博士生導(dǎo)師。

    U661.4 < class="emphasis_bold">Document code:A

    A

    10.3969/j.issn.1007-7294.2016.12.008

    1007-7294(2016)12-1584-11

    Received date:2016-08-24

    Biography:WANG Jian-wei(1989-),male,master of Shanghai Jiao Tong University,E-mail:wangjianweime@163.com; ZOU Zao-jian(1956-),professor/tutor of Shanghai Jiao Tong University,E-mail:zjzou@sjtu.edu.cn.

    猜你喜歡
    冰體冰區(qū)破冰船
    “怪獸號”破冰船
    照亮回家的路
    我國高校首艘破冰船“中山大學(xué)極地”號成功開展冰區(qū)試航
    珠江水運(2023年3期)2023-03-04 16:28:28
    重覆冰區(qū)220kV雙回路窄基鋼管塔設(shè)計及試驗研究
    吉林電力(2022年1期)2022-11-10 09:20:48
    彈體高速侵徹冰體研究
    冰區(qū)船舶壓載艙防凍方案研究
    能源工程(2022年2期)2022-05-23 13:51:44
    高速彈體侵徹冰材料過程數(shù)值模擬研究
    世界最大破冰船
    冰體質(zhì)量和撞擊角度對船首結(jié)構(gòu)碰撞性能的影響
    基于船-水-冰耦合技術(shù)的撞擊參數(shù)對船冰碰撞性能的影響
    91成人精品电影| 在线永久观看黄色视频| 九色亚洲精品在线播放| 中文字幕色久视频| 成人黄色视频免费在线看| 黄色视频,在线免费观看| 一本一本久久a久久精品综合妖精| 91成人精品电影| 亚洲一区中文字幕在线| 啦啦啦视频在线资源免费观看| 中文字幕色久视频| 欧美精品一区二区免费开放| 女人久久www免费人成看片| 韩国精品一区二区三区| 亚洲精品成人av观看孕妇| 看黄色毛片网站| av网站在线播放免费| 久9热在线精品视频| 高清毛片免费观看视频网站 | 99国产精品99久久久久| 黄色丝袜av网址大全| 久久久久久亚洲精品国产蜜桃av| 男人操女人黄网站| 又大又爽又粗| 中文字幕人妻丝袜制服| 91精品三级在线观看| 巨乳人妻的诱惑在线观看| 国产99白浆流出| 在线观看免费视频日本深夜| 热re99久久国产66热| 精品国产乱子伦一区二区三区| 亚洲精品av麻豆狂野| 亚洲国产欧美一区二区综合| 精品人妻熟女毛片av久久网站| 国产精品国产av在线观看| 无遮挡黄片免费观看| www.自偷自拍.com| 日韩制服丝袜自拍偷拍| 亚洲中文字幕日韩| 久久国产精品影院| 亚洲专区字幕在线| 国产精品欧美亚洲77777| 亚洲成a人片在线一区二区| 两性夫妻黄色片| 视频在线观看一区二区三区| 欧美日韩乱码在线| 日韩视频一区二区在线观看| 成年人免费黄色播放视频| 亚洲av美国av| 亚洲熟妇中文字幕五十中出 | 每晚都被弄得嗷嗷叫到高潮| 国产一区二区三区综合在线观看| 又紧又爽又黄一区二区| 777久久人妻少妇嫩草av网站| 亚洲色图av天堂| 9色porny在线观看| 91在线观看av| 日韩中文字幕欧美一区二区| 别揉我奶头~嗯~啊~动态视频| 久久 成人 亚洲| 国产精品av久久久久免费| 欧美黄色片欧美黄色片| 老汉色av国产亚洲站长工具| 亚洲精品美女久久久久99蜜臀| 欧美黄色片欧美黄色片| 深夜精品福利| 精品人妻在线不人妻| 久热这里只有精品99| 亚洲视频免费观看视频| 国产一卡二卡三卡精品| 日韩 欧美 亚洲 中文字幕| 精品视频人人做人人爽| 久久精品国产亚洲av香蕉五月 | 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看免费午夜福利视频| 一进一出抽搐动态| 视频区图区小说| 日本撒尿小便嘘嘘汇集6| 99热网站在线观看| 在线av久久热| 亚洲免费av在线视频| 亚洲免费av在线视频| 99久久综合精品五月天人人| 午夜久久久在线观看| 欧美国产精品一级二级三级| 中文字幕最新亚洲高清| 国产在线精品亚洲第一网站| 亚洲欧美日韩高清在线视频| 我的亚洲天堂| 黄色怎么调成土黄色| 欧美最黄视频在线播放免费 | 18禁美女被吸乳视频| 久久国产精品大桥未久av| 欧美在线一区亚洲| 又大又爽又粗| 制服诱惑二区| 18禁黄网站禁片午夜丰满| 日本vs欧美在线观看视频| 色婷婷av一区二区三区视频| 最新在线观看一区二区三区| 久久久国产成人精品二区 | 亚洲熟女精品中文字幕| 又大又爽又粗| 别揉我奶头~嗯~啊~动态视频| bbb黄色大片| 老司机午夜十八禁免费视频| av片东京热男人的天堂| www.精华液| 精品第一国产精品| 看片在线看免费视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美精品综合一区二区三区| 国产视频一区二区在线看| 三上悠亚av全集在线观看| 久久人人97超碰香蕉20202| 国产男靠女视频免费网站| 美女午夜性视频免费| 国产精品国产av在线观看| 他把我摸到了高潮在线观看| 亚洲久久久国产精品| 国产一区二区三区综合在线观看| 色94色欧美一区二区| 高清视频免费观看一区二区| 亚洲中文av在线| 在线天堂中文资源库| 中文字幕人妻丝袜一区二区| 大陆偷拍与自拍| 51午夜福利影视在线观看| 精品国产一区二区三区久久久樱花| 亚洲七黄色美女视频| 国产精品成人在线| 精品无人区乱码1区二区| 久久久久国产一级毛片高清牌| 制服人妻中文乱码| 亚洲成人手机| 一本大道久久a久久精品| 女人爽到高潮嗷嗷叫在线视频| av免费在线观看网站| 激情视频va一区二区三区| 纯流量卡能插随身wifi吗| 婷婷精品国产亚洲av在线 | 久久午夜亚洲精品久久| 精品无人区乱码1区二区| 久久草成人影院| 村上凉子中文字幕在线| 国产亚洲一区二区精品| 亚洲av成人不卡在线观看播放网| 国产野战对白在线观看| 黄色女人牲交| 99在线人妻在线中文字幕 | 男男h啪啪无遮挡| 久久精品亚洲熟妇少妇任你| 亚洲欧美日韩另类电影网站| 久久久久久人人人人人| 丁香欧美五月| 免费在线观看完整版高清| 精品国产一区二区三区久久久樱花| 电影成人av| 男人操女人黄网站| 久久久国产成人精品二区 | 校园春色视频在线观看| 欧美大码av| 国产99久久九九免费精品| 欧美人与性动交α欧美软件| 亚洲成人免费电影在线观看| 大型黄色视频在线免费观看| 两个人免费观看高清视频| 人人妻人人澡人人爽人人夜夜| 亚洲av欧美aⅴ国产| 欧美色视频一区免费| 久久精品国产99精品国产亚洲性色 | 99re6热这里在线精品视频| 欧美激情 高清一区二区三区| 91成年电影在线观看| 国产精品久久视频播放| 夜夜夜夜夜久久久久| 中文字幕最新亚洲高清| 看免费av毛片| 久久精品亚洲精品国产色婷小说| 亚洲欧美激情在线| 韩国精品一区二区三区| 午夜免费成人在线视频| 女人被躁到高潮嗷嗷叫费观| 在线观看66精品国产| 建设人人有责人人尽责人人享有的| 免费看a级黄色片| 日韩 欧美 亚洲 中文字幕| 亚洲成av片中文字幕在线观看| 叶爱在线成人免费视频播放| 国产精品偷伦视频观看了| 成年女人毛片免费观看观看9 | 亚洲av片天天在线观看| 欧美日韩瑟瑟在线播放| 飞空精品影院首页| 国产淫语在线视频| 午夜福利在线免费观看网站| a在线观看视频网站| 亚洲精品乱久久久久久| 丰满人妻熟妇乱又伦精品不卡| 国产成人精品久久二区二区免费| 老司机在亚洲福利影院| 天天躁夜夜躁狠狠躁躁| 国产淫语在线视频| 91精品三级在线观看| 大型av网站在线播放| 国产成人av教育| 国产人伦9x9x在线观看| 搡老熟女国产l中国老女人| 午夜两性在线视频| 搡老岳熟女国产| 黄色视频不卡| 亚洲黑人精品在线| 女人精品久久久久毛片| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产精品合色在线| 自线自在国产av| 精品国产美女av久久久久小说| 91av网站免费观看| 国产熟女午夜一区二区三区| av网站在线播放免费| 色综合婷婷激情| 久久久精品区二区三区| 亚洲第一av免费看| 亚洲性夜色夜夜综合| 亚洲色图 男人天堂 中文字幕| 高清av免费在线| 老司机亚洲免费影院| 久久香蕉精品热| 天天影视国产精品| 日韩欧美三级三区| 欧美日韩乱码在线| 18禁黄网站禁片午夜丰满| 国产精品一区二区在线不卡| 女性被躁到高潮视频| 男女午夜视频在线观看| a级片在线免费高清观看视频| 中文字幕人妻丝袜制服| 成人黄色视频免费在线看| av天堂久久9| 美女国产高潮福利片在线看| 日韩欧美国产一区二区入口| 99在线人妻在线中文字幕 | 久久青草综合色| 又紧又爽又黄一区二区| 欧美在线黄色| 俄罗斯特黄特色一大片| 无人区码免费观看不卡| 两个人看的免费小视频| 欧美精品亚洲一区二区| 日韩成人在线观看一区二区三区| 美女高潮到喷水免费观看| av超薄肉色丝袜交足视频| 亚洲成国产人片在线观看| 久久 成人 亚洲| 亚洲精品在线观看二区| 国产不卡av网站在线观看| а√天堂www在线а√下载 | 午夜激情av网站| 欧美av亚洲av综合av国产av| 精品久久久久久久毛片微露脸| 亚洲人成电影免费在线| www.精华液| 搡老熟女国产l中国老女人| 国产一区二区三区视频了| 另类亚洲欧美激情| 亚洲欧美一区二区三区黑人| 久久久久国内视频| 成人国语在线视频| 亚洲精品av麻豆狂野| 一区二区三区激情视频| 在线永久观看黄色视频| 国产精品自产拍在线观看55亚洲 | 午夜激情av网站| 搡老岳熟女国产| 欧美日韩亚洲综合一区二区三区_| 日本wwww免费看| 午夜日韩欧美国产| 午夜精品国产一区二区电影| 人人妻人人爽人人添夜夜欢视频| 久久人妻福利社区极品人妻图片| 国产成人av教育| 99精品在免费线老司机午夜| 精品国产超薄肉色丝袜足j| 美女午夜性视频免费| 天堂中文最新版在线下载| 午夜老司机福利片| 亚洲 欧美一区二区三区| 久久久久久免费高清国产稀缺| 久久久精品免费免费高清| 在线看a的网站| 精品午夜福利视频在线观看一区| 99久久99久久久精品蜜桃| 婷婷精品国产亚洲av在线 | 亚洲欧洲精品一区二区精品久久久| 亚洲专区国产一区二区| 国产主播在线观看一区二区| 日本a在线网址| 国产精品亚洲av一区麻豆| 欧美乱色亚洲激情| videos熟女内射| 国产欧美日韩一区二区三| 色94色欧美一区二区| 久久精品成人免费网站| 欧美日韩福利视频一区二区| 国产99久久九九免费精品| 久久久久久人人人人人| 女性生殖器流出的白浆| 亚洲色图 男人天堂 中文字幕| 成人18禁高潮啪啪吃奶动态图| 成年人午夜在线观看视频| 无遮挡黄片免费观看| 久久精品国产亚洲av高清一级| 女人被狂操c到高潮| 天天躁日日躁夜夜躁夜夜| 久久国产乱子伦精品免费另类| 午夜亚洲福利在线播放| 精品久久蜜臀av无| 国产精品国产高清国产av | 精品无人区乱码1区二区| 成人精品一区二区免费| 婷婷精品国产亚洲av在线 | 99国产精品99久久久久| 欧美亚洲日本最大视频资源| 国产精品二区激情视频| 国产av又大| xxxhd国产人妻xxx| 午夜精品国产一区二区电影| 午夜福利免费观看在线| av片东京热男人的天堂| 热99国产精品久久久久久7| 国产野战对白在线观看| 国产av精品麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 下体分泌物呈黄色| av视频免费观看在线观看| 色精品久久人妻99蜜桃| 午夜免费鲁丝| 国产无遮挡羞羞视频在线观看| 十八禁网站免费在线| 亚洲一区二区三区欧美精品| 制服人妻中文乱码| 久久久久久免费高清国产稀缺| 久久香蕉国产精品| 久久久精品国产亚洲av高清涩受| 亚洲成人手机| 村上凉子中文字幕在线| 男女下面插进去视频免费观看| 欧美精品av麻豆av| 国产无遮挡羞羞视频在线观看| 黑丝袜美女国产一区| 久久99一区二区三区| 亚洲avbb在线观看| 亚洲熟女毛片儿| 日本黄色日本黄色录像| 欧美日韩福利视频一区二区| 亚洲色图综合在线观看| 18禁观看日本| 久久久久久久午夜电影 | 亚洲精品自拍成人| 中文字幕最新亚洲高清| 久久久久久免费高清国产稀缺| 国产欧美亚洲国产| 在线观看日韩欧美| 天天躁日日躁夜夜躁夜夜| videos熟女内射| 日韩欧美免费精品| 亚洲国产中文字幕在线视频| 亚洲三区欧美一区| 人妻 亚洲 视频| 国产欧美日韩一区二区精品| netflix在线观看网站| 日韩 欧美 亚洲 中文字幕| 母亲3免费完整高清在线观看| 正在播放国产对白刺激| 国产成人欧美| 久久久久久久午夜电影 | 最近最新免费中文字幕在线| 中文字幕最新亚洲高清| 久久天堂一区二区三区四区| 1024视频免费在线观看| 搡老乐熟女国产| 中文字幕制服av| 中文字幕另类日韩欧美亚洲嫩草| 国产成人免费观看mmmm| 色婷婷久久久亚洲欧美| 1024香蕉在线观看| 操出白浆在线播放| 亚洲一区二区三区不卡视频| 午夜福利乱码中文字幕| 欧美日韩成人在线一区二区| 亚洲中文日韩欧美视频| 丁香欧美五月| 99国产精品一区二区蜜桃av | 精品亚洲成a人片在线观看| 夜夜爽天天搞| 怎么达到女性高潮| 十八禁高潮呻吟视频| 亚洲精品中文字幕一二三四区| √禁漫天堂资源中文www| 黄色 视频免费看| 国产精品一区二区在线观看99| www.精华液| 亚洲欧美精品综合一区二区三区| 99在线人妻在线中文字幕 | 侵犯人妻中文字幕一二三四区| 十八禁网站免费在线| 日本wwww免费看| 九色亚洲精品在线播放| 99热只有精品国产| 亚洲欧美激情综合另类| 91在线观看av| 国产高清激情床上av| 69精品国产乱码久久久| 老司机亚洲免费影院| 亚洲男人天堂网一区| 国产成人av教育| 一边摸一边抽搐一进一出视频| 天堂动漫精品| 国产97色在线日韩免费| 变态另类成人亚洲欧美熟女 | 美女扒开内裤让男人捅视频| 亚洲五月色婷婷综合| 国产欧美亚洲国产| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品免费视频内射| 欧美激情极品国产一区二区三区| 亚洲精品乱久久久久久| 在线观看66精品国产| 视频区欧美日本亚洲| 校园春色视频在线观看| 激情视频va一区二区三区| 黑丝袜美女国产一区| 午夜成年电影在线免费观看| 亚洲欧美激情在线| 俄罗斯特黄特色一大片| 伦理电影免费视频| 男女午夜视频在线观看| 亚洲五月天丁香| 怎么达到女性高潮| 飞空精品影院首页| 国产精品自产拍在线观看55亚洲 | 黄片播放在线免费| 在线av久久热| 亚洲欧美激情综合另类| 欧美+亚洲+日韩+国产| 亚洲熟女精品中文字幕| 成人黄色视频免费在线看| 久久精品亚洲熟妇少妇任你| 深夜精品福利| e午夜精品久久久久久久| 在线观看66精品国产| 亚洲七黄色美女视频| 无人区码免费观看不卡| av免费在线观看网站| 俄罗斯特黄特色一大片| 两个人看的免费小视频| 欧美av亚洲av综合av国产av| 欧美色视频一区免费| 热99国产精品久久久久久7| 老汉色av国产亚洲站长工具| 校园春色视频在线观看| 18禁观看日本| 国产黄色免费在线视频| 天天躁日日躁夜夜躁夜夜| 亚洲男人天堂网一区| 成年女人毛片免费观看观看9 | 黄片小视频在线播放| 久久久国产成人精品二区 | 国产亚洲精品久久久久久毛片 | 国产成人免费无遮挡视频| 99re6热这里在线精品视频| e午夜精品久久久久久久| 女同久久另类99精品国产91| 成在线人永久免费视频| 国产激情久久老熟女| 老熟女久久久| 亚洲五月天丁香| 中文字幕精品免费在线观看视频| 日本黄色日本黄色录像| 欧美日韩亚洲国产一区二区在线观看 | 9191精品国产免费久久| 国产av一区二区精品久久| 69精品国产乱码久久久| 午夜激情av网站| 久久人妻福利社区极品人妻图片| 黄片播放在线免费| 久久狼人影院| 操美女的视频在线观看| 中文亚洲av片在线观看爽 | 成人精品一区二区免费| a级片在线免费高清观看视频| 可以免费在线观看a视频的电影网站| 老汉色∧v一级毛片| 亚洲一区二区三区欧美精品| 欧美 亚洲 国产 日韩一| 90打野战视频偷拍视频| xxx96com| 在线永久观看黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| videos熟女内射| 黄色片一级片一级黄色片| 久久婷婷成人综合色麻豆| 久久久久国内视频| 欧美日韩瑟瑟在线播放| 国产有黄有色有爽视频| 久久 成人 亚洲| 亚洲精品国产精品久久久不卡| aaaaa片日本免费| 国产高清视频在线播放一区| 午夜福利在线观看吧| 热99国产精品久久久久久7| 精品久久久久久久毛片微露脸| 夜夜躁狠狠躁天天躁| av欧美777| 欧美成人免费av一区二区三区 | 19禁男女啪啪无遮挡网站| 最新美女视频免费是黄的| 午夜福利一区二区在线看| 狂野欧美激情性xxxx| 91字幕亚洲| 日本一区二区免费在线视频| 老汉色∧v一级毛片| 丝袜人妻中文字幕| 欧美日韩精品网址| 男女免费视频国产| 超碰成人久久| 欧美日韩乱码在线| 好看av亚洲va欧美ⅴa在| 国产亚洲欧美在线一区二区| 人人妻人人添人人爽欧美一区卜| 黄色女人牲交| 高清av免费在线| av在线播放免费不卡| 大码成人一级视频| 91成人精品电影| 日韩一卡2卡3卡4卡2021年| 飞空精品影院首页| 制服诱惑二区| 久久香蕉精品热| 在线观看午夜福利视频| 九色亚洲精品在线播放| 精品免费久久久久久久清纯 | 免费高清在线观看日韩| 亚洲国产欧美网| 女性生殖器流出的白浆| 日日夜夜操网爽| 成年人免费黄色播放视频| 99精品在免费线老司机午夜| 亚洲成人国产一区在线观看| 欧美精品av麻豆av| 久久久精品免费免费高清| 免费久久久久久久精品成人欧美视频| 精品久久久久久,| 首页视频小说图片口味搜索| 极品少妇高潮喷水抽搐| 在线av久久热| 久久久国产欧美日韩av| 99热网站在线观看| videos熟女内射| 少妇的丰满在线观看| 人人妻,人人澡人人爽秒播| 国产欧美日韩综合在线一区二区| 18禁观看日本| 18禁黄网站禁片午夜丰满| 三上悠亚av全集在线观看| 精品熟女少妇八av免费久了| 女人被躁到高潮嗷嗷叫费观| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美亚洲日本最大视频资源| 午夜精品久久久久久毛片777| 一区二区三区激情视频| 国产色视频综合| 国产精品久久久久久精品古装| 香蕉国产在线看| 国产精品综合久久久久久久免费 | 国产精品一区二区在线不卡| 热99久久久久精品小说推荐| 国产精品一区二区在线不卡| 午夜福利,免费看| 免费观看精品视频网站| 在线天堂中文资源库| 在线观看免费高清a一片| 美女高潮到喷水免费观看| 国产激情久久老熟女| 午夜影院日韩av| 国产97色在线日韩免费| 91字幕亚洲| 桃红色精品国产亚洲av| 黑人巨大精品欧美一区二区mp4| 日韩大码丰满熟妇| 亚洲精品中文字幕在线视频| 国产欧美日韩综合在线一区二区| 亚洲伊人色综图| 欧美丝袜亚洲另类 | 搡老熟女国产l中国老女人| 18禁美女被吸乳视频| 下体分泌物呈黄色| 国产黄色免费在线视频| 动漫黄色视频在线观看| 欧美日韩一级在线毛片| 成人av一区二区三区在线看| 久久久精品国产亚洲av高清涩受| 久久精品国产a三级三级三级| 免费在线观看亚洲国产| 国产在线观看jvid| 法律面前人人平等表现在哪些方面| 国产免费av片在线观看野外av| 制服人妻中文乱码| 黄色视频不卡| 欧美日韩国产mv在线观看视频| 99国产综合亚洲精品| 99国产精品一区二区三区| 午夜福利在线观看吧| 久久久精品区二区三区| 日韩有码中文字幕|