• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Higher-order topological Anderson insulator on the Sierpi′nski lattice

    2024-01-25 07:11:34HuanChen陳煥ZhengRongLiu劉崢嶸RuiChen陳銳andBinZhou周斌
    Chinese Physics B 2024年1期
    關(guān)鍵詞:周斌

    Huan Chen(陳煥), Zheng-Rong Liu(劉崢嶸), Rui Chen(陳銳),?, and Bin Zhou(周斌),2,?

    1Department of Physics,Hubei University,Wuhan 430062,China

    2Key Laboratory of Intelligent Sensing System and Security of Ministry of Education,Hubei University,Wuhan 430062,China

    Keywords: fractal system,topological insulator

    1.Introduction

    Fractals are graphs with self-similarity, in which each constituent exhibits the same character as the whole.[1,2]In recent years,theoretical works concerning quantum effects on fractal lattices have been extensively studied, such as Anderson localization,[3–5]electronic[6,7]and optical conductivity,[8]plasmon dispersion relations,[9]and other related topics.[10–14]Despite being embedded in integer dimensional space, a fractal lattice is characterized by a non-integer Hausdorff dimension.[15]Due to its unique characteristics and motivated by the experimental developments,[16,17]the fractal lattices have attracted much attention in recent years.

    On the other hand, tremendous efforts have been devoted to the study of topological systems in integer dimensions during the past two decades.[18–21]Nowadays, researchers have extended these topological phases to fractal systems,which allow for new topological phenomena that are impossible in crystals.For example, topological phases in fractals do not possess a well-defined bulk like their crystalline counterparts, but they are able to support topologically protected states on the boundary.[22]Topological phases have been widely investigated in different fractal systems,[23–25]such as the Chern insulator,[26–31]higher-order topological insulator,[32–34]non-Hermitian topological insulator,[35]and topological superconductor.[36,37]The second-order topological insulator (SOTI) in fractals exhibits unique inner corner modes.[32]The Chern insulator in fractals is protected by the robust mobility gap instead of the direct bandgap in conventional topological insulators.[33]In the meantime, topological phases in fractals have been experimentally reported in various systems, such as the Chern insulator[33]and higherorder topological insulator[34,38]in acoustic systems and Floquet topological insulator[22,39]and higher-order topological insulator[24]in photonic systems.

    Moreover, the interplay between disorder and dimensionality plays a critical role in the research of topological systems.The disorder-induced topological phase, which is referred to as the topological Anderson insulator (TAI),was first proposed by Liet al.[40]Since then, the TAI phases have been investigated in numerous systems in integer dimensions.[41–58]So far, the TAI phase has been observed experimentally in one-dimensional disordered atomic wires,[59]photonic platforms,[60–62]and a quantum simulator on a superconducting-circuit device.[63]Recently, the TAI phase has been proposed to be realized in an electric circuit.[64]However, it is worth highlighting that the disorder effect on fractal systems remains an unexplored territory.

    Here, we investigate the disorder-induced topological phase transition on the Sierpi′nski lattice, which is one of the best-known examples of a fractal system.Depending on the topological mass,the fractal system supports a normal insulator(NI)phase with a zero topological index and a SOTI phase with a quantized quadrupole moment.We find that the SOTI on the Sierpi′nski lattice is robust against weak disorder.Surprisingly,we reveal that disorder can induce a phase transition from the NI phase to the SOTI phase,indicating the occurrence of the higher-order TAI phase in the fractal system.Moreover,the disorder-induced phase is further confirmed by calculating the energy spectrum and the corresponding probability distribution.

    This work is organized as follows.We give a brief description of the Sierpi′nski lattice in Subsection 2.1,introduce the tight-binding Hamiltonian in the fractal system in Subsection 2.2,and adopt the quadrupole moment to characterize the system in Subsection 2.3.Then we demonstrate that the topological nature of the system can be captured by the quadrupole moment in Section 3.1, discuss the disorder effects on the fractal system in Subsection 3.2, and show that the disorderinduced phase transitions can be further confirmed by calculating the energy spectrum and the probability distributions in Subsection 3.3.Finally, we make a summary and a brief discussion in Section 4.

    2.Model and method

    2.1.Sierpi′nski lattice

    The Sierpi′nski lattice can be regarded as the lattice obtained after the manufacture of defects following certain laws on a square lattice.[26,27]The initial unit contains eight sites(the green sites in Fig.1).This unit is replicated 8 times to obtain the structure of the next generation, which contains an inner hole without lattice site (the blue sites in Fig.1).This operation is repeated to obtain the red sites in Fig.1.Each iteration makes the number of lattice sites become eight times that of the previous generation by copying and moving.In this way, we can easily describe the fractal lattice of a Sierpi′nski carpet.For a certain generationf,the site numberN=8f.For the iterationsf ?1,we obtain an approximation of the Sierpi′nski carpet with fractional Hausdorff dimensiondH=ln8/ln3?1.89.

    Fig.1.Schematic illustration of the Sierpi′nski lattices.Here,the green,blue,and red sites make up the first,second,and third generations with the site numbers 8,64,and 512,respectively.

    2.2.Hamiltonian

    The tight-binding Hamiltonian of a quadrupole insulator on the Sierpi′nski lattice has the following form:[32,65]

    where

    describes a first-order topological insulator protected by timereversal symmetry.Here,the long-range hopping between two different sites is considered andl(rjk)= e1?rjk/r0corresponds to the spatial decay factor of hopping amplitudes, whererjkis the lattice spacing between sitesjandk, andr0is the decay length.φjkis the polar angle between sitesjandk.σ1,2,3andτ1,2,3are the Pauli matrices acting on the spin and orbital spaces,respectively.σ0andτ0are identity matrices.t1andt2denote the hopping amplitudes.is the creation operator at sitejdetermined by spin direction↑,↓and orbital indexα,β.The second part

    is the Wilson mass term,which breaks the time-reversal symmetry.The Wilson mass term hybridizes and then gaps out the counter-propagating gapless edge modes of the system.Moreover,H2causes the sign of the domain-wall mass to flip four times under 2πrotation,which breaks four-fold rotational symmetryC4.[66–68]In the clean limit,the HamiltonianHrespects the combined symmetryC4T,[32,65]whereT=s2τ0Kis the time-reversal symmetry andKis the complex conjugation.For the rest of the discussion,we setr0=1,t1=t2=1,g=1.The last term

    depicts the Anderson-type disorder.Ujis a set of uniform random numbers distributed within the range of [?W/2,W/2],withWbeing the disorder strength.

    2.3.Quadrupole

    We adopt the quadrupole moment to characterize the fractal system,which is given by[32,65]

    It should be noticed thatQxyis a gauge-dependent quantity for a finite-size fractal system and becomes gaugeinvariant in the thermodynamic limit.[32]In this sense,strictly speaking,Qxyis only available for an infinite system.However, we find that for a large-enough system withf=3,Qxyis able to capture the topology nature of the system(see Subsection 3.1 below).Therefore, in this work, we still employQxyto characterize the topological properties of the finite-size system.

    3.Numerical investigation

    In this section,we first show that the quadrupole momentQxycan indeed capture the topology nature of the fractal system.Subsequently,we investigate disorder effects on the fractal system.Moreover, all the numerical calculations are performed on the third generation of the Sierpi′nski lattices.

    3.1.Clean limit

    We start with the case of clean limit, i.e.,W=0.Figures 2(a)–2(d) show the energy spectrum and the corresponding probability distribution of the fractal system on the Sierpi′nski lattices withm=0.The system hosts corner modes residing on both the outer corners[Fig.2(b)]and the inner corners[Fig.2(c)].Moreover,it is found that the system is characterized by a quantized quadrupole moment withQxy=0.5.The quantized topological index and the emergence of the corner models confirm that the system corresponds to a SOTI phase.

    Fig.2.(a) Energy spectrum of the fractal system constructed on the third generation of the Sierpi′nski lattice with m=0.Panels (b), (c),and(d)show the probability distributions of the red,yellow,and green energy modes labeled in(a),respectively.(e)The quadrupole moment Qxy and(f)the energy spectrum as functions of the parameter m.

    Moreover, the energy of the four outer corner modes is nearly zero[the red points in Fig.2(a)]and the four inner corner modes open a tiny energy gap in the spectrum[the yellow points in Fig.2(a)].In addition, there exist 32 energy modes inside the bulk gap [the green points in Fig.2(a)], with their probability distributions localized around a series of secondary inner boundaries[Fig.2(d)].

    Figures 2(a) and 2(b) show the quadrupole momentQxyand the corresponding energy spectrum as functions of the parametermon the fractal system,respectively.We find that the SOTI phase characterized byQxy=0.5 always hosts four zeroenergy inner corner modes.The other in-gap localized states are not that stable compared to the four outer corner modes.Therefore,we show that the quadrupole momentQxycan capture the topology nature of the fractal system.

    3.2.Disorder effects

    Now, we study the disorder effects on the fractal system.For the SOTI phase withQxy=0.5, the results are as expected [Fig.3(a)].With increasing disorder strengthW,Qxykeeps the quantized value untilWexceeds certain values.Therefore, similar to the previous studies on disordered topological systems,[40,41]the topological nature of the SOTI phase in the fractal system is also robust against weak disorder.Further increasing the disorder strength,the quantizedQxyis suppressed by disorder,then gradually decreases and finally collapses to zero.

    Fig.3.The quadrupole moment Qxy as a function of the disorder strength W for (b) m=?1, 0, 1, 2 and (c) m=2.2, 2.5, 3, respectively.The error bar represents the standard deviation of 500 samples.(c)The quadrupole moment Qxy calculated in the(W,m)plane.In(c),each data point is averaged on 50 independent disorder configurations.

    In the clean limit,the NI phase is characterized byQxy=0[Fig.3(a)].With increasing disorder strength, the disorderaveraged quadrupole momentQxyincreases and then forms a quantized plateau withQxy=0.5.The quantized plateau is observed for a certain range of disorder strength,and it decreases and finally disappears with increasing the disorder strength.The zero fluctuation of the quantized plateau indicates that it corresponds to a disorder-induced SOTI phase.Moreover,we plot the diagrams of the system as a function ofmandWin Fig.3(c).The disorder-induced topological phase transitions can be observed more clearly.

    3.3.Disorder-averaged energy spectrum and probability

    Here, we show that the above disorder-induced phenomenon can be further confirmed by checking the disorderaveraged spectrum and the corresponding probability distribution.

    Figure 4(a)shows the disorder-averaged energy spectrum as a function of the disorder strengthWform=0.In the clean limit (W=0), the system corresponds to a SOTI and hosts eight nearly-zero-energy modes with their probability distributions localized on the four outer corners and the four inner corners[Fig.4(b)].With the increasing disorder strength,the bulk gap diminishes and vanishes for aboutW=6.This is in accordance with the results shown in Fig.3(a), where the quantizedQxyalso starts to collapse whenW= 6.Further increasing the disorder strength, the four inner corner modes first disappear[Fig.4(c)],followed by the disappearance of all corner modes[Fig.4(d)].

    Fig.4.(a) The energy spectrum as a function of the disorder strength W for the SOTI phase with m=0.(b)–(d)Disorder-averaged probability distribution of the middle eight energy modes with disorder strength W =0, 8, and 11, respectively.Here, each data is obtained after averaging on 500 random disorder configurations.

    Figure 5(a)shows the disorder-averaged energy spectrum as a function of the disorder strengthWform=2.2.In the clean limit (W=0), the system corresponds to an NI and no corner modes appear[Fig.5(b)].With the increasing disorder strength,the bulk gap decreases and vanishes for aboutW=4.This is in accordance with the results shown in Fig.3(b),where the quantizedQxyemerges whenW=4.Further increasing the disorder strength, the eight corner modes appear [Fig.5(c)]and finally are suppressed by strong disorder[Fig.5(d)].

    Fig.5.(a) The energy spectrum as a function of the disorder strength W for the NI phase with m=2.2.(b)–(d)Disorder-averaged probability distribution of the middle eight energy modes with disorder strength W =0, 9, and 14, respectively.Here, each data is obtained after averaging on 500 random disorder configurations.

    4.Conclusion

    In this work, we study the disorder effects on a fractal system constructed on the Sierpi′nski lattice.We show that SOTI phase on the fractal system is robust against weak disorder.Moreover, we reveal a disorder-induced SOTI phase characterized by an emergent quantized quadrupole moment withQxy= 0.5.Finally, the disorder induced phenomena on the fractal system are further confirmed by checking the disorder-averaged energy spectra and the corresponding probability distributions.In crystals, disordered-induced higherorder topological phase manifests localized states at external corners.[57,58]However, in fractal lattices, the disorderinduced phases manifest localized states at both internal and external corners.This property represents a unique characteristic of the disorder-induced second-order topological phase in the fractal system.

    We expect that the disorder-induced SOTI phase in the fractal system can be experimentally realized in some metamaterials in the future.The SOTI phases in fractal systems have been experimentally observed in both the acoustic[34,38]and the photonic[24]systems.On the other hand, the disorder effects have been introduced in both the acoustic[69,70]and the photonic[60–62]systems.The above experiments offer the possibility of future experimental realization of our proposal.

    Acknowledgements

    R.C.acknowledges the support of the National Natural Science Foundation of China (Grant No.12304195) and the Chutian Scholars Program in Hubei Province.B.Z.was supported by the National Natural Science Foundation of China (Grant No.12074107), the program of outstanding young and middle-aged scientific and technological innovation team of colleges and universities in Hubei Province(Grant No.T2020001), and the innovation group project of the Natural Science Foundation of Hubei Province of China (Grant No.2022CFA012).Z.-R.L.was supported by the Postdoctoral Innovation Research Program in Hubei Province (Grant No.351342).

    猜你喜歡
    周斌
    Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
    周斌書法作品欣賞
    用“秘密”換來“停車自由”,泄露隱私不可取
    分憂(2021年7期)2021-07-22 19:19:46
    你若不離不棄 我必生死相依
    古怪的嫁妝
    古怪的嫁妝
    釘尖球拍
    金山(2017年4期)2017-06-08 13:43:46
    沉重的“十字架”
    A Brief Introduction of Newspaper from the Cultural Aspect
    沉重的“十字架”
    湖北教育(2016年31期)2016-03-16 00:40:17
    亚洲精品美女久久久久99蜜臀| 欧美精品亚洲一区二区| 黄色片一级片一级黄色片| 亚洲精品美女久久久久99蜜臀| 久久亚洲精品不卡| 色在线成人网| 丰满饥渴人妻一区二区三| 一本大道久久a久久精品| 黄色丝袜av网址大全| 18禁裸乳无遮挡动漫免费视频| 久久精品成人免费网站| 久久香蕉国产精品| 宅男免费午夜| 韩国精品一区二区三区| 久久国产精品影院| 久久精品国产综合久久久| 国产精品久久电影中文字幕 | 久久国产精品大桥未久av| 91精品三级在线观看| 国产成人系列免费观看| 亚洲精品在线美女| 757午夜福利合集在线观看| 我的亚洲天堂| 亚洲精品国产一区二区精华液| 国产色视频综合| 免费在线观看亚洲国产| 亚洲一卡2卡3卡4卡5卡精品中文| 18禁裸乳无遮挡免费网站照片 | 不卡一级毛片| 亚洲欧美精品综合一区二区三区| 成人永久免费在线观看视频| 窝窝影院91人妻| 人妻久久中文字幕网| 免费在线观看亚洲国产| 一区二区三区精品91| 国产亚洲精品久久久久5区| 19禁男女啪啪无遮挡网站| 视频区欧美日本亚洲| 午夜福利欧美成人| 免费在线观看影片大全网站| 动漫黄色视频在线观看| 久久久久国产精品人妻aⅴ院 | 精品人妻在线不人妻| 欧美精品高潮呻吟av久久| 成人av一区二区三区在线看| 美女视频免费永久观看网站| 精品福利观看| 女性被躁到高潮视频| 搡老乐熟女国产| 国产aⅴ精品一区二区三区波| 国产av又大| 日韩熟女老妇一区二区性免费视频| 一二三四社区在线视频社区8| videos熟女内射| 亚洲中文字幕日韩| 真人做人爱边吃奶动态| 怎么达到女性高潮| 亚洲国产中文字幕在线视频| 国产精品秋霞免费鲁丝片| 如日韩欧美国产精品一区二区三区| a级毛片在线看网站| 国产黄色免费在线视频| 99久久精品国产亚洲精品| 一级作爱视频免费观看| 人人妻人人澡人人看| 黄片大片在线免费观看| 中国美女看黄片| 人成视频在线观看免费观看| 精品免费久久久久久久清纯 | 久久久久视频综合| 免费观看a级毛片全部| 久久久国产成人免费| 一区在线观看完整版| 亚洲精华国产精华精| 成人亚洲精品一区在线观看| 黄色女人牲交| 亚洲片人在线观看| 热99久久久久精品小说推荐| 亚洲国产精品sss在线观看 | 亚洲一区二区三区不卡视频| 日日夜夜操网爽| 一本大道久久a久久精品| 国产精品电影一区二区三区 | 美女高潮到喷水免费观看| 99热只有精品国产| 日韩欧美一区二区三区在线观看 | tocl精华| 日韩欧美在线二视频 | 国产男靠女视频免费网站| 欧美黄色淫秽网站| 人人妻人人澡人人爽人人夜夜| 黄色视频,在线免费观看| 国产免费现黄频在线看| 欧美日本中文国产一区发布| 免费在线观看完整版高清| 欧美黑人欧美精品刺激| 午夜福利,免费看| 久久香蕉国产精品| 国产一区二区三区综合在线观看| 国产三级黄色录像| 女性生殖器流出的白浆| 大陆偷拍与自拍| 日韩视频一区二区在线观看| 女人久久www免费人成看片| 中亚洲国语对白在线视频| 最近最新免费中文字幕在线| 1024视频免费在线观看| 夜夜爽天天搞| 校园春色视频在线观看| xxxhd国产人妻xxx| 777久久人妻少妇嫩草av网站| 黑人巨大精品欧美一区二区蜜桃| 日本欧美视频一区| 午夜免费观看网址| 女性生殖器流出的白浆| 国产免费现黄频在线看| av超薄肉色丝袜交足视频| 男人操女人黄网站| 成人国语在线视频| 久久午夜综合久久蜜桃| 高潮久久久久久久久久久不卡| 亚洲专区字幕在线| 日本黄色视频三级网站网址 | 老汉色av国产亚洲站长工具| 人妻 亚洲 视频| 搡老岳熟女国产| 美女午夜性视频免费| 两个人免费观看高清视频| 人人妻人人爽人人添夜夜欢视频| 久久久久精品人妻al黑| 精品国产乱码久久久久久男人| 日本a在线网址| 老鸭窝网址在线观看| 中文欧美无线码| 久久久国产成人精品二区 | e午夜精品久久久久久久| 成人三级做爰电影| 黄片播放在线免费| 757午夜福利合集在线观看| 天堂俺去俺来也www色官网| 亚洲av成人不卡在线观看播放网| avwww免费| 岛国毛片在线播放| 亚洲五月天丁香| 91国产中文字幕| 法律面前人人平等表现在哪些方面| 欧美 亚洲 国产 日韩一| 国产成人欧美| 国产又爽黄色视频| 欧美日本中文国产一区发布| 午夜福利在线观看吧| 人妻久久中文字幕网| 成人精品一区二区免费| 97人妻天天添夜夜摸| 自线自在国产av| 亚洲精品久久成人aⅴ小说| 久久香蕉国产精品| 天天操日日干夜夜撸| 黄片大片在线免费观看| 婷婷丁香在线五月| 人妻丰满熟妇av一区二区三区 | 在线观看www视频免费| 亚洲美女黄片视频| 久久天堂一区二区三区四区| 久久久久精品人妻al黑| 中文字幕人妻丝袜制服| 色精品久久人妻99蜜桃| 欧美人与性动交α欧美精品济南到| 首页视频小说图片口味搜索| 精品高清国产在线一区| 激情视频va一区二区三区| 国产淫语在线视频| 欧美黄色片欧美黄色片| 国产成人精品久久二区二区91| 欧美日韩视频精品一区| 极品人妻少妇av视频| av网站在线播放免费| 夜夜躁狠狠躁天天躁| 亚洲专区字幕在线| 欧美日韩黄片免| av在线播放免费不卡| videosex国产| 视频在线观看一区二区三区| 女人精品久久久久毛片| 国产在线精品亚洲第一网站| 人人澡人人妻人| 免费日韩欧美在线观看| 免费在线观看影片大全网站| 啦啦啦免费观看视频1| av有码第一页| 老鸭窝网址在线观看| 两人在一起打扑克的视频| 淫妇啪啪啪对白视频| 一本综合久久免费| 精品少妇一区二区三区视频日本电影| 精品亚洲成a人片在线观看| 人人妻人人爽人人添夜夜欢视频| 国产精品综合久久久久久久免费 | 国产精品国产av在线观看| 高清视频免费观看一区二区| 国产黄色免费在线视频| 99久久精品国产亚洲精品| 人人妻人人添人人爽欧美一区卜| 一本综合久久免费| 午夜精品国产一区二区电影| 国产淫语在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 丝瓜视频免费看黄片| 80岁老熟妇乱子伦牲交| 久久久水蜜桃国产精品网| 天堂中文最新版在线下载| 免费在线观看黄色视频的| 黄色a级毛片大全视频| 男男h啪啪无遮挡| 在线观看免费视频日本深夜| 精品少妇一区二区三区视频日本电影| 午夜福利视频在线观看免费| 一二三四社区在线视频社区8| av网站免费在线观看视频| 精品国产一区二区久久| 久久人妻av系列| 无限看片的www在线观看| 中文字幕制服av| 十八禁网站免费在线| 亚洲国产精品一区二区三区在线| 一区在线观看完整版| 成人18禁在线播放| 女性被躁到高潮视频| av中文乱码字幕在线| 国产一区二区三区综合在线观看| 久久99一区二区三区| 久久ye,这里只有精品| 一级毛片精品| 黄色 视频免费看| 人妻一区二区av| 中国美女看黄片| 777米奇影视久久| 精品国产国语对白av| 天堂俺去俺来也www色官网| 人妻 亚洲 视频| 亚洲一码二码三码区别大吗| 别揉我奶头~嗯~啊~动态视频| av一本久久久久| 高清欧美精品videossex| 建设人人有责人人尽责人人享有的| 国产精品久久久av美女十八| av有码第一页| 亚洲五月婷婷丁香| 在线播放国产精品三级| 老司机亚洲免费影院| 好男人电影高清在线观看| 一进一出好大好爽视频| 免费观看人在逋| av福利片在线| 9色porny在线观看| 热re99久久精品国产66热6| 久久国产精品男人的天堂亚洲| 黄频高清免费视频| 精品久久久久久电影网| 免费一级毛片在线播放高清视频 | 久久人妻熟女aⅴ| 99热国产这里只有精品6| 国产在线精品亚洲第一网站| a级毛片黄视频| 亚洲三区欧美一区| 国内久久婷婷六月综合欲色啪| 不卡av一区二区三区| 国产深夜福利视频在线观看| 欧美激情 高清一区二区三区| 日韩大码丰满熟妇| 在线av久久热| 亚洲精品久久午夜乱码| 欧美成人午夜精品| 亚洲,欧美精品.| 99国产精品一区二区蜜桃av | 天堂俺去俺来也www色官网| 一进一出好大好爽视频| 久久久国产成人免费| 亚洲中文日韩欧美视频| 纯流量卡能插随身wifi吗| 国产精品二区激情视频| 国产成人影院久久av| 黑人猛操日本美女一级片| 又黄又爽又免费观看的视频| 免费黄频网站在线观看国产| 国产亚洲欧美在线一区二区| 一级作爱视频免费观看| 国产aⅴ精品一区二区三区波| 在线十欧美十亚洲十日本专区| av欧美777| 99精国产麻豆久久婷婷| 狂野欧美激情性xxxx| 欧美日韩精品网址| 精品乱码久久久久久99久播| 满18在线观看网站| 中文字幕色久视频| 色播在线永久视频| 999久久久国产精品视频| 久久精品国产清高在天天线| 久久天躁狠狠躁夜夜2o2o| 国产精品欧美亚洲77777| 曰老女人黄片| 国产又色又爽无遮挡免费看| 国产精品.久久久| 欧美日韩乱码在线| 亚洲成a人片在线一区二区| 王馨瑶露胸无遮挡在线观看| 自线自在国产av| 国产精品自产拍在线观看55亚洲 | 9热在线视频观看99| 两个人免费观看高清视频| 亚洲一码二码三码区别大吗| 欧美丝袜亚洲另类 | 午夜福利在线免费观看网站| 大香蕉久久成人网| 最新美女视频免费是黄的| 婷婷成人精品国产| 精品人妻在线不人妻| 久久人妻熟女aⅴ| 国产成人一区二区三区免费视频网站| 国产精品一区二区免费欧美| 黑人巨大精品欧美一区二区mp4| 在线观看一区二区三区激情| 亚洲性夜色夜夜综合| 极品人妻少妇av视频| 在线国产一区二区在线| 99久久人妻综合| 精品国产一区二区三区久久久樱花| 99精品久久久久人妻精品| av国产精品久久久久影院| 嫩草影视91久久| 午夜福利在线免费观看网站| 国产熟女午夜一区二区三区| 免费在线观看日本一区| 免费在线观看影片大全网站| 91精品三级在线观看| 色精品久久人妻99蜜桃| 欧美精品av麻豆av| 超碰成人久久| 一a级毛片在线观看| 国产精品久久视频播放| 9色porny在线观看| 12—13女人毛片做爰片一| 人人妻人人爽人人添夜夜欢视频| 欧美色视频一区免费| 中文字幕av电影在线播放| 不卡一级毛片| 日韩熟女老妇一区二区性免费视频| 国产麻豆69| 免费在线观看视频国产中文字幕亚洲| 丝瓜视频免费看黄片| 国产伦人伦偷精品视频| 校园春色视频在线观看| 动漫黄色视频在线观看| 成年人免费黄色播放视频| av福利片在线| 亚洲国产欧美网| 久久久国产欧美日韩av| 精品福利永久在线观看| 久久久久精品国产欧美久久久| 一级黄色大片毛片| 国产欧美日韩一区二区三| 午夜精品在线福利| 看免费av毛片| 亚洲欧美色中文字幕在线| 性色av乱码一区二区三区2| 大码成人一级视频| 水蜜桃什么品种好| 欧美激情 高清一区二区三区| 亚洲熟女精品中文字幕| 亚洲午夜理论影院| 亚洲美女黄片视频| 母亲3免费完整高清在线观看| 色尼玛亚洲综合影院| 美女视频免费永久观看网站| 老司机影院毛片| 亚洲综合色网址| 亚洲精品中文字幕在线视频| 19禁男女啪啪无遮挡网站| 操美女的视频在线观看| 精品福利观看| av有码第一页| 黑人猛操日本美女一级片| 国产深夜福利视频在线观看| 欧美日韩乱码在线| 欧美中文综合在线视频| 麻豆乱淫一区二区| www.999成人在线观看| 热99re8久久精品国产| 久久精品国产综合久久久| av欧美777| 欧美色视频一区免费| 天天躁日日躁夜夜躁夜夜| 国产真人三级小视频在线观看| 午夜福利在线观看吧| 人人妻人人添人人爽欧美一区卜| 12—13女人毛片做爰片一| 亚洲av日韩精品久久久久久密| 久99久视频精品免费| 咕卡用的链子| 久久精品aⅴ一区二区三区四区| 两性夫妻黄色片| 国产免费男女视频| 亚洲第一青青草原| 夜夜夜夜夜久久久久| 97人妻天天添夜夜摸| 国产av精品麻豆| 黄片播放在线免费| 亚洲少妇的诱惑av| 最近最新免费中文字幕在线| 怎么达到女性高潮| 美女午夜性视频免费| 欧美乱妇无乱码| 美国免费a级毛片| 啦啦啦免费观看视频1| 一区在线观看完整版| 中文字幕精品免费在线观看视频| 国产91精品成人一区二区三区| 免费在线观看黄色视频的| 又黄又爽又免费观看的视频| 国产91精品成人一区二区三区| 亚洲人成电影免费在线| 久久精品亚洲熟妇少妇任你| 亚洲第一青青草原| 老司机午夜十八禁免费视频| 亚洲午夜精品一区,二区,三区| 亚洲成av片中文字幕在线观看| 久久草成人影院| 身体一侧抽搐| 亚洲一码二码三码区别大吗| 我的亚洲天堂| 国产在线观看jvid| 成人黄色视频免费在线看| 免费日韩欧美在线观看| 在线天堂中文资源库| 自拍欧美九色日韩亚洲蝌蚪91| 精品一区二区三区视频在线观看免费 | 最新在线观看一区二区三区| 少妇 在线观看| 国产免费现黄频在线看| 成人18禁在线播放| 精品人妻1区二区| 18禁裸乳无遮挡免费网站照片 | 大码成人一级视频| 黄色 视频免费看| 久久久久久久精品吃奶| 久久青草综合色| 亚洲片人在线观看| 精品一区二区三区四区五区乱码| 变态另类成人亚洲欧美熟女 | 亚洲av片天天在线观看| 丰满的人妻完整版| 亚洲人成伊人成综合网2020| 黄色怎么调成土黄色| 美女国产高潮福利片在线看| 欧美日韩亚洲综合一区二区三区_| 亚洲精品av麻豆狂野| 亚洲久久久国产精品| 黑人欧美特级aaaaaa片| 精品一区二区三卡| 日韩一卡2卡3卡4卡2021年| 黄网站色视频无遮挡免费观看| 亚洲精品中文字幕一二三四区| 啦啦啦在线免费观看视频4| 亚洲成av片中文字幕在线观看| 国产精品一区二区免费欧美| 精品乱码久久久久久99久播| 高清av免费在线| 欧美精品高潮呻吟av久久| 很黄的视频免费| 12—13女人毛片做爰片一| 久9热在线精品视频| 一级黄色大片毛片| 在线看a的网站| 午夜91福利影院| 免费在线观看完整版高清| 亚洲精品国产一区二区精华液| 村上凉子中文字幕在线| 波多野结衣一区麻豆| 欧美精品啪啪一区二区三区| 国产亚洲欧美在线一区二区| 亚洲色图综合在线观看| 国产精品.久久久| 国产在线精品亚洲第一网站| 久久亚洲精品不卡| 很黄的视频免费| 每晚都被弄得嗷嗷叫到高潮| 亚洲精华国产精华精| 两性午夜刺激爽爽歪歪视频在线观看 | 中文字幕高清在线视频| 中文字幕人妻丝袜一区二区| 美女扒开内裤让男人捅视频| 国产男靠女视频免费网站| 久久久国产成人免费| 侵犯人妻中文字幕一二三四区| 国产精品九九99| 看免费av毛片| 国产主播在线观看一区二区| 狂野欧美激情性xxxx| 中文字幕制服av| 一级,二级,三级黄色视频| 午夜福利影视在线免费观看| 日本黄色日本黄色录像| 欧美中文综合在线视频| 国产野战对白在线观看| 久久久国产成人免费| 一二三四在线观看免费中文在| 精品免费久久久久久久清纯 | 午夜影院日韩av| 成年人黄色毛片网站| 亚洲午夜精品一区,二区,三区| 国产精品九九99| av天堂久久9| 日本欧美视频一区| 国产精品美女特级片免费视频播放器 | 在线国产一区二区在线| 天堂动漫精品| 国产日韩一区二区三区精品不卡| 午夜福利乱码中文字幕| 99久久综合精品五月天人人| 十八禁高潮呻吟视频| 日韩有码中文字幕| 亚洲专区中文字幕在线| 黄片大片在线免费观看| 亚洲国产精品合色在线| 少妇裸体淫交视频免费看高清 | 国产免费现黄频在线看| 王馨瑶露胸无遮挡在线观看| 国内毛片毛片毛片毛片毛片| 精品少妇久久久久久888优播| 亚洲男人天堂网一区| 黄色怎么调成土黄色| 在线免费观看的www视频| 国产精品一区二区在线不卡| 国产主播在线观看一区二区| 欧美日韩亚洲国产一区二区在线观看 | 又黄又爽又免费观看的视频| 国产一卡二卡三卡精品| 别揉我奶头~嗯~啊~动态视频| 亚洲中文日韩欧美视频| 99国产极品粉嫩在线观看| 满18在线观看网站| 国产高清国产精品国产三级| 久久久精品区二区三区| 国产免费现黄频在线看| 成年女人毛片免费观看观看9 | 一二三四在线观看免费中文在| 天堂√8在线中文| 亚洲人成伊人成综合网2020| 精品国产超薄肉色丝袜足j| 狠狠狠狠99中文字幕| 黄色a级毛片大全视频| 成人国产一区最新在线观看| 高清毛片免费观看视频网站 | 国产精品国产av在线观看| 这个男人来自地球电影免费观看| 中文字幕av电影在线播放| 亚洲欧美色中文字幕在线| 国产黄色免费在线视频| 久久天堂一区二区三区四区| 亚洲熟女精品中文字幕| 在线十欧美十亚洲十日本专区| 亚洲久久久国产精品| 国产单亲对白刺激| 久久久精品区二区三区| 老司机影院毛片| www.精华液| 亚洲av成人不卡在线观看播放网| 中文字幕人妻熟女乱码| 亚洲精品在线美女| 高清毛片免费观看视频网站 | 女人精品久久久久毛片| 伊人久久大香线蕉亚洲五| 一进一出抽搐动态| 伊人久久大香线蕉亚洲五| 很黄的视频免费| 久久人人97超碰香蕉20202| 亚洲色图 男人天堂 中文字幕| 天堂俺去俺来也www色官网| 免费看十八禁软件| 精品少妇一区二区三区视频日本电影| a级毛片在线看网站| 国产亚洲av高清不卡| 在线观看午夜福利视频| 亚洲五月色婷婷综合| 欧美成狂野欧美在线观看| 国产99白浆流出| 久久久国产成人免费| 精品电影一区二区在线| 国产97色在线日韩免费| 在线观看一区二区三区激情| 久久精品国产99精品国产亚洲性色 | 美女视频免费永久观看网站| 一区在线观看完整版| 久久人人97超碰香蕉20202| 久久久精品国产亚洲av高清涩受| 日韩欧美国产一区二区入口| 黄色片一级片一级黄色片| 99久久人妻综合| 国产成人欧美在线观看 | 91麻豆av在线| avwww免费| 男女高潮啪啪啪动态图| 人人妻人人爽人人添夜夜欢视频| 日日爽夜夜爽网站| 国产亚洲欧美在线一区二区| 韩国av一区二区三区四区| 欧美在线一区亚洲| 亚洲成人免费电影在线观看| 操出白浆在线播放| 日韩制服丝袜自拍偷拍| 免费在线观看亚洲国产| 免费看a级黄色片| 国产区一区二久久| 免费少妇av软件|