• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Higher-order topological Anderson insulator on the Sierpi′nski lattice

    2024-01-25 07:11:34HuanChen陳煥ZhengRongLiu劉崢嶸RuiChen陳銳andBinZhou周斌
    Chinese Physics B 2024年1期
    關(guān)鍵詞:周斌

    Huan Chen(陳煥), Zheng-Rong Liu(劉崢嶸), Rui Chen(陳銳),?, and Bin Zhou(周斌),2,?

    1Department of Physics,Hubei University,Wuhan 430062,China

    2Key Laboratory of Intelligent Sensing System and Security of Ministry of Education,Hubei University,Wuhan 430062,China

    Keywords: fractal system,topological insulator

    1.Introduction

    Fractals are graphs with self-similarity, in which each constituent exhibits the same character as the whole.[1,2]In recent years,theoretical works concerning quantum effects on fractal lattices have been extensively studied, such as Anderson localization,[3–5]electronic[6,7]and optical conductivity,[8]plasmon dispersion relations,[9]and other related topics.[10–14]Despite being embedded in integer dimensional space, a fractal lattice is characterized by a non-integer Hausdorff dimension.[15]Due to its unique characteristics and motivated by the experimental developments,[16,17]the fractal lattices have attracted much attention in recent years.

    On the other hand, tremendous efforts have been devoted to the study of topological systems in integer dimensions during the past two decades.[18–21]Nowadays, researchers have extended these topological phases to fractal systems,which allow for new topological phenomena that are impossible in crystals.For example, topological phases in fractals do not possess a well-defined bulk like their crystalline counterparts, but they are able to support topologically protected states on the boundary.[22]Topological phases have been widely investigated in different fractal systems,[23–25]such as the Chern insulator,[26–31]higher-order topological insulator,[32–34]non-Hermitian topological insulator,[35]and topological superconductor.[36,37]The second-order topological insulator (SOTI) in fractals exhibits unique inner corner modes.[32]The Chern insulator in fractals is protected by the robust mobility gap instead of the direct bandgap in conventional topological insulators.[33]In the meantime, topological phases in fractals have been experimentally reported in various systems, such as the Chern insulator[33]and higherorder topological insulator[34,38]in acoustic systems and Floquet topological insulator[22,39]and higher-order topological insulator[24]in photonic systems.

    Moreover, the interplay between disorder and dimensionality plays a critical role in the research of topological systems.The disorder-induced topological phase, which is referred to as the topological Anderson insulator (TAI),was first proposed by Liet al.[40]Since then, the TAI phases have been investigated in numerous systems in integer dimensions.[41–58]So far, the TAI phase has been observed experimentally in one-dimensional disordered atomic wires,[59]photonic platforms,[60–62]and a quantum simulator on a superconducting-circuit device.[63]Recently, the TAI phase has been proposed to be realized in an electric circuit.[64]However, it is worth highlighting that the disorder effect on fractal systems remains an unexplored territory.

    Here, we investigate the disorder-induced topological phase transition on the Sierpi′nski lattice, which is one of the best-known examples of a fractal system.Depending on the topological mass,the fractal system supports a normal insulator(NI)phase with a zero topological index and a SOTI phase with a quantized quadrupole moment.We find that the SOTI on the Sierpi′nski lattice is robust against weak disorder.Surprisingly,we reveal that disorder can induce a phase transition from the NI phase to the SOTI phase,indicating the occurrence of the higher-order TAI phase in the fractal system.Moreover,the disorder-induced phase is further confirmed by calculating the energy spectrum and the corresponding probability distribution.

    This work is organized as follows.We give a brief description of the Sierpi′nski lattice in Subsection 2.1,introduce the tight-binding Hamiltonian in the fractal system in Subsection 2.2,and adopt the quadrupole moment to characterize the system in Subsection 2.3.Then we demonstrate that the topological nature of the system can be captured by the quadrupole moment in Section 3.1, discuss the disorder effects on the fractal system in Subsection 3.2, and show that the disorderinduced phase transitions can be further confirmed by calculating the energy spectrum and the probability distributions in Subsection 3.3.Finally, we make a summary and a brief discussion in Section 4.

    2.Model and method

    2.1.Sierpi′nski lattice

    The Sierpi′nski lattice can be regarded as the lattice obtained after the manufacture of defects following certain laws on a square lattice.[26,27]The initial unit contains eight sites(the green sites in Fig.1).This unit is replicated 8 times to obtain the structure of the next generation, which contains an inner hole without lattice site (the blue sites in Fig.1).This operation is repeated to obtain the red sites in Fig.1.Each iteration makes the number of lattice sites become eight times that of the previous generation by copying and moving.In this way, we can easily describe the fractal lattice of a Sierpi′nski carpet.For a certain generationf,the site numberN=8f.For the iterationsf ?1,we obtain an approximation of the Sierpi′nski carpet with fractional Hausdorff dimensiondH=ln8/ln3?1.89.

    Fig.1.Schematic illustration of the Sierpi′nski lattices.Here,the green,blue,and red sites make up the first,second,and third generations with the site numbers 8,64,and 512,respectively.

    2.2.Hamiltonian

    The tight-binding Hamiltonian of a quadrupole insulator on the Sierpi′nski lattice has the following form:[32,65]

    where

    describes a first-order topological insulator protected by timereversal symmetry.Here,the long-range hopping between two different sites is considered andl(rjk)= e1?rjk/r0corresponds to the spatial decay factor of hopping amplitudes, whererjkis the lattice spacing between sitesjandk, andr0is the decay length.φjkis the polar angle between sitesjandk.σ1,2,3andτ1,2,3are the Pauli matrices acting on the spin and orbital spaces,respectively.σ0andτ0are identity matrices.t1andt2denote the hopping amplitudes.is the creation operator at sitejdetermined by spin direction↑,↓and orbital indexα,β.The second part

    is the Wilson mass term,which breaks the time-reversal symmetry.The Wilson mass term hybridizes and then gaps out the counter-propagating gapless edge modes of the system.Moreover,H2causes the sign of the domain-wall mass to flip four times under 2πrotation,which breaks four-fold rotational symmetryC4.[66–68]In the clean limit,the HamiltonianHrespects the combined symmetryC4T,[32,65]whereT=s2τ0Kis the time-reversal symmetry andKis the complex conjugation.For the rest of the discussion,we setr0=1,t1=t2=1,g=1.The last term

    depicts the Anderson-type disorder.Ujis a set of uniform random numbers distributed within the range of [?W/2,W/2],withWbeing the disorder strength.

    2.3.Quadrupole

    We adopt the quadrupole moment to characterize the fractal system,which is given by[32,65]

    It should be noticed thatQxyis a gauge-dependent quantity for a finite-size fractal system and becomes gaugeinvariant in the thermodynamic limit.[32]In this sense,strictly speaking,Qxyis only available for an infinite system.However, we find that for a large-enough system withf=3,Qxyis able to capture the topology nature of the system(see Subsection 3.1 below).Therefore, in this work, we still employQxyto characterize the topological properties of the finite-size system.

    3.Numerical investigation

    In this section,we first show that the quadrupole momentQxycan indeed capture the topology nature of the fractal system.Subsequently,we investigate disorder effects on the fractal system.Moreover, all the numerical calculations are performed on the third generation of the Sierpi′nski lattices.

    3.1.Clean limit

    We start with the case of clean limit, i.e.,W=0.Figures 2(a)–2(d) show the energy spectrum and the corresponding probability distribution of the fractal system on the Sierpi′nski lattices withm=0.The system hosts corner modes residing on both the outer corners[Fig.2(b)]and the inner corners[Fig.2(c)].Moreover,it is found that the system is characterized by a quantized quadrupole moment withQxy=0.5.The quantized topological index and the emergence of the corner models confirm that the system corresponds to a SOTI phase.

    Fig.2.(a) Energy spectrum of the fractal system constructed on the third generation of the Sierpi′nski lattice with m=0.Panels (b), (c),and(d)show the probability distributions of the red,yellow,and green energy modes labeled in(a),respectively.(e)The quadrupole moment Qxy and(f)the energy spectrum as functions of the parameter m.

    Moreover, the energy of the four outer corner modes is nearly zero[the red points in Fig.2(a)]and the four inner corner modes open a tiny energy gap in the spectrum[the yellow points in Fig.2(a)].In addition, there exist 32 energy modes inside the bulk gap [the green points in Fig.2(a)], with their probability distributions localized around a series of secondary inner boundaries[Fig.2(d)].

    Figures 2(a) and 2(b) show the quadrupole momentQxyand the corresponding energy spectrum as functions of the parametermon the fractal system,respectively.We find that the SOTI phase characterized byQxy=0.5 always hosts four zeroenergy inner corner modes.The other in-gap localized states are not that stable compared to the four outer corner modes.Therefore,we show that the quadrupole momentQxycan capture the topology nature of the fractal system.

    3.2.Disorder effects

    Now, we study the disorder effects on the fractal system.For the SOTI phase withQxy=0.5, the results are as expected [Fig.3(a)].With increasing disorder strengthW,Qxykeeps the quantized value untilWexceeds certain values.Therefore, similar to the previous studies on disordered topological systems,[40,41]the topological nature of the SOTI phase in the fractal system is also robust against weak disorder.Further increasing the disorder strength,the quantizedQxyis suppressed by disorder,then gradually decreases and finally collapses to zero.

    Fig.3.The quadrupole moment Qxy as a function of the disorder strength W for (b) m=?1, 0, 1, 2 and (c) m=2.2, 2.5, 3, respectively.The error bar represents the standard deviation of 500 samples.(c)The quadrupole moment Qxy calculated in the(W,m)plane.In(c),each data point is averaged on 50 independent disorder configurations.

    In the clean limit,the NI phase is characterized byQxy=0[Fig.3(a)].With increasing disorder strength, the disorderaveraged quadrupole momentQxyincreases and then forms a quantized plateau withQxy=0.5.The quantized plateau is observed for a certain range of disorder strength,and it decreases and finally disappears with increasing the disorder strength.The zero fluctuation of the quantized plateau indicates that it corresponds to a disorder-induced SOTI phase.Moreover,we plot the diagrams of the system as a function ofmandWin Fig.3(c).The disorder-induced topological phase transitions can be observed more clearly.

    3.3.Disorder-averaged energy spectrum and probability

    Here, we show that the above disorder-induced phenomenon can be further confirmed by checking the disorderaveraged spectrum and the corresponding probability distribution.

    Figure 4(a)shows the disorder-averaged energy spectrum as a function of the disorder strengthWform=0.In the clean limit (W=0), the system corresponds to a SOTI and hosts eight nearly-zero-energy modes with their probability distributions localized on the four outer corners and the four inner corners[Fig.4(b)].With the increasing disorder strength,the bulk gap diminishes and vanishes for aboutW=6.This is in accordance with the results shown in Fig.3(a), where the quantizedQxyalso starts to collapse whenW= 6.Further increasing the disorder strength, the four inner corner modes first disappear[Fig.4(c)],followed by the disappearance of all corner modes[Fig.4(d)].

    Fig.4.(a) The energy spectrum as a function of the disorder strength W for the SOTI phase with m=0.(b)–(d)Disorder-averaged probability distribution of the middle eight energy modes with disorder strength W =0, 8, and 11, respectively.Here, each data is obtained after averaging on 500 random disorder configurations.

    Figure 5(a)shows the disorder-averaged energy spectrum as a function of the disorder strengthWform=2.2.In the clean limit (W=0), the system corresponds to an NI and no corner modes appear[Fig.5(b)].With the increasing disorder strength,the bulk gap decreases and vanishes for aboutW=4.This is in accordance with the results shown in Fig.3(b),where the quantizedQxyemerges whenW=4.Further increasing the disorder strength, the eight corner modes appear [Fig.5(c)]and finally are suppressed by strong disorder[Fig.5(d)].

    Fig.5.(a) The energy spectrum as a function of the disorder strength W for the NI phase with m=2.2.(b)–(d)Disorder-averaged probability distribution of the middle eight energy modes with disorder strength W =0, 9, and 14, respectively.Here, each data is obtained after averaging on 500 random disorder configurations.

    4.Conclusion

    In this work, we study the disorder effects on a fractal system constructed on the Sierpi′nski lattice.We show that SOTI phase on the fractal system is robust against weak disorder.Moreover, we reveal a disorder-induced SOTI phase characterized by an emergent quantized quadrupole moment withQxy= 0.5.Finally, the disorder induced phenomena on the fractal system are further confirmed by checking the disorder-averaged energy spectra and the corresponding probability distributions.In crystals, disordered-induced higherorder topological phase manifests localized states at external corners.[57,58]However, in fractal lattices, the disorderinduced phases manifest localized states at both internal and external corners.This property represents a unique characteristic of the disorder-induced second-order topological phase in the fractal system.

    We expect that the disorder-induced SOTI phase in the fractal system can be experimentally realized in some metamaterials in the future.The SOTI phases in fractal systems have been experimentally observed in both the acoustic[34,38]and the photonic[24]systems.On the other hand, the disorder effects have been introduced in both the acoustic[69,70]and the photonic[60–62]systems.The above experiments offer the possibility of future experimental realization of our proposal.

    Acknowledgements

    R.C.acknowledges the support of the National Natural Science Foundation of China (Grant No.12304195) and the Chutian Scholars Program in Hubei Province.B.Z.was supported by the National Natural Science Foundation of China (Grant No.12074107), the program of outstanding young and middle-aged scientific and technological innovation team of colleges and universities in Hubei Province(Grant No.T2020001), and the innovation group project of the Natural Science Foundation of Hubei Province of China (Grant No.2022CFA012).Z.-R.L.was supported by the Postdoctoral Innovation Research Program in Hubei Province (Grant No.351342).

    猜你喜歡
    周斌
    Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
    周斌書法作品欣賞
    用“秘密”換來“停車自由”,泄露隱私不可取
    分憂(2021年7期)2021-07-22 19:19:46
    你若不離不棄 我必生死相依
    古怪的嫁妝
    古怪的嫁妝
    釘尖球拍
    金山(2017年4期)2017-06-08 13:43:46
    沉重的“十字架”
    A Brief Introduction of Newspaper from the Cultural Aspect
    沉重的“十字架”
    湖北教育(2016年31期)2016-03-16 00:40:17
    一夜夜www| 精品国产三级普通话版| 此物有八面人人有两片| 亚洲精品日韩av片在线观看 | 国产午夜福利久久久久久| 在线a可以看的网站| 好男人电影高清在线观看| av国产免费在线观看| 日韩欧美三级三区| 国产精品精品国产色婷婷| 啪啪无遮挡十八禁网站| 两人在一起打扑克的视频| 成人18禁在线播放| 国产伦在线观看视频一区| 国语自产精品视频在线第100页| 身体一侧抽搐| 搡女人真爽免费视频火全软件 | 淫秽高清视频在线观看| www.www免费av| 美女 人体艺术 gogo| 亚洲男人的天堂狠狠| 成人一区二区视频在线观看| av天堂中文字幕网| av天堂在线播放| 精品国产美女av久久久久小说| 一二三四社区在线视频社区8| 观看美女的网站| 欧美xxxx黑人xx丫x性爽| 麻豆成人午夜福利视频| 日本三级黄在线观看| 亚洲国产日韩欧美精品在线观看 | 亚洲aⅴ乱码一区二区在线播放| 男人的好看免费观看在线视频| 国产中年淑女户外野战色| 欧美中文综合在线视频| 国产精品99久久久久久久久| 久久久久久九九精品二区国产| 五月伊人婷婷丁香| 中文字幕熟女人妻在线| 久久久久九九精品影院| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美在线二视频| www.熟女人妻精品国产| 国产欧美日韩精品一区二区| 成年版毛片免费区| 亚洲美女黄片视频| 国产av不卡久久| 日日干狠狠操夜夜爽| 国产真实乱freesex| 国产精品久久久久久久久免 | 免费观看的影片在线观看| 日本a在线网址| 亚洲七黄色美女视频| 午夜精品在线福利| av黄色大香蕉| 成人高潮视频无遮挡免费网站| 成人永久免费在线观看视频| 搞女人的毛片| 亚洲精品亚洲一区二区| 久久精品影院6| 深爱激情五月婷婷| 狂野欧美白嫩少妇大欣赏| 久久伊人香网站| 欧美高清成人免费视频www| 成人高潮视频无遮挡免费网站| 亚洲第一电影网av| 亚洲专区中文字幕在线| 精品福利观看| 亚洲精品在线美女| 亚洲成人久久性| 男女午夜视频在线观看| 久久婷婷人人爽人人干人人爱| 亚洲av美国av| 亚洲性夜色夜夜综合| 精品久久久久久久末码| 少妇人妻精品综合一区二区 | 一个人看视频在线观看www免费 | 99国产综合亚洲精品| 母亲3免费完整高清在线观看| 成年人黄色毛片网站| www国产在线视频色| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产av一区在线观看免费| 丰满人妻熟妇乱又伦精品不卡| 亚洲在线自拍视频| 亚洲国产欧美网| 成人亚洲精品av一区二区| 欧美成狂野欧美在线观看| 99热6这里只有精品| 黄色片一级片一级黄色片| 欧美中文日本在线观看视频| 国产熟女xx| 精品一区二区三区视频在线观看免费| 在线a可以看的网站| 国产一区在线观看成人免费| 有码 亚洲区| 免费搜索国产男女视频| 在线观看免费午夜福利视频| 欧美3d第一页| 最新在线观看一区二区三区| 日本 欧美在线| 日本 欧美在线| 最近最新免费中文字幕在线| 成年女人永久免费观看视频| 乱人视频在线观看| 夜夜爽天天搞| 久久午夜亚洲精品久久| 欧美日韩福利视频一区二区| 国产成人欧美在线观看| 国产成人啪精品午夜网站| 日韩欧美国产在线观看| 法律面前人人平等表现在哪些方面| 婷婷丁香在线五月| 天天一区二区日本电影三级| 一a级毛片在线观看| 深爱激情五月婷婷| 国产视频内射| 一本综合久久免费| 又粗又爽又猛毛片免费看| 天堂动漫精品| 亚洲国产色片| 国产激情偷乱视频一区二区| ponron亚洲| 欧美av亚洲av综合av国产av| 日本免费a在线| 在线免费观看不下载黄p国产 | 女生性感内裤真人,穿戴方法视频| 欧美成人一区二区免费高清观看| 亚洲不卡免费看| 熟妇人妻久久中文字幕3abv| 亚洲精品日韩av片在线观看 | 叶爱在线成人免费视频播放| 精品一区二区三区视频在线 | 亚洲国产欧洲综合997久久,| 麻豆成人午夜福利视频| 少妇的逼水好多| av在线蜜桃| 高清日韩中文字幕在线| 青草久久国产| 一级毛片女人18水好多| 精品人妻1区二区| 国产三级黄色录像| 亚洲成a人片在线一区二区| 丁香六月欧美| 婷婷精品国产亚洲av在线| 国产成人系列免费观看| 18禁美女被吸乳视频| 特大巨黑吊av在线直播| 免费无遮挡裸体视频| 一区二区三区激情视频| 国产精品久久久人人做人人爽| 天天躁日日操中文字幕| 欧美一级a爱片免费观看看| 又黄又粗又硬又大视频| 精品人妻1区二区| 亚洲av日韩精品久久久久久密| 丰满人妻一区二区三区视频av | 欧美成人免费av一区二区三区| 天天一区二区日本电影三级| 黄片小视频在线播放| 成年人黄色毛片网站| 国产伦精品一区二区三区四那| 男人舔奶头视频| 黄色视频,在线免费观看| 午夜福利视频1000在线观看| 亚洲在线自拍视频| 午夜福利高清视频| 听说在线观看完整版免费高清| 日韩有码中文字幕| 午夜免费男女啪啪视频观看 | 嫩草影院入口| 色尼玛亚洲综合影院| 少妇高潮的动态图| 色噜噜av男人的天堂激情| 69人妻影院| 色综合欧美亚洲国产小说| 国产伦一二天堂av在线观看| 一a级毛片在线观看| 床上黄色一级片| 亚洲五月天丁香| 国产精品久久电影中文字幕| 午夜两性在线视频| 亚洲18禁久久av| 国产精华一区二区三区| 国产在线精品亚洲第一网站| 好男人电影高清在线观看| 国产精品久久久久久精品电影| 亚洲av熟女| 免费看日本二区| 日韩国内少妇激情av| 精品久久久久久,| 51午夜福利影视在线观看| 成人鲁丝片一二三区免费| 搞女人的毛片| 亚洲激情在线av| 性色avwww在线观看| 久久国产精品人妻蜜桃| 精品人妻偷拍中文字幕| 亚洲av电影在线进入| 在线免费观看不下载黄p国产 | 欧美性感艳星| 99热这里只有精品一区| 精品久久久久久成人av| www日本在线高清视频| 3wmmmm亚洲av在线观看| 99久久无色码亚洲精品果冻| 亚洲在线自拍视频| 日韩人妻高清精品专区| 日日干狠狠操夜夜爽| 国产精品久久电影中文字幕| 亚洲一区二区三区色噜噜| 亚洲18禁久久av| 成人av在线播放网站| 亚洲中文日韩欧美视频| 成人三级黄色视频| 日韩高清综合在线| 亚洲av中文字字幕乱码综合| 日本与韩国留学比较| 国产亚洲欧美在线一区二区| 成年免费大片在线观看| 欧美+日韩+精品| 国产av在哪里看| 18禁在线播放成人免费| 精品久久久久久成人av| 身体一侧抽搐| 露出奶头的视频| 国产精品亚洲av一区麻豆| 两性午夜刺激爽爽歪歪视频在线观看| av中文乱码字幕在线| 欧美一区二区亚洲| 亚洲国产精品久久男人天堂| 欧美三级亚洲精品| 亚洲精品美女久久久久99蜜臀| 成人av在线播放网站| 看黄色毛片网站| 日韩成人在线观看一区二区三区| 最后的刺客免费高清国语| 两个人看的免费小视频| 久久久久久九九精品二区国产| 露出奶头的视频| 老司机午夜福利在线观看视频| 欧美日韩瑟瑟在线播放| 一进一出好大好爽视频| 无人区码免费观看不卡| 国产毛片a区久久久久| 丰满人妻一区二区三区视频av | 国产伦精品一区二区三区四那| 成人国产一区最新在线观看| 亚洲av第一区精品v没综合| svipshipincom国产片| 全区人妻精品视频| 欧美一区二区国产精品久久精品| 亚洲久久久久久中文字幕| 欧美日韩综合久久久久久 | 亚洲天堂国产精品一区在线| 国产高清视频在线播放一区| 香蕉丝袜av| 亚洲avbb在线观看| 精品国产亚洲在线| 乱人视频在线观看| 欧美大码av| 日韩免费av在线播放| 丰满乱子伦码专区| 欧美另类亚洲清纯唯美| 久久久久久久久中文| 精品人妻1区二区| 日韩av在线大香蕉| 成人一区二区视频在线观看| 村上凉子中文字幕在线| 精品久久久久久久末码| 怎么达到女性高潮| 国产真人三级小视频在线观看| 欧美zozozo另类| 天堂影院成人在线观看| 全区人妻精品视频| 俄罗斯特黄特色一大片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日日摸夜夜添夜夜添小说| 亚洲真实伦在线观看| 亚洲av熟女| 两个人看的免费小视频| 97人妻精品一区二区三区麻豆| 久久久久国内视频| 日韩欧美在线乱码| 免费电影在线观看免费观看| 男人的好看免费观看在线视频| 精品国内亚洲2022精品成人| 全区人妻精品视频| 免费大片18禁| 一区二区三区国产精品乱码| 97人妻精品一区二区三区麻豆| 久久精品91无色码中文字幕| 人人妻人人看人人澡| 午夜a级毛片| 午夜精品在线福利| 欧美乱码精品一区二区三区| 精品国产三级普通话版| 久99久视频精品免费| 国产精品国产高清国产av| 久久中文看片网| 国产中年淑女户外野战色| 手机成人av网站| 久久精品国产亚洲av香蕉五月| 天天添夜夜摸| 午夜激情福利司机影院| 又紧又爽又黄一区二区| 我要搜黄色片| 久久久国产成人精品二区| 亚洲最大成人中文| 亚洲av美国av| 欧美丝袜亚洲另类 | 午夜福利免费观看在线| 久久久久性生活片| 日韩中文字幕欧美一区二区| 国产精品精品国产色婷婷| 99热这里只有精品一区| 久久精品人妻少妇| 欧美黑人巨大hd| 麻豆一二三区av精品| 国产不卡一卡二| 国产成人aa在线观看| 91在线观看av| 亚洲18禁久久av| 老司机午夜福利在线观看视频| 精品国产超薄肉色丝袜足j| 深爱激情五月婷婷| 久久国产精品人妻蜜桃| 3wmmmm亚洲av在线观看| 欧美在线一区亚洲| 国产精品女同一区二区软件 | 精品午夜福利视频在线观看一区| 日本一本二区三区精品| 国产乱人伦免费视频| 少妇的逼好多水| 亚洲av电影不卡..在线观看| 色噜噜av男人的天堂激情| 成人鲁丝片一二三区免费| 男人舔奶头视频| 99精品久久久久人妻精品| 变态另类成人亚洲欧美熟女| 亚洲欧美日韩卡通动漫| 一卡2卡三卡四卡精品乱码亚洲| 在线a可以看的网站| 亚洲无线在线观看| 99久久综合精品五月天人人| 国产免费一级a男人的天堂| 亚洲精品久久国产高清桃花| 丁香六月欧美| 男女做爰动态图高潮gif福利片| xxxwww97欧美| 无遮挡黄片免费观看| 最近在线观看免费完整版| 一个人看的www免费观看视频| 黄色日韩在线| 国产高清有码在线观看视频| 波多野结衣巨乳人妻| 国产国拍精品亚洲av在线观看 | 欧美中文综合在线视频| 在线观看舔阴道视频| 亚洲av二区三区四区| 日本精品一区二区三区蜜桃| 两个人看的免费小视频| 欧美在线黄色| 国产单亲对白刺激| 日韩欧美 国产精品| 青草久久国产| 国内精品一区二区在线观看| 亚洲七黄色美女视频| 欧美一级a爱片免费观看看| 99热只有精品国产| 蜜桃亚洲精品一区二区三区| 搡老岳熟女国产| 青草久久国产| 一区二区三区高清视频在线| 亚洲国产精品成人综合色| 亚洲第一电影网av| 久久人人精品亚洲av| 母亲3免费完整高清在线观看| 岛国在线观看网站| 久久香蕉国产精品| 日韩有码中文字幕| 国产精品99久久99久久久不卡| 欧美激情在线99| 天堂网av新在线| 悠悠久久av| 一区二区三区免费毛片| 亚洲国产中文字幕在线视频| 国产成人a区在线观看| 草草在线视频免费看| 久99久视频精品免费| 日韩免费av在线播放| 欧美成人a在线观看| 99久久九九国产精品国产免费| 九色成人免费人妻av| 欧美另类亚洲清纯唯美| 少妇丰满av| 国产亚洲欧美在线一区二区| 99久久精品一区二区三区| 国产成人系列免费观看| 精品99又大又爽又粗少妇毛片 | 老司机福利观看| 身体一侧抽搐| 别揉我奶头~嗯~啊~动态视频| 亚洲va日本ⅴa欧美va伊人久久| 免费高清视频大片| 精品午夜福利视频在线观看一区| 亚洲中文字幕一区二区三区有码在线看| 搡女人真爽免费视频火全软件 | 国产高清视频在线观看网站| 真实男女啪啪啪动态图| 少妇人妻一区二区三区视频| 国产精品久久久久久久久免 | 久久精品亚洲精品国产色婷小说| 男人舔女人下体高潮全视频| 国产久久久一区二区三区| av天堂在线播放| 欧美黄色淫秽网站| 91字幕亚洲| 日本撒尿小便嘘嘘汇集6| 夜夜看夜夜爽夜夜摸| 亚洲无线在线观看| 欧美一级a爱片免费观看看| 无遮挡黄片免费观看| 亚洲欧美精品综合久久99| 国内精品一区二区在线观看| 在线观看午夜福利视频| 熟妇人妻久久中文字幕3abv| 欧美黑人巨大hd| 性欧美人与动物交配| 97人妻精品一区二区三区麻豆| a在线观看视频网站| 亚洲中文字幕一区二区三区有码在线看| 国产高清有码在线观看视频| 日本成人三级电影网站| 女人十人毛片免费观看3o分钟| 一个人看的www免费观看视频| 黄色视频,在线免费观看| 欧美绝顶高潮抽搐喷水| 中文字幕熟女人妻在线| 搞女人的毛片| 嫩草影院精品99| 国产成+人综合+亚洲专区| 久久精品影院6| www.熟女人妻精品国产| 亚洲精品成人久久久久久| 日本在线视频免费播放| 亚洲国产精品999在线| 国产成人啪精品午夜网站| 国产野战对白在线观看| 国产精品亚洲av一区麻豆| 亚洲av成人不卡在线观看播放网| 老司机午夜十八禁免费视频| 欧美一区二区精品小视频在线| 女生性感内裤真人,穿戴方法视频| 黄色丝袜av网址大全| 伊人久久大香线蕉亚洲五| 最近最新中文字幕大全免费视频| 99久久99久久久精品蜜桃| 亚洲 欧美 日韩 在线 免费| 午夜福利视频1000在线观看| 在线观看一区二区三区| 国产精品嫩草影院av在线观看 | 亚洲av不卡在线观看| 熟妇人妻久久中文字幕3abv| or卡值多少钱| 人人妻人人看人人澡| 亚洲内射少妇av| 少妇的逼水好多| 欧美日韩中文字幕国产精品一区二区三区| 少妇的逼水好多| 国产国拍精品亚洲av在线观看 | 欧美激情久久久久久爽电影| 天堂√8在线中文| 99久久精品一区二区三区| 欧美在线黄色| 欧美一级毛片孕妇| 日韩成人在线观看一区二区三区| 国产精品久久电影中文字幕| 亚洲欧美日韩无卡精品| 别揉我奶头~嗯~啊~动态视频| 动漫黄色视频在线观看| a级毛片a级免费在线| 国产高清videossex| 国产成人系列免费观看| 少妇的丰满在线观看| 99久久精品热视频| 成人欧美大片| 男女之事视频高清在线观看| netflix在线观看网站| 最近最新中文字幕大全免费视频| 亚洲欧美精品综合久久99| 日本与韩国留学比较| 一本久久中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 免费看十八禁软件| 久久久久国产精品人妻aⅴ院| 18禁裸乳无遮挡免费网站照片| 亚洲不卡免费看| 国产免费av片在线观看野外av| xxxwww97欧美| 一进一出好大好爽视频| 99热这里只有精品一区| 久久精品影院6| 九色国产91popny在线| or卡值多少钱| 国产精品久久电影中文字幕| 国内揄拍国产精品人妻在线| 国产精品美女特级片免费视频播放器| 人妻夜夜爽99麻豆av| 99久久精品国产亚洲精品| 嫩草影视91久久| 亚洲国产中文字幕在线视频| avwww免费| 亚洲欧美日韩高清在线视频| 深夜精品福利| 亚洲无线观看免费| 国产精品久久视频播放| 熟女电影av网| 日本黄色片子视频| 日韩欧美精品v在线| 久久国产精品人妻蜜桃| 免费av毛片视频| 午夜免费男女啪啪视频观看 | or卡值多少钱| 免费人成在线观看视频色| 亚洲精品日韩av片在线观看 | 最新美女视频免费是黄的| 琪琪午夜伦伦电影理论片6080| 免费一级毛片在线播放高清视频| 久久6这里有精品| 成人永久免费在线观看视频| 午夜福利视频1000在线观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美在线一区亚洲| 国内少妇人妻偷人精品xxx网站| 久久久国产成人免费| 啦啦啦免费观看视频1| 亚洲一区高清亚洲精品| 色吧在线观看| 熟女少妇亚洲综合色aaa.| 国产黄a三级三级三级人| 国内精品久久久久精免费| 国产精品自产拍在线观看55亚洲| 久久国产精品影院| 中国美女看黄片| 国产亚洲精品久久久久久毛片| 我要搜黄色片| 白带黄色成豆腐渣| 欧美一区二区国产精品久久精品| 国产高清三级在线| 1000部很黄的大片| 桃红色精品国产亚洲av| 少妇熟女aⅴ在线视频| 两个人视频免费观看高清| 亚洲中文日韩欧美视频| 制服丝袜大香蕉在线| 国产激情欧美一区二区| 90打野战视频偷拍视频| 精品一区二区三区av网在线观看| 亚洲内射少妇av| 国产精品一区二区免费欧美| 国产一区二区在线观看日韩 | 欧美大码av| 国产成人系列免费观看| 内地一区二区视频在线| 亚洲自拍偷在线| 一卡2卡三卡四卡精品乱码亚洲| 久久欧美精品欧美久久欧美| 99久久无色码亚洲精品果冻| 久久久久免费精品人妻一区二区| 国产欧美日韩一区二区三| 九色国产91popny在线| 色噜噜av男人的天堂激情| 在线播放国产精品三级| 18禁黄网站禁片免费观看直播| 亚洲av不卡在线观看| 人人妻人人澡欧美一区二区| 校园春色视频在线观看| 午夜福利18| 国产精品爽爽va在线观看网站| 黄色丝袜av网址大全| 国产爱豆传媒在线观看| 男插女下体视频免费在线播放| 两个人的视频大全免费| 亚洲最大成人手机在线| 日韩欧美国产一区二区入口| 亚洲一区高清亚洲精品| АⅤ资源中文在线天堂| 国产激情欧美一区二区| 久久天躁狠狠躁夜夜2o2o| 神马国产精品三级电影在线观看| 精品无人区乱码1区二区| 久久中文看片网| 看免费av毛片| 欧美在线一区亚洲| 色老头精品视频在线观看| 欧美日韩一级在线毛片| 他把我摸到了高潮在线观看| 国产在线精品亚洲第一网站| 99国产精品一区二区蜜桃av| h日本视频在线播放| 日本撒尿小便嘘嘘汇集6| 亚洲 国产 在线| 亚洲成a人片在线一区二区| 亚洲熟妇中文字幕五十中出| 国产激情偷乱视频一区二区| 日韩高清综合在线| 国产精品亚洲一级av第二区| 蜜桃亚洲精品一区二区三区| 精品一区二区三区视频在线观看免费| 一本一本综合久久| 精品一区二区三区视频在线观看免费| 免费看日本二区| 男女下面进入的视频免费午夜| 18+在线观看网站|