• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Higher-order topological Anderson insulator on the Sierpi′nski lattice

    2024-01-25 07:11:34HuanChen陳煥ZhengRongLiu劉崢嶸RuiChen陳銳andBinZhou周斌
    Chinese Physics B 2024年1期
    關(guān)鍵詞:周斌

    Huan Chen(陳煥), Zheng-Rong Liu(劉崢嶸), Rui Chen(陳銳),?, and Bin Zhou(周斌),2,?

    1Department of Physics,Hubei University,Wuhan 430062,China

    2Key Laboratory of Intelligent Sensing System and Security of Ministry of Education,Hubei University,Wuhan 430062,China

    Keywords: fractal system,topological insulator

    1.Introduction

    Fractals are graphs with self-similarity, in which each constituent exhibits the same character as the whole.[1,2]In recent years,theoretical works concerning quantum effects on fractal lattices have been extensively studied, such as Anderson localization,[3–5]electronic[6,7]and optical conductivity,[8]plasmon dispersion relations,[9]and other related topics.[10–14]Despite being embedded in integer dimensional space, a fractal lattice is characterized by a non-integer Hausdorff dimension.[15]Due to its unique characteristics and motivated by the experimental developments,[16,17]the fractal lattices have attracted much attention in recent years.

    On the other hand, tremendous efforts have been devoted to the study of topological systems in integer dimensions during the past two decades.[18–21]Nowadays, researchers have extended these topological phases to fractal systems,which allow for new topological phenomena that are impossible in crystals.For example, topological phases in fractals do not possess a well-defined bulk like their crystalline counterparts, but they are able to support topologically protected states on the boundary.[22]Topological phases have been widely investigated in different fractal systems,[23–25]such as the Chern insulator,[26–31]higher-order topological insulator,[32–34]non-Hermitian topological insulator,[35]and topological superconductor.[36,37]The second-order topological insulator (SOTI) in fractals exhibits unique inner corner modes.[32]The Chern insulator in fractals is protected by the robust mobility gap instead of the direct bandgap in conventional topological insulators.[33]In the meantime, topological phases in fractals have been experimentally reported in various systems, such as the Chern insulator[33]and higherorder topological insulator[34,38]in acoustic systems and Floquet topological insulator[22,39]and higher-order topological insulator[24]in photonic systems.

    Moreover, the interplay between disorder and dimensionality plays a critical role in the research of topological systems.The disorder-induced topological phase, which is referred to as the topological Anderson insulator (TAI),was first proposed by Liet al.[40]Since then, the TAI phases have been investigated in numerous systems in integer dimensions.[41–58]So far, the TAI phase has been observed experimentally in one-dimensional disordered atomic wires,[59]photonic platforms,[60–62]and a quantum simulator on a superconducting-circuit device.[63]Recently, the TAI phase has been proposed to be realized in an electric circuit.[64]However, it is worth highlighting that the disorder effect on fractal systems remains an unexplored territory.

    Here, we investigate the disorder-induced topological phase transition on the Sierpi′nski lattice, which is one of the best-known examples of a fractal system.Depending on the topological mass,the fractal system supports a normal insulator(NI)phase with a zero topological index and a SOTI phase with a quantized quadrupole moment.We find that the SOTI on the Sierpi′nski lattice is robust against weak disorder.Surprisingly,we reveal that disorder can induce a phase transition from the NI phase to the SOTI phase,indicating the occurrence of the higher-order TAI phase in the fractal system.Moreover,the disorder-induced phase is further confirmed by calculating the energy spectrum and the corresponding probability distribution.

    This work is organized as follows.We give a brief description of the Sierpi′nski lattice in Subsection 2.1,introduce the tight-binding Hamiltonian in the fractal system in Subsection 2.2,and adopt the quadrupole moment to characterize the system in Subsection 2.3.Then we demonstrate that the topological nature of the system can be captured by the quadrupole moment in Section 3.1, discuss the disorder effects on the fractal system in Subsection 3.2, and show that the disorderinduced phase transitions can be further confirmed by calculating the energy spectrum and the probability distributions in Subsection 3.3.Finally, we make a summary and a brief discussion in Section 4.

    2.Model and method

    2.1.Sierpi′nski lattice

    The Sierpi′nski lattice can be regarded as the lattice obtained after the manufacture of defects following certain laws on a square lattice.[26,27]The initial unit contains eight sites(the green sites in Fig.1).This unit is replicated 8 times to obtain the structure of the next generation, which contains an inner hole without lattice site (the blue sites in Fig.1).This operation is repeated to obtain the red sites in Fig.1.Each iteration makes the number of lattice sites become eight times that of the previous generation by copying and moving.In this way, we can easily describe the fractal lattice of a Sierpi′nski carpet.For a certain generationf,the site numberN=8f.For the iterationsf ?1,we obtain an approximation of the Sierpi′nski carpet with fractional Hausdorff dimensiondH=ln8/ln3?1.89.

    Fig.1.Schematic illustration of the Sierpi′nski lattices.Here,the green,blue,and red sites make up the first,second,and third generations with the site numbers 8,64,and 512,respectively.

    2.2.Hamiltonian

    The tight-binding Hamiltonian of a quadrupole insulator on the Sierpi′nski lattice has the following form:[32,65]

    where

    describes a first-order topological insulator protected by timereversal symmetry.Here,the long-range hopping between two different sites is considered andl(rjk)= e1?rjk/r0corresponds to the spatial decay factor of hopping amplitudes, whererjkis the lattice spacing between sitesjandk, andr0is the decay length.φjkis the polar angle between sitesjandk.σ1,2,3andτ1,2,3are the Pauli matrices acting on the spin and orbital spaces,respectively.σ0andτ0are identity matrices.t1andt2denote the hopping amplitudes.is the creation operator at sitejdetermined by spin direction↑,↓and orbital indexα,β.The second part

    is the Wilson mass term,which breaks the time-reversal symmetry.The Wilson mass term hybridizes and then gaps out the counter-propagating gapless edge modes of the system.Moreover,H2causes the sign of the domain-wall mass to flip four times under 2πrotation,which breaks four-fold rotational symmetryC4.[66–68]In the clean limit,the HamiltonianHrespects the combined symmetryC4T,[32,65]whereT=s2τ0Kis the time-reversal symmetry andKis the complex conjugation.For the rest of the discussion,we setr0=1,t1=t2=1,g=1.The last term

    depicts the Anderson-type disorder.Ujis a set of uniform random numbers distributed within the range of [?W/2,W/2],withWbeing the disorder strength.

    2.3.Quadrupole

    We adopt the quadrupole moment to characterize the fractal system,which is given by[32,65]

    It should be noticed thatQxyis a gauge-dependent quantity for a finite-size fractal system and becomes gaugeinvariant in the thermodynamic limit.[32]In this sense,strictly speaking,Qxyis only available for an infinite system.However, we find that for a large-enough system withf=3,Qxyis able to capture the topology nature of the system(see Subsection 3.1 below).Therefore, in this work, we still employQxyto characterize the topological properties of the finite-size system.

    3.Numerical investigation

    In this section,we first show that the quadrupole momentQxycan indeed capture the topology nature of the fractal system.Subsequently,we investigate disorder effects on the fractal system.Moreover, all the numerical calculations are performed on the third generation of the Sierpi′nski lattices.

    3.1.Clean limit

    We start with the case of clean limit, i.e.,W=0.Figures 2(a)–2(d) show the energy spectrum and the corresponding probability distribution of the fractal system on the Sierpi′nski lattices withm=0.The system hosts corner modes residing on both the outer corners[Fig.2(b)]and the inner corners[Fig.2(c)].Moreover,it is found that the system is characterized by a quantized quadrupole moment withQxy=0.5.The quantized topological index and the emergence of the corner models confirm that the system corresponds to a SOTI phase.

    Fig.2.(a) Energy spectrum of the fractal system constructed on the third generation of the Sierpi′nski lattice with m=0.Panels (b), (c),and(d)show the probability distributions of the red,yellow,and green energy modes labeled in(a),respectively.(e)The quadrupole moment Qxy and(f)the energy spectrum as functions of the parameter m.

    Moreover, the energy of the four outer corner modes is nearly zero[the red points in Fig.2(a)]and the four inner corner modes open a tiny energy gap in the spectrum[the yellow points in Fig.2(a)].In addition, there exist 32 energy modes inside the bulk gap [the green points in Fig.2(a)], with their probability distributions localized around a series of secondary inner boundaries[Fig.2(d)].

    Figures 2(a) and 2(b) show the quadrupole momentQxyand the corresponding energy spectrum as functions of the parametermon the fractal system,respectively.We find that the SOTI phase characterized byQxy=0.5 always hosts four zeroenergy inner corner modes.The other in-gap localized states are not that stable compared to the four outer corner modes.Therefore,we show that the quadrupole momentQxycan capture the topology nature of the fractal system.

    3.2.Disorder effects

    Now, we study the disorder effects on the fractal system.For the SOTI phase withQxy=0.5, the results are as expected [Fig.3(a)].With increasing disorder strengthW,Qxykeeps the quantized value untilWexceeds certain values.Therefore, similar to the previous studies on disordered topological systems,[40,41]the topological nature of the SOTI phase in the fractal system is also robust against weak disorder.Further increasing the disorder strength,the quantizedQxyis suppressed by disorder,then gradually decreases and finally collapses to zero.

    Fig.3.The quadrupole moment Qxy as a function of the disorder strength W for (b) m=?1, 0, 1, 2 and (c) m=2.2, 2.5, 3, respectively.The error bar represents the standard deviation of 500 samples.(c)The quadrupole moment Qxy calculated in the(W,m)plane.In(c),each data point is averaged on 50 independent disorder configurations.

    In the clean limit,the NI phase is characterized byQxy=0[Fig.3(a)].With increasing disorder strength, the disorderaveraged quadrupole momentQxyincreases and then forms a quantized plateau withQxy=0.5.The quantized plateau is observed for a certain range of disorder strength,and it decreases and finally disappears with increasing the disorder strength.The zero fluctuation of the quantized plateau indicates that it corresponds to a disorder-induced SOTI phase.Moreover,we plot the diagrams of the system as a function ofmandWin Fig.3(c).The disorder-induced topological phase transitions can be observed more clearly.

    3.3.Disorder-averaged energy spectrum and probability

    Here, we show that the above disorder-induced phenomenon can be further confirmed by checking the disorderaveraged spectrum and the corresponding probability distribution.

    Figure 4(a)shows the disorder-averaged energy spectrum as a function of the disorder strengthWform=0.In the clean limit (W=0), the system corresponds to a SOTI and hosts eight nearly-zero-energy modes with their probability distributions localized on the four outer corners and the four inner corners[Fig.4(b)].With the increasing disorder strength,the bulk gap diminishes and vanishes for aboutW=6.This is in accordance with the results shown in Fig.3(a), where the quantizedQxyalso starts to collapse whenW= 6.Further increasing the disorder strength, the four inner corner modes first disappear[Fig.4(c)],followed by the disappearance of all corner modes[Fig.4(d)].

    Fig.4.(a) The energy spectrum as a function of the disorder strength W for the SOTI phase with m=0.(b)–(d)Disorder-averaged probability distribution of the middle eight energy modes with disorder strength W =0, 8, and 11, respectively.Here, each data is obtained after averaging on 500 random disorder configurations.

    Figure 5(a)shows the disorder-averaged energy spectrum as a function of the disorder strengthWform=2.2.In the clean limit (W=0), the system corresponds to an NI and no corner modes appear[Fig.5(b)].With the increasing disorder strength,the bulk gap decreases and vanishes for aboutW=4.This is in accordance with the results shown in Fig.3(b),where the quantizedQxyemerges whenW=4.Further increasing the disorder strength, the eight corner modes appear [Fig.5(c)]and finally are suppressed by strong disorder[Fig.5(d)].

    Fig.5.(a) The energy spectrum as a function of the disorder strength W for the NI phase with m=2.2.(b)–(d)Disorder-averaged probability distribution of the middle eight energy modes with disorder strength W =0, 9, and 14, respectively.Here, each data is obtained after averaging on 500 random disorder configurations.

    4.Conclusion

    In this work, we study the disorder effects on a fractal system constructed on the Sierpi′nski lattice.We show that SOTI phase on the fractal system is robust against weak disorder.Moreover, we reveal a disorder-induced SOTI phase characterized by an emergent quantized quadrupole moment withQxy= 0.5.Finally, the disorder induced phenomena on the fractal system are further confirmed by checking the disorder-averaged energy spectra and the corresponding probability distributions.In crystals, disordered-induced higherorder topological phase manifests localized states at external corners.[57,58]However, in fractal lattices, the disorderinduced phases manifest localized states at both internal and external corners.This property represents a unique characteristic of the disorder-induced second-order topological phase in the fractal system.

    We expect that the disorder-induced SOTI phase in the fractal system can be experimentally realized in some metamaterials in the future.The SOTI phases in fractal systems have been experimentally observed in both the acoustic[34,38]and the photonic[24]systems.On the other hand, the disorder effects have been introduced in both the acoustic[69,70]and the photonic[60–62]systems.The above experiments offer the possibility of future experimental realization of our proposal.

    Acknowledgements

    R.C.acknowledges the support of the National Natural Science Foundation of China (Grant No.12304195) and the Chutian Scholars Program in Hubei Province.B.Z.was supported by the National Natural Science Foundation of China (Grant No.12074107), the program of outstanding young and middle-aged scientific and technological innovation team of colleges and universities in Hubei Province(Grant No.T2020001), and the innovation group project of the Natural Science Foundation of Hubei Province of China (Grant No.2022CFA012).Z.-R.L.was supported by the Postdoctoral Innovation Research Program in Hubei Province (Grant No.351342).

    猜你喜歡
    周斌
    Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
    周斌書法作品欣賞
    用“秘密”換來“停車自由”,泄露隱私不可取
    分憂(2021年7期)2021-07-22 19:19:46
    你若不離不棄 我必生死相依
    古怪的嫁妝
    古怪的嫁妝
    釘尖球拍
    金山(2017年4期)2017-06-08 13:43:46
    沉重的“十字架”
    A Brief Introduction of Newspaper from the Cultural Aspect
    沉重的“十字架”
    湖北教育(2016年31期)2016-03-16 00:40:17
    侵犯人妻中文字幕一二三四区| 人妻少妇偷人精品九色| 亚洲av国产av综合av卡| 精品亚洲成a人片在线观看| 建设人人有责人人尽责人人享有的| 亚洲av免费高清在线观看| 9热在线视频观看99| 高清不卡的av网站| 精品久久蜜臀av无| 亚洲美女视频黄频| 美女主播在线视频| 男人操女人黄网站| 永久免费av网站大全| 色网站视频免费| 少妇高潮的动态图| 亚洲第一av免费看| 老熟女久久久| 国产精品一区www在线观看| 啦啦啦中文免费视频观看日本| 久久久久久伊人网av| 国产精品无大码| 久久99精品国语久久久| 香蕉丝袜av| 久久久国产精品麻豆| 国产精品不卡视频一区二区| 国产高清三级在线| 最近2019中文字幕mv第一页| 日日爽夜夜爽网站| av一本久久久久| 亚洲欧洲国产日韩| 一区二区三区精品91| 免费观看在线日韩| 久久鲁丝午夜福利片| 午夜福利,免费看| 国产又色又爽无遮挡免| 一区二区三区四区激情视频| 久久久久久久大尺度免费视频| 丝袜在线中文字幕| 老熟女久久久| 精品少妇黑人巨大在线播放| 国产免费福利视频在线观看| 91午夜精品亚洲一区二区三区| 国产精品成人在线| 成人国产麻豆网| 人人澡人人妻人| 国产一区二区激情短视频 | 水蜜桃什么品种好| 亚洲精品色激情综合| 国产极品天堂在线| 插逼视频在线观看| 国产精品不卡视频一区二区| 赤兔流量卡办理| 热re99久久精品国产66热6| 亚洲伊人久久精品综合| av卡一久久| 亚洲国产av新网站| 91精品三级在线观看| 亚洲伊人色综图| 成人漫画全彩无遮挡| 国产xxxxx性猛交| 最近的中文字幕免费完整| www.熟女人妻精品国产 | 国产毛片在线视频| a 毛片基地| 黄色毛片三级朝国网站| 国产精品一区二区在线不卡| 黑人欧美特级aaaaaa片| 成人手机av| 国产精品偷伦视频观看了| 夫妻性生交免费视频一级片| 中文字幕免费在线视频6| 精品久久国产蜜桃| 国产福利在线免费观看视频| 亚洲成人av在线免费| 黄色配什么色好看| 高清视频免费观看一区二区| 涩涩av久久男人的天堂| 在线看a的网站| 日韩三级伦理在线观看| 97人妻天天添夜夜摸| 国产日韩欧美在线精品| 久久久久久久久久久久大奶| 少妇的逼好多水| 国产片特级美女逼逼视频| 日韩视频在线欧美| 性高湖久久久久久久久免费观看| 男女无遮挡免费网站观看| 五月天丁香电影| 国产片内射在线| 亚洲精品视频女| 人人妻人人澡人人爽人人夜夜| 18禁国产床啪视频网站| 欧美97在线视频| 免费大片黄手机在线观看| 在线观看免费日韩欧美大片| 亚洲 欧美一区二区三区| 国产精品久久久久久久久免| 久久久久久久久久久免费av| 免费不卡的大黄色大毛片视频在线观看| 午夜91福利影院| 久久精品久久久久久久性| 午夜福利,免费看| 日本av免费视频播放| 免费大片18禁| 欧美 日韩 精品 国产| 不卡视频在线观看欧美| 国产一区二区在线观看av| 王馨瑶露胸无遮挡在线观看| 国产成人免费观看mmmm| 最近中文字幕2019免费版| 十八禁高潮呻吟视频| 久久久久久人人人人人| 婷婷色av中文字幕| 国产一级毛片在线| 中文字幕精品免费在线观看视频 | av卡一久久| 成人国语在线视频| av又黄又爽大尺度在线免费看| 亚洲美女视频黄频| 亚洲色图 男人天堂 中文字幕 | 黄色视频在线播放观看不卡| 久久av网站| 欧美日韩视频精品一区| 免费大片18禁| av在线app专区| 中文字幕人妻丝袜制服| 国产精品欧美亚洲77777| 亚洲欧美一区二区三区国产| 国产探花极品一区二区| 国产成人91sexporn| 国语对白做爰xxxⅹ性视频网站| 欧美精品高潮呻吟av久久| 一本久久精品| 久久精品熟女亚洲av麻豆精品| 人成视频在线观看免费观看| 女人精品久久久久毛片| 亚洲欧美中文字幕日韩二区| 国产精品久久久久久精品电影小说| 最近中文字幕2019免费版| 国产成人aa在线观看| 亚洲精品久久成人aⅴ小说| 人妻系列 视频| 日韩成人av中文字幕在线观看| 中文字幕人妻熟女乱码| 国产成人91sexporn| 大码成人一级视频| 久久影院123| 在线观看免费高清a一片| 一区二区三区乱码不卡18| 9191精品国产免费久久| 亚洲欧美色中文字幕在线| 高清黄色对白视频在线免费看| 夫妻午夜视频| 午夜精品国产一区二区电影| 色94色欧美一区二区| 亚洲一级一片aⅴ在线观看| av女优亚洲男人天堂| 欧美老熟妇乱子伦牲交| 男人操女人黄网站| 亚洲欧美清纯卡通| 尾随美女入室| 中国三级夫妇交换| 啦啦啦啦在线视频资源| 黑丝袜美女国产一区| 日韩中文字幕视频在线看片| 妹子高潮喷水视频| 插逼视频在线观看| 免费大片18禁| 日韩视频在线欧美| 久久精品久久久久久噜噜老黄| 一级毛片我不卡| 精品国产一区二区三区四区第35| 日本-黄色视频高清免费观看| 亚洲一区二区三区欧美精品| 91aial.com中文字幕在线观看| 精品一区二区三区四区五区乱码 | 伦精品一区二区三区| 男女免费视频国产| 久久精品国产自在天天线| 啦啦啦在线观看免费高清www| 视频中文字幕在线观看| videossex国产| 国产精品熟女久久久久浪| 亚洲精品456在线播放app| 男女午夜视频在线观看 | 亚洲av国产av综合av卡| 国产极品粉嫩免费观看在线| 国产高清国产精品国产三级| 国产精品熟女久久久久浪| 18禁动态无遮挡网站| 九九爱精品视频在线观看| 久久这里有精品视频免费| 久久久久国产网址| 一级片免费观看大全| 国产极品粉嫩免费观看在线| 亚洲av福利一区| 少妇的丰满在线观看| 黑人欧美特级aaaaaa片| 色婷婷久久久亚洲欧美| 黄色视频在线播放观看不卡| 中文字幕免费在线视频6| 夜夜爽夜夜爽视频| 亚洲国产日韩一区二区| 亚洲第一区二区三区不卡| 欧美亚洲 丝袜 人妻 在线| 少妇的丰满在线观看| 国产成人a∨麻豆精品| 国产乱来视频区| 免费少妇av软件| 最近中文字幕2019免费版| 看非洲黑人一级黄片| 久久久久人妻精品一区果冻| 国产成人免费无遮挡视频| 亚洲四区av| 欧美亚洲日本最大视频资源| 久久精品国产a三级三级三级| 日本黄色日本黄色录像| 大香蕉久久成人网| 成人18禁高潮啪啪吃奶动态图| 水蜜桃什么品种好| 久久久精品免费免费高清| 满18在线观看网站| 国产成人免费无遮挡视频| 国产亚洲精品第一综合不卡 | 午夜老司机福利剧场| 一级毛片黄色毛片免费观看视频| 超色免费av| 久久ye,这里只有精品| 晚上一个人看的免费电影| 久久国产精品大桥未久av| av又黄又爽大尺度在线免费看| 一级黄片播放器| 少妇高潮的动态图| 一区二区av电影网| 国语对白做爰xxxⅹ性视频网站| 午夜视频国产福利| 观看av在线不卡| 视频中文字幕在线观看| 久久久久久人妻| 永久网站在线| 色视频在线一区二区三区| 久久精品国产鲁丝片午夜精品| 天天操日日干夜夜撸| 亚洲av电影在线观看一区二区三区| 熟妇人妻不卡中文字幕| 精品一品国产午夜福利视频| 如日韩欧美国产精品一区二区三区| 日韩中文字幕视频在线看片| 成年人午夜在线观看视频| 成年动漫av网址| 色网站视频免费| 十分钟在线观看高清视频www| 2021少妇久久久久久久久久久| 国产高清三级在线| 视频在线观看一区二区三区| 人人澡人人妻人| 亚洲美女搞黄在线观看| 一级毛片黄色毛片免费观看视频| 视频区图区小说| 午夜91福利影院| 成年女人在线观看亚洲视频| 国产精品无大码| 国产成人免费无遮挡视频| 日韩视频在线欧美| 欧美日韩视频精品一区| 99久久综合免费| 成年女人在线观看亚洲视频| 中文字幕人妻熟女乱码| 女性被躁到高潮视频| 深夜精品福利| 亚洲综合色惰| 99热全是精品| 精品国产露脸久久av麻豆| 激情五月婷婷亚洲| 国产深夜福利视频在线观看| 午夜福利在线观看免费完整高清在| 色视频在线一区二区三区| 亚洲欧美色中文字幕在线| 蜜臀久久99精品久久宅男| 欧美日韩国产mv在线观看视频| 考比视频在线观看| 国产一区二区在线观看av| 少妇 在线观看| 国产伦理片在线播放av一区| 视频在线观看一区二区三区| 毛片一级片免费看久久久久| 国产精品久久久久久精品古装| 免费女性裸体啪啪无遮挡网站| 免费av中文字幕在线| 婷婷成人精品国产| 肉色欧美久久久久久久蜜桃| 国产激情久久老熟女| 久久人人97超碰香蕉20202| 亚洲精品aⅴ在线观看| 亚洲精品久久午夜乱码| 午夜福利视频在线观看免费| 亚洲精品,欧美精品| 午夜福利影视在线免费观看| a级片在线免费高清观看视频| 色婷婷av一区二区三区视频| 国产成人aa在线观看| 亚洲成色77777| 黑人猛操日本美女一级片| 亚洲精品一区蜜桃| 欧美精品人与动牲交sv欧美| 日日摸夜夜添夜夜爱| 久久精品熟女亚洲av麻豆精品| 五月伊人婷婷丁香| 一二三四在线观看免费中文在 | 99精国产麻豆久久婷婷| 观看美女的网站| 欧美97在线视频| 菩萨蛮人人尽说江南好唐韦庄| 国产黄色视频一区二区在线观看| 成人亚洲精品一区在线观看| 久久久精品94久久精品| av线在线观看网站| 美女大奶头黄色视频| 91精品国产国语对白视频| 日日啪夜夜爽| 超色免费av| 欧美国产精品va在线观看不卡| 蜜桃在线观看..| 菩萨蛮人人尽说江南好唐韦庄| 日韩一区二区三区影片| 美女脱内裤让男人舔精品视频| 两个人看的免费小视频| 青春草视频在线免费观看| 汤姆久久久久久久影院中文字幕| 啦啦啦视频在线资源免费观看| 精品人妻一区二区三区麻豆| 久久免费观看电影| 亚洲色图综合在线观看| 青春草视频在线免费观看| 少妇被粗大猛烈的视频| 韩国av在线不卡| 国产免费福利视频在线观看| 免费大片18禁| 免费少妇av软件| 91午夜精品亚洲一区二区三区| 久久 成人 亚洲| 日韩电影二区| 欧美人与性动交α欧美精品济南到 | 男人舔女人的私密视频| 女人久久www免费人成看片| 亚洲伊人久久精品综合| 最近最新中文字幕免费大全7| 中文乱码字字幕精品一区二区三区| 80岁老熟妇乱子伦牲交| 亚洲熟女精品中文字幕| 成年人午夜在线观看视频| 大香蕉久久网| 97在线视频观看| 久久精品国产亚洲av天美| av网站免费在线观看视频| 亚洲精品久久午夜乱码| 考比视频在线观看| 精品国产乱码久久久久久小说| 成年人午夜在线观看视频| 性高湖久久久久久久久免费观看| 色哟哟·www| 欧美 日韩 精品 国产| 在线天堂最新版资源| 夫妻午夜视频| 成年av动漫网址| 成年美女黄网站色视频大全免费| 黄色毛片三级朝国网站| 亚洲av电影在线进入| 午夜福利视频精品| 人体艺术视频欧美日本| 丰满少妇做爰视频| 日本黄大片高清| 99久国产av精品国产电影| 日本免费在线观看一区| 99久国产av精品国产电影| 日本黄大片高清| 男人爽女人下面视频在线观看| 午夜福利网站1000一区二区三区| 熟女人妻精品中文字幕| 汤姆久久久久久久影院中文字幕| a级毛色黄片| 国产极品天堂在线| 超碰97精品在线观看| 亚洲美女黄色视频免费看| 啦啦啦啦在线视频资源| 国产欧美日韩综合在线一区二区| 亚洲伊人色综图| 久久99精品国语久久久| 久久99热6这里只有精品| 天天操日日干夜夜撸| 国产精品一区www在线观看| 天天躁夜夜躁狠狠久久av| 嫩草影院入口| 午夜福利在线观看免费完整高清在| 国产精品嫩草影院av在线观看| 纵有疾风起免费观看全集完整版| 99热全是精品| 中文字幕人妻熟女乱码| 日日啪夜夜爽| 一级片'在线观看视频| 国产毛片在线视频| 久久久久久久精品精品| 国产毛片在线视频| 一区二区三区四区激情视频| 国产高清不卡午夜福利| 2021少妇久久久久久久久久久| 亚洲一码二码三码区别大吗| 欧美xxxx性猛交bbbb| 男的添女的下面高潮视频| 亚洲婷婷狠狠爱综合网| av视频免费观看在线观看| 国产精品麻豆人妻色哟哟久久| 国产精品久久久久久久电影| 精品一区在线观看国产| 日日啪夜夜爽| 蜜臀久久99精品久久宅男| 亚洲成人手机| 亚洲精品久久成人aⅴ小说| 丝袜人妻中文字幕| 久久 成人 亚洲| 乱人伦中国视频| 香蕉国产在线看| 99久久精品国产国产毛片| 深夜精品福利| 午夜久久久在线观看| 国产日韩欧美亚洲二区| 少妇被粗大猛烈的视频| 少妇熟女欧美另类| 亚洲,欧美,日韩| 我的女老师完整版在线观看| 熟女人妻精品中文字幕| 大陆偷拍与自拍| 成人影院久久| 日韩视频在线欧美| 极品人妻少妇av视频| tube8黄色片| 亚洲欧洲日产国产| 久久精品国产亚洲av涩爱| 久久青草综合色| 国产精品一区二区在线观看99| 精品久久久精品久久久| 天天躁夜夜躁狠狠久久av| 激情视频va一区二区三区| 超色免费av| 久久久久久人人人人人| 各种免费的搞黄视频| 久久精品aⅴ一区二区三区四区 | av又黄又爽大尺度在线免费看| 日韩欧美一区视频在线观看| 免费大片18禁| 夫妻性生交免费视频一级片| 亚洲国产精品成人久久小说| 91国产中文字幕| 亚洲精品国产av蜜桃| 成人国语在线视频| 午夜免费男女啪啪视频观看| 黄色毛片三级朝国网站| 亚洲欧美一区二区三区黑人 | 国产淫语在线视频| 两个人看的免费小视频| 波野结衣二区三区在线| 成年人午夜在线观看视频| 只有这里有精品99| 久久精品国产a三级三级三级| 大码成人一级视频| 色5月婷婷丁香| 热re99久久国产66热| 精品酒店卫生间| 菩萨蛮人人尽说江南好唐韦庄| 久久午夜福利片| 国产av国产精品国产| 亚洲,欧美,日韩| 搡老乐熟女国产| 高清视频免费观看一区二区| 最后的刺客免费高清国语| 欧美精品一区二区大全| 韩国高清视频一区二区三区| 国产国语露脸激情在线看| 在线亚洲精品国产二区图片欧美| 精品午夜福利在线看| 国产精品人妻久久久久久| 久久青草综合色| 中文字幕另类日韩欧美亚洲嫩草| 国产精品嫩草影院av在线观看| 蜜臀久久99精品久久宅男| 国产爽快片一区二区三区| 一本—道久久a久久精品蜜桃钙片| 久久精品aⅴ一区二区三区四区 | 国产精品女同一区二区软件| 国产av精品麻豆| 国产 精品1| 波多野结衣一区麻豆| 日本91视频免费播放| 大码成人一级视频| 久久久久久久久久成人| 一区二区三区乱码不卡18| 亚洲激情五月婷婷啪啪| 欧美成人午夜免费资源| 国产亚洲午夜精品一区二区久久| 亚洲在久久综合| 亚洲国产最新在线播放| 男女啪啪激烈高潮av片| 在线亚洲精品国产二区图片欧美| 精品午夜福利在线看| 人人妻人人爽人人添夜夜欢视频| 国语对白做爰xxxⅹ性视频网站| 亚洲精品乱码久久久久久按摩| 午夜精品国产一区二区电影| 2018国产大陆天天弄谢| 久久久久国产网址| 国产片特级美女逼逼视频| 日本色播在线视频| 国产色爽女视频免费观看| 搡老乐熟女国产| 老司机影院毛片| 日韩 亚洲 欧美在线| 最新中文字幕久久久久| 一区二区日韩欧美中文字幕 | 免费在线观看完整版高清| 精品卡一卡二卡四卡免费| 人成视频在线观看免费观看| 999精品在线视频| 少妇的丰满在线观看| 高清视频免费观看一区二区| 欧美 亚洲 国产 日韩一| 蜜臀久久99精品久久宅男| av黄色大香蕉| 制服人妻中文乱码| 亚洲人成77777在线视频| 免费黄色在线免费观看| 日本vs欧美在线观看视频| 美女中出高潮动态图| 国产av国产精品国产| 国产成人精品无人区| 久热久热在线精品观看| 大片电影免费在线观看免费| 久久鲁丝午夜福利片| 五月天丁香电影| av福利片在线| 久热这里只有精品99| 亚洲,一卡二卡三卡| 成人毛片60女人毛片免费| 欧美日韩亚洲高清精品| 中文精品一卡2卡3卡4更新| 亚洲国产日韩一区二区| 亚洲欧美中文字幕日韩二区| 视频区图区小说| 日韩欧美一区视频在线观看| 热re99久久国产66热| 视频在线观看一区二区三区| 精品人妻一区二区三区麻豆| 9色porny在线观看| 制服丝袜香蕉在线| 香蕉精品网在线| 一边亲一边摸免费视频| 黄色一级大片看看| 最近2019中文字幕mv第一页| 日韩制服骚丝袜av| 97超碰精品成人国产| 午夜福利影视在线免费观看| 国产精品一国产av| 国产淫语在线视频| 精品少妇内射三级| 午夜日本视频在线| 国产色爽女视频免费观看| 亚洲精品久久午夜乱码| 中文天堂在线官网| 免费黄网站久久成人精品| 亚洲欧洲精品一区二区精品久久久 | 色吧在线观看| 97超碰精品成人国产| 成人无遮挡网站| 91aial.com中文字幕在线观看| 国产精品久久久久久精品电影小说| 69精品国产乱码久久久| 久久婷婷青草| videossex国产| 黄片无遮挡物在线观看| 极品少妇高潮喷水抽搐| 视频中文字幕在线观看| 欧美精品一区二区大全| 久久精品国产鲁丝片午夜精品| 久久热在线av| 国产免费一级a男人的天堂| 狠狠精品人妻久久久久久综合| 91久久精品国产一区二区三区| 亚洲人成77777在线视频| 久久精品久久久久久久性| 亚洲综合色网址| 亚洲经典国产精华液单| 黄色视频在线播放观看不卡| 亚洲av成人精品一二三区| 日韩在线高清观看一区二区三区| 亚洲精品国产av成人精品| 婷婷色综合大香蕉| 国产av一区二区精品久久| 最近手机中文字幕大全| 少妇被粗大猛烈的视频| 亚洲精华国产精华液的使用体验| 亚洲综合精品二区| 久久精品国产自在天天线| 97超碰精品成人国产| 色婷婷久久久亚洲欧美| 日本wwww免费看| 尾随美女入室| av女优亚洲男人天堂| 亚洲综合色惰| 日韩,欧美,国产一区二区三区| 亚洲精品第二区| 中国三级夫妇交换| 少妇高潮的动态图| 建设人人有责人人尽责人人享有的| 亚洲精品色激情综合| 久久精品人人爽人人爽视色| 欧美丝袜亚洲另类|