• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer

    2022-11-21 09:28:54KaiFengYin尹凱峰JiXiLu陸吉璽FeiLu逯斐BoLi李博BinQuanZhou周斌權(quán)andMaoYe葉茂
    Chinese Physics B 2022年11期
    關(guān)鍵詞:周斌葉茂李博

    Kai-Feng Yin(尹凱峰) Ji-Xi Lu(陸吉璽) Fei Lu(逯斐) Bo Li(李博)Bin-Quan Zhou(周斌權(quán)) and Mao Ye(葉茂)

    1School of Instrumentation Science and Optoelectronics Engineering,Beihang University,Beijing 100191,China

    2Research Institute for Frontier Science,Beihang University,Beijing 100191,China

    3Beihang Hangzhou Innovation Institute Yuhang,Xixi Octagon City,Hangzhou 310023,China

    Zero-field single-beam atomic magnetometers with transverse parametric modulation for ultra-weak magnetic field detection have attracted widespread attention recently. In this study, we present a comprehensive response model and propose a modification method of conventional first harmonic response by introducing the second harmonic correction.The proposed modification method gives improvement in dynamic range and reduction of linearity error. Additionally,our modification method shows suppression of response instability caused by optical intensity and frequency fluctuations. An atomic magnetometer with single-beam configuration is built to compare the performance between our proposed method and the conventional method. The results indicate that our method’s magnetic field response signal achieves a 5-fold expansion of dynamic range from 2 nT to 10 nT,with the linearity error decreased from 5%to 1%. Under the fluctuations of 5% for optical intensity and ±15 GHz detuning of frequency, the proposed modification method maintains intensityrelated instability less than 1%and frequency-related instability less than 8%while the conventional method suffers 15%and 38%, respectively. Our method is promising for future high-sensitive and long-term stable optically pumped atomic sensors.

    Keywords: atomic magnetometer,dynamic range,linearity error,response signal stability

    1. Introduction

    Optically-pumped magnetometers (OPMs) based on the detection of spin polarization of optically polarized atoms have raised widespread interest in recent years. Zero-field atomic magnetometers operated in the regime of spinexchange-relaxation-free(SERF)have reported extraordinary sensitivity of sub-femtotesla,[1,2]and are widely applied in testing of materials, fundamental physics including the measurement of the permanent electric dipole moment, and biomagnetic measurements.[3–6]To date, atomic magnetometers featured in miniaturization,high sensitivity and cryogenfree have become promising alternatives to superconductor quantum interference device (SQUID) magnetometers in bio-magnetic measurements such as magnetoencephalography(MEG)and magnetocardiography(MCG).[7,8]

    Atomic magnetometers operated in zero-field are implemented in many configurations to satisfy the various applications, including magnetometers based on crossed pumpprobe beams,[9–11]nearly parallel pump-probe beams,[12]single elliptically polarized light,[13,14]single circularly polarized light,[15,16]as well as schemes with multi-channel[17,18]and gradiometer.[19]Among these configurations,single-beam magnetometers have been widely applied in MEG and MCG with considerably less cost and reduction of volume.[20–22]The ambient magnetic field would induce the precession of the spin polarization, resulting in light absorption or polarization changes in alkali vapor, which forms the basis of the single-beam atomic magnetometer. In the single-beam configuration, it is a conventional practice that the magnetic field can be measured using the demodulated first harmonic signal by applying the transverse parametric modulation on the spin polarization.[23,24]The demodulated first harmonic dispersive signal limits the magnetometer’s dynamic range typically at 2 nT with 5% linearity error,[25]restricting the application scenarios of atomic magnetometers. Meanwhile,the instability of the response signal caused by linearity error decreases the accuracy in source imaging, which is critical for OPM-MEG.[26]Although atomic magnetometers with active closed-up operation show the dynamic range of 10 nT with 5%linearity error, the compensating magnetic field generated by the closed-up operation will introduce the cross-talk between adjacent magnetometers.[27]

    This study begins with investigating the response signal to the magnetic field in zero-field single-beam magnetometers and proposes a response modification method of the first harmonic response by introducing the second harmonic correction. Our method shows the capability to expand the dynamic range and reduce the linearity error. Furthermore, by suppressing the influence of optical intensity and frequency, the response signal remains stable under optical intensity and frequency fluctuations. Finally, the experiments are carried out to evaluate the proposed modification method’s performance in dynamic range,linearity and response signal stability.

    2. Methods

    Zero-field atomic magnetometer works with the polarized atoms created by optical pumping. The spin polarization evolved under the combined effects of optical pumping,spin relaxation,and magnetic field induced precession. In the SERF regime when the spin-exchange rate is much larger than the Larmor precession frequency,the evolution of spin polarization can be described with the Bloch equation

    wherePis the spin polarization vector,qis the slowing-down factor,γis the electron gyromagnetic ratio,sis the photon polarization of the pump beam,Ropis the optical pumping rate, andRrelis the relaxation rate mainly caused by spindestruction and wall-collisions. The circularly polarized light at D1 line propagates along thez-axis and the transmission obeys[28,29]

    whereIis the transmitted light intensity,I0is the incident intensity,Pzis thez-axis projection ofP, andνis the incident optical frequency.Equation(2)shows the basis of polarization measurement through light intensity detection. Optical depthκ(Pz,ν)that depends on spin polarizationPzand incident optical frequencyνcan be expressed as[30]

    wherenis the number density of the alkali atoms,Lis the light propagation length in the vapor cell,κ0is the absorption coefficient of alkali atoms at resonance,?(Δν) is the Lorentzian function related to frequency detuning Δν=ν-νD1, andΓD1is the pressure broadened optical width. The relationship between transmitted light intensityIand the spin polarizationPzcan be described by first-order approximation atP0(0<P0<1)

    As shown in Eq. (4), the attenuation of the incident light in the vapor cell can provide information about the spin projection along thez-axis. In our single-beam configuration, a transverse modulation magnetic fieldBmodsin(ωmodt)was applied along they-axis.Therefore the components of total magnetic fieldBwereBx=Bx0,By=Bmodsin(ωmodt)+By0,andBz=Bz0, whereBx0,By0, andBz0are the residual environment magnetic field components. By solving Eq.(1),the spin polarization along thez-axis is[23,24]

    whereJn(n=0,1,2)is then-order Bessel function of the first kind, andu=γBmod/qωmodis the modulation index. Consequently,by combining Eqs.(4)–(6),we can get the demodulation voltage signals at the first and second harmonic

    whereG1andG2are the output voltage gain factors for different channels of the lock-in amplifier,K1is the current–voltage conversion coefficient of transimpedance amplifier,SPDis the photosensitivity of photodiodes,andK2is a conversion coefficient between transmitted light intensity and spin polarizationPz

    The conventional first harmonic response signal is affected by the incident optical intensityI0,frequencyνand the modulation indexuas indicated in Eq.(7). Based on Eqs.(7)and(8),we introduce the modification method with the correction of the second harmonic response and the corresponding response signal is

    As indicated in Eq. (10), response signalVMODshows the improved dynamic range and lower linearity error toBy0for eliminating the nonlinear termγ2B2y0inVω. Meanwhile,in contrast to the first harmonic signalVω, termsK1,SPD,K2(I0,ν)are removed inVMOD,which gives a more stable response signal by suppressing the influence of optical intensityI0and frequencyνfluctuations. In summary, the proposed modification method promises an accurate and stable response signal in a larger measurement range of magnetic fields.

    3. Experimental setup and procedures

    A potassium spherical glass vapor cell with a diameter of 10 mm was filled with 1.8 amg4He and 0.1 amg N2. The N2acted as the quenching gas to prevent the radiation trapping while the4He efficiently decreased the effect of wall collisions. The vapor cell was electrically heated to 170°C by a printed double-layer resistance wire, generating an atomic number density of 4.97×1013cm-3according to Ref. [31].The heating resistance wire was specially designed to make the current flow in opposite directions between adjacent wires to eliminate the heating-current-induced magnetic field. The vapor cell temperature was stabilized by a proportional-integralderivative (PID) controller at an accuracy of±0.02°C, and the accuracy was obtained by a non-magnetic Pt-1000 temperature sensor that closed to the vapor cell.

    The experiments were carried out on a single-beam atomic magnetometer,as shown in Fig.1. The optical pumping beam was generated from an external-cavity diode laser(ECDL, New Focus TLB-6813), and carried into the magnetometer through a single-mode polarization-maintaining fiber.The optical frequency was tuned and locked to the D1 line of potassium at 770.1033 nm (389.2886 THz) by the feedback of a wavelength meter(HighFinesse WS-7). An acousto-optic modulator(AOM,G&H 3080-125)was placed in front of the optical fiber to modulate the light and generate artificial intensity fluctuations. The light emitted from the fiber was expanded and collimated to a diameter of 4 mm, then passed through the polarizer and quarter-wave plate in sequence. The incident intensityI0=6.35 mW/cm2traversed through the vapor cell alongz-direction and was finally exposed to the photodiode.The photosensitivitySPDof the photodiode was about 0.55 A/W at 389.2886 THz.

    Fig. 1. Schematic of the experimental apparatus. ECDL: external-cavity diode laser, TIA: transimpedance amplifier, LIA: lock-in amplifier, PD:silicon photodiode,DAQ:data acquisition system,λ/4: quarter-wave plate,AOM:acousto-optic modulator,PMF:polarization-maintaining fiber.

    The atomic magnetometer was placed inside a four-layers μ-metal magnetic shield, and the internal residual magnetic field was below 2 nT.Before running the experiment,the magnetic field surrounding the vapor cell was compensated to near zero-field (typically below 1 pT) by triaxial magnetic field coils integrated inside the magnetometer driven by the waveform generators (Keysight 33522B). The response signalVω,V2ωto magnetic fieldBy0was extracted using the digital lockin amplifier (Zurich Instruments MFLI) following the process: the lock-in amplifier generated the modulation voltage signalVmodsin(ωmodt) and applied to they-axis coil through a series resistance to produce the modulation magnetic fieldBmodsin(ωmodt) whereBmod=110 nT,ωmod=900 Hz; the spin polarization evolved in the modulation magnetic field,yielding the variation of transmitted light intensityIas indicated in Eq. (4); the corresponding light intensity variations were detected by a silicon photodiode and converted to the voltage signal by the transimpedance amplifier (Thorlabs PDA200C) with conversion coefficientK1subsequently; this voltage signal was finally sent to the lock-in amplifier for demodulation at first and second harmonic, generating the corresponding voltage responseVωandV2ωwith gain factorG1andG2, respectively. In practice, we madeG1=G2in the subsequent experiments.

    The queen then began to put the room in order and prepare food, so that when the man came home he found everything neat and tidy, and this seemed to give him some pleasure

    To investigate the magnetometer’s dynamic range and linearity, a sweep magnetic field ranging in±30 nT was applied to they-axis coil. The corresponding response voltagesVωandV2ωwere recorded simultaneously withBy0by the data acquisition system (NI PXIe-4464) at the sampling rate of 1 kHz. Furthermore, to estimate the stability of magnetometer’s response signal under optical intensity and frequency fluctuations,the artificial variations were applied to the incident light. For optical intensity fluctuations, a 40 mVpp triangular modulation at 1 Hz was applied to the AOM,generating a 5%variation of optical intensity,resulting inI0varying from 6.2 mW/cm2to 6.51 mW/cm2periodically. For optical frequency fluctuations, by controlling the piezoelectric transducer(PZT)voltage inside the ECDL,the incident optical frequency was varied atν389.2886 THz±15 GHz.Additionally,a 100 pT sinusoidal calibration magnetic field at 31 Hz was applied along they-axis, and the corresponding peak-to-peak amplitude in the response signal was extracted to evaluate the signal stability under optical intensity and frequency fluctuations.

    4. Results and discussion

    4.1. Dynamic range and linearity

    As shown in Fig.2,the first and second harmonic signalsVωandV2ωextracted from the lock-in amplifier were illustrated with black and blue lines. The modification response in Fig. 2 with the red line referred to the response signal calculated through our modification method as indicated in Eq.(10).By adjusting the voltage gain factorG1andG2,the modification response was made consistently with the first harmonic response to the same magnetic fieldBy0.

    Fig.2. The first harmonic(black line)and second harmonic(blue line)responses of the magnetic field By0 and the modification response(red line)calculated from Eq.(10). The shaded areas of the curves indicated multiple measurement errors.

    Referring to the study by Reaet al.,[26]the dynamic range of the atomic magnetometer was defined as the measurement range where the linearity error was less than 5%. As shown in Fig.3(a)with the shaded region,the calibrated first harmonic response showed the dynamic range of 2 nT,while the modification response remained a linear response over the range of 10 nT.

    Fig. 3. (a) Calibrated response of conventional first harmonic (black line) and modification response (red line); (b) linearity error of both conventional model(black line)and modification model(red line); inset: linearity error within 10 nT range with y-axis in logarithmic scale.

    Figure 3(b)demonstrated the linearity errorδLcomparison of the first harmonicVωand modification responseVMOD.It was apparent that the linearity error of the first harmonic response increased rapidly when the magnetic field exceeded its dynamic range of 2 nT, while the modification response maintained its linearity within 10 nT. Notably, the modification response showed a relatively small linearity error within the dynamic range of 10 nT,givingδL<1%as shown in the inset.

    4.2. Response signal stability

    The proposed modification responseVMODshowed the suppression of response instability induced by optical intensityI0and frequencyνfluctuations as indicated in Eq. (12).Firstly, the response signal stability was investigated by applying artificial fluctuations on optical intensity.As indicated in Fig. 4, the first harmonic and modification responses were recorded with black and red lines,against the variation of 5%in optical intensity with the blue line. It was seen from the figure that the instability of the first harmonic influenced by optical intensity fluctuations was suppressed in our modification method, which gave a stable response signal as shown with the red line.

    Fig.4. First harmonic(black line)and the modification response curves(red line)to 100 pT sinusoidal magnetic field at 31 Hz under the 5%optical intensity fluctuations(blue line).

    Fig.5.Linearity error of the first harmonic response(red line)and modification response(black line)induced by optical intensity fluctuations calculated by Eq.(13).

    Moreover, the linearity error was taken to quantify the suppression of optical intensity fluctuations. The peak-topeak amplitude of the response signal in a period was taken asSresponsefor both first harmonicVωand modification responseVMODandSsignalwas the averaged peak-to-peak amplitude ofVωandVMODduring the measurement time, respectively. As shown in Fig. 5, the first harmonic response suffered a 15%variation and showed a trend consistent with optical intensity fluctuations. As a comparison, the linearity error of modification response was maintained lower than 1%, independent from the influence of optical intensity fluctuations.

    Fig. 6. Modulation on the incident optical frequency with 1 Hz triangular wave(black line)and the accompanied optical intensity noise(red line).

    Fig.7. First harmonic response(black line)and the modification response(red line)to the 100 pT sinusoidal magnetic field at 31 Hz under the influence of the optical frequency fluctuations at±15 GHz(blue line).

    Moreover,the influence of optical frequency fluctuations on the response signal was studied. By controlling the PZT voltage inside the ECDL,a linear optical frequency variation of 389.2886 THz±15 GHz was obtained, accompanied by undesired optical intensity noise,as shown in Fig.6. The unexpected optical intensity fluctuations were caused by the limitation of the ECDL,but they would not have fatal impacts on subsequent analysis.

    As shown in Fig. 7, with the combined influence of optical frequency and intensity fluctuations, the first harmonic responseVωchanged significantly while the modification responseVMODshowed slight variations. The linearity errorδLof the first harmonic response varied 38% under the optical frequency fluctuations,as demonstrated in Fig.8. On the contrary,the modification response maintained a level of 8%under the combined effects of optical intensity and frequency variations. In addition, the asymmetry of the linearity error between±15 GHz frequency detuning in Fig.8 was because the magnetometer worked with the slight frequency detuning(about 7 GHz redshift in our experiment)for the optimal performance.

    Fig.8. First harmonic(red line)and modification(black line)linearity error caused by optical frequency variation.

    Finally,the noise spectral density averaged for 2 minutes of both the first harmonicVω(in red line) and the modification responseVMOD(in red dashed line)was shown in Fig.9.As seen, the noise spectral density of the proposed modification response was 8 fT/Hz1/2, which may be limited by the magnetic noise of the magnetic shield,[35]consistently with the first harmonic response signal.

    Fig.9.Noise spectral densities of the conventional response and our modification method.The peak at 31 Hz was the calibration signal we applied,the peak at 50 Hz Hz was the power frequency of the environment, and the blue line was a fit to the atomic magnetometer noise floor.

    5. Conclusion

    In this study, we develop a comprehensive response model for magnetic field measurement in zero-field singlebeam atomic magnetometer. Then the modification method for magnetometer’s response that introduces the second harmonic correction is proposed, which is advantageous in dynamic range expansion,linearity error reduction,and response signal stability. The experiments showed that the dynamic range was expanded to 10 nT, 5-fold larger than 2 nT in the conventional method. Furthermore, the linearity error of the proposed method was maintained at 1%in the dynamic range,five times lower than the first harmonic response. In addition,when optical intensity fluctuated at 5%and frequency detuned between±15 GHz, the response signal was maintained at intensity-related bias less than 1%and frequency-related bias less than 8%, whereas the conventional method suffers instability of 15%and 38%,respectively.

    Additionally,the modified response is as sensitive as the first harmonic signal, ensuring high-sensitive and accurate magnetic field measurement. Furthermore, our modification method operated in real-time without introducing extra interferences to the environment,which is advantageous for the applications of MEG and MCG,where sensor arrays are utilized.

    Acknowledgements

    The authors would like to give special thanks to Feifan Tan for her encouragement.

    Project supported by the National Key R&D Program of China(Grant No.2018YFB2002405)and the National Natural Science Foundation of China(Grant No.61903013).

    猜你喜歡
    周斌葉茂李博
    Higher-order topological Anderson insulator on the Sierpi′nski lattice
    BIFURCATION CONTROL FOR A FRACTIONAL-ORDER DELAYED SEIR RUMOR SPREADING MODEL WITH INCOMMENSURATE ORDERS?
    楊國珍
    周斌書法作品欣賞
    LabVIEW下通信原理實驗教改探討
    根深才會葉茂源遠(yuǎn)方能流長
    尋根(2020年1期)2020-04-07 03:44:34
    Dynamic Modeling of Variable Stiffness and Damping for Spatial Linkage Weft Insertion Mechanism with Clearance
    遼寧法庫葉茂臺七號遼墓的年代及墓主身份
    Muelleria pseudogibbula, a new species from a newly recorded genus (Bacillariophyceae) in China*
    Harry Potter 哈利·波特
    国产精品久久久久久人妻精品电影| 久久国产精品人妻蜜桃| 亚洲第一欧美日韩一区二区三区| √禁漫天堂资源中文www| 两个人看的免费小视频| 一级毛片精品| 又黄又粗又硬又大视频| 日韩精品中文字幕看吧| 亚洲精品在线美女| ponron亚洲| 国产又爽黄色视频| 国产真人三级小视频在线观看| 黄片小视频在线播放| 亚洲精品美女久久久久99蜜臀| 日本免费a在线| 午夜免费激情av| 99久久国产精品久久久| 欧美成人免费av一区二区三区| 九色国产91popny在线| 午夜日韩欧美国产| 日韩精品中文字幕看吧| 一进一出抽搐gif免费好疼| 亚洲国产精品999在线| 久久精品国产清高在天天线| 国产成年人精品一区二区| 黄色视频,在线免费观看| 欧美激情高清一区二区三区| 1024视频免费在线观看| 亚洲人成伊人成综合网2020| 少妇的丰满在线观看| 日本撒尿小便嘘嘘汇集6| 国产精品美女特级片免费视频播放器 | 精品午夜福利视频在线观看一区| 久久久久久亚洲精品国产蜜桃av| 国产高清videossex| 级片在线观看| 日本在线视频免费播放| 国产久久久一区二区三区| 久久人妻av系列| 特大巨黑吊av在线直播 | 神马国产精品三级电影在线观看 | 日本五十路高清| 久久国产精品男人的天堂亚洲| 国产高清激情床上av| 搡老岳熟女国产| 好男人电影高清在线观看| 亚洲美女黄片视频| 国产男靠女视频免费网站| 搡老岳熟女国产| 精华霜和精华液先用哪个| 久久天堂一区二区三区四区| 在线免费观看的www视频| 长腿黑丝高跟| 日韩视频一区二区在线观看| av视频在线观看入口| 亚洲精华国产精华精| 操出白浆在线播放| 色综合欧美亚洲国产小说| 国产av一区二区精品久久| 又紧又爽又黄一区二区| 99国产精品一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 黄网站色视频无遮挡免费观看| www.自偷自拍.com| 国产在线观看jvid| 18禁黄网站禁片免费观看直播| 免费av毛片视频| a级毛片a级免费在线| 色播亚洲综合网| 麻豆av在线久日| 高清毛片免费观看视频网站| 中亚洲国语对白在线视频| 在线观看午夜福利视频| 香蕉国产在线看| 国产精品美女特级片免费视频播放器 | 少妇 在线观看| 亚洲三区欧美一区| 国产高清视频在线播放一区| 亚洲自拍偷在线| 99热只有精品国产| 免费高清视频大片| 欧美zozozo另类| 国产成人影院久久av| 99精品久久久久人妻精品| 国产成人影院久久av| 热99re8久久精品国产| 亚洲成国产人片在线观看| 婷婷丁香在线五月| 看免费av毛片| 国产精品乱码一区二三区的特点| 国产一区二区三区视频了| 国产又色又爽无遮挡免费看| videosex国产| 啪啪无遮挡十八禁网站| 久久久国产成人免费| 精品久久蜜臀av无| 十分钟在线观看高清视频www| 搡老岳熟女国产| 伊人久久大香线蕉亚洲五| 亚洲成人久久性| 波多野结衣av一区二区av| 国内揄拍国产精品人妻在线 | 国产亚洲精品久久久久5区| 欧美乱妇无乱码| 亚洲精品av麻豆狂野| 伊人久久大香线蕉亚洲五| 俄罗斯特黄特色一大片| 别揉我奶头~嗯~啊~动态视频| 两人在一起打扑克的视频| 国产精品一区二区三区四区久久 | 久久香蕉国产精品| 香蕉国产在线看| 中文字幕久久专区| 久久婷婷成人综合色麻豆| 中文字幕人妻丝袜一区二区| 成年人黄色毛片网站| 一本精品99久久精品77| 欧美成人午夜精品| 亚洲国产看品久久| 最近最新免费中文字幕在线| svipshipincom国产片| av免费在线观看网站| 亚洲激情在线av| a在线观看视频网站| 中文在线观看免费www的网站 | 国产真人三级小视频在线观看| 亚洲av第一区精品v没综合| 亚洲人成电影免费在线| 午夜激情福利司机影院| 日韩有码中文字幕| 国产人伦9x9x在线观看| 亚洲av成人一区二区三| 久热爱精品视频在线9| 女人高潮潮喷娇喘18禁视频| 一区二区日韩欧美中文字幕| 99热只有精品国产| 欧美激情高清一区二区三区| 视频在线观看一区二区三区| www国产在线视频色| 国产精品电影一区二区三区| 欧美国产精品va在线观看不卡| 亚洲 欧美 日韩 在线 免费| 精华霜和精华液先用哪个| 国产一区二区在线av高清观看| 免费在线观看亚洲国产| 熟女电影av网| 国产精品av久久久久免费| 熟女少妇亚洲综合色aaa.| 黑人巨大精品欧美一区二区mp4| 亚洲久久久国产精品| 人人妻人人澡人人看| 国产成+人综合+亚洲专区| 在线观看一区二区三区| 午夜免费激情av| 国产精品电影一区二区三区| 日本 av在线| 一区二区三区精品91| 窝窝影院91人妻| 欧美日本亚洲视频在线播放| 桃红色精品国产亚洲av| 日韩国内少妇激情av| 免费电影在线观看免费观看| 国产成人欧美在线观看| 亚洲精品中文字幕在线视频| 亚洲av第一区精品v没综合| 中文字幕最新亚洲高清| 2021天堂中文幕一二区在线观 | 少妇粗大呻吟视频| 黄网站色视频无遮挡免费观看| 少妇被粗大的猛进出69影院| 99久久国产精品久久久| 不卡av一区二区三区| 国产野战对白在线观看| 精品第一国产精品| 亚洲欧美精品综合久久99| www.熟女人妻精品国产| 欧美精品啪啪一区二区三区| av中文乱码字幕在线| 亚洲熟妇中文字幕五十中出| 免费看十八禁软件| 狂野欧美激情性xxxx| 黄片播放在线免费| 久久精品亚洲精品国产色婷小说| 日韩成人在线观看一区二区三区| 免费女性裸体啪啪无遮挡网站| 老司机福利观看| 久久精品亚洲精品国产色婷小说| 女人高潮潮喷娇喘18禁视频| 美女高潮到喷水免费观看| 91国产中文字幕| 精品第一国产精品| 欧美精品亚洲一区二区| 亚洲成人久久性| 久久中文看片网| 久久亚洲真实| 欧美中文日本在线观看视频| 99精品在免费线老司机午夜| 女同久久另类99精品国产91| 亚洲国产看品久久| 久久久久久久午夜电影| 亚洲精华国产精华精| 热99re8久久精品国产| 人妻丰满熟妇av一区二区三区| 亚洲五月色婷婷综合| 日韩一卡2卡3卡4卡2021年| 99国产精品一区二区蜜桃av| 国产亚洲av嫩草精品影院| 欧美一级毛片孕妇| 亚洲最大成人中文| 精品久久久久久,| 色综合站精品国产| 最近在线观看免费完整版| 91大片在线观看| 精品一区二区三区视频在线观看免费| 亚洲精品色激情综合| 成年人黄色毛片网站| 一级毛片精品| 久久久久久九九精品二区国产 | 亚洲精品一区av在线观看| 亚洲,欧美精品.| 听说在线观看完整版免费高清| 又大又爽又粗| 日韩一卡2卡3卡4卡2021年| 国产成人啪精品午夜网站| 色老头精品视频在线观看| 中文字幕人成人乱码亚洲影| 视频在线观看一区二区三区| 成人18禁在线播放| 午夜激情av网站| 搡老岳熟女国产| 国产精品自产拍在线观看55亚洲| aaaaa片日本免费| 精品一区二区三区av网在线观看| 激情在线观看视频在线高清| 亚洲第一av免费看| 国产高清有码在线观看视频 | 青草久久国产| 欧美日韩亚洲国产一区二区在线观看| 一级毛片高清免费大全| 国产在线精品亚洲第一网站| 国产精品一区二区免费欧美| 亚洲午夜精品一区,二区,三区| 精品国产一区二区三区四区第35| 精品久久久久久久末码| 级片在线观看| 日本成人三级电影网站| 黄片小视频在线播放| 一区二区三区精品91| 久久热在线av| 欧美成人午夜精品| 91麻豆精品激情在线观看国产| 久久中文字幕一级| 欧美丝袜亚洲另类 | www日本黄色视频网| 久久久国产精品麻豆| 成年人黄色毛片网站| 成人精品一区二区免费| 国产乱人伦免费视频| 少妇被粗大的猛进出69影院| 搡老妇女老女人老熟妇| 真人一进一出gif抽搐免费| 91老司机精品| 熟女电影av网| 亚洲熟妇熟女久久| 一进一出抽搐动态| 亚洲天堂国产精品一区在线| 无限看片的www在线观看| 色哟哟哟哟哟哟| 天堂动漫精品| 非洲黑人性xxxx精品又粗又长| 日韩大尺度精品在线看网址| 12—13女人毛片做爰片一| 岛国视频午夜一区免费看| 欧美色视频一区免费| 成人永久免费在线观看视频| 97人妻精品一区二区三区麻豆 | 欧美成人免费av一区二区三区| 手机成人av网站| 国产成人系列免费观看| 亚洲av第一区精品v没综合| 狂野欧美激情性xxxx| 亚洲av五月六月丁香网| 最好的美女福利视频网| 久久久久久大精品| 欧美人与性动交α欧美精品济南到| 中文字幕最新亚洲高清| www日本在线高清视频| 精品久久久久久,| 免费女性裸体啪啪无遮挡网站| aaaaa片日本免费| 女人爽到高潮嗷嗷叫在线视频| 久久久久亚洲av毛片大全| 色综合站精品国产| 制服诱惑二区| 一级毛片高清免费大全| 大型黄色视频在线免费观看| 亚洲狠狠婷婷综合久久图片| 91麻豆av在线| 欧美一区二区精品小视频在线| 亚洲国产欧美一区二区综合| 成人精品一区二区免费| 久久狼人影院| 亚洲一卡2卡3卡4卡5卡精品中文| 国产伦一二天堂av在线观看| 国产成年人精品一区二区| 久久久国产成人精品二区| 老熟妇乱子伦视频在线观看| 午夜免费观看网址| 成年人黄色毛片网站| 亚洲在线自拍视频| 国产精品综合久久久久久久免费| a级毛片a级免费在线| 午夜久久久在线观看| 久久精品人妻少妇| 久久天躁狠狠躁夜夜2o2o| 美国免费a级毛片| 男女床上黄色一级片免费看| 国产单亲对白刺激| 久久久久久免费高清国产稀缺| 国产成人精品久久二区二区91| 最新美女视频免费是黄的| 每晚都被弄得嗷嗷叫到高潮| 99国产精品一区二区蜜桃av| 男男h啪啪无遮挡| 国产不卡一卡二| 国产色视频综合| 两性午夜刺激爽爽歪歪视频在线观看 | 变态另类成人亚洲欧美熟女| 亚洲精品国产精品久久久不卡| 国产激情久久老熟女| 侵犯人妻中文字幕一二三四区| 中文字幕人妻丝袜一区二区| 免费在线观看黄色视频的| 欧美乱色亚洲激情| 久久婷婷人人爽人人干人人爱| 久久午夜亚洲精品久久| 国产成人av激情在线播放| 自线自在国产av| 亚洲av成人av| 日韩一卡2卡3卡4卡2021年| 亚洲一区中文字幕在线| 亚洲成人精品中文字幕电影| 欧美成人一区二区免费高清观看 | 日日干狠狠操夜夜爽| 欧美大码av| 神马国产精品三级电影在线观看 | 免费在线观看成人毛片| 亚洲三区欧美一区| 精品国产乱码久久久久久男人| 久久久久久久久免费视频了| 99国产精品99久久久久| 亚洲中文字幕日韩| 久久久久久国产a免费观看| 午夜成年电影在线免费观看| 亚洲三区欧美一区| 51午夜福利影视在线观看| 人妻久久中文字幕网| 日韩精品青青久久久久久| 最近最新免费中文字幕在线| 久久精品国产综合久久久| 18禁国产床啪视频网站| aaaaa片日本免费| 国产99白浆流出| 久久久久久久精品吃奶| 一级毛片高清免费大全| 国产欧美日韩一区二区三| 精品久久蜜臀av无| 少妇粗大呻吟视频| 国产精品久久视频播放| 两性午夜刺激爽爽歪歪视频在线观看 | 免费无遮挡裸体视频| 免费高清在线观看日韩| 亚洲欧美精品综合久久99| 老汉色∧v一级毛片| 亚洲性夜色夜夜综合| 久久国产精品人妻蜜桃| 97人妻精品一区二区三区麻豆 | 精品高清国产在线一区| 久久狼人影院| 国产一区二区在线av高清观看| 日韩高清综合在线| 国产激情偷乱视频一区二区| 国产不卡一卡二| 欧美色视频一区免费| 黑人操中国人逼视频| 国产欧美日韩一区二区三| 免费在线观看成人毛片| 熟女电影av网| а√天堂www在线а√下载| 麻豆一二三区av精品| 久久精品国产清高在天天线| 国产单亲对白刺激| 少妇粗大呻吟视频| 十八禁人妻一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产欧美日韩在线播放| 两个人视频免费观看高清| 国产99久久九九免费精品| 草草在线视频免费看| 精品无人区乱码1区二区| 亚洲中文字幕日韩| 叶爱在线成人免费视频播放| 免费观看精品视频网站| 巨乳人妻的诱惑在线观看| 久9热在线精品视频| 国产精品98久久久久久宅男小说| 欧美日韩亚洲综合一区二区三区_| 人人澡人人妻人| 91成人精品电影| 精品熟女少妇八av免费久了| 女同久久另类99精品国产91| 欧美黑人巨大hd| 99久久99久久久精品蜜桃| 天堂动漫精品| 伦理电影免费视频| 人人妻,人人澡人人爽秒播| 在线观看免费午夜福利视频| 久久久久久免费高清国产稀缺| 久久精品成人免费网站| 1024香蕉在线观看| 久久这里只有精品19| 每晚都被弄得嗷嗷叫到高潮| 成年人黄色毛片网站| 国产免费男女视频| 免费高清在线观看日韩| 窝窝影院91人妻| 18禁国产床啪视频网站| 成人18禁在线播放| 女人高潮潮喷娇喘18禁视频| 欧美性猛交黑人性爽| 高潮久久久久久久久久久不卡| 久久天堂一区二区三区四区| 日韩欧美国产在线观看| 久久99热这里只有精品18| 色尼玛亚洲综合影院| 亚洲精品久久成人aⅴ小说| 99久久综合精品五月天人人| 欧美又色又爽又黄视频| 精品欧美国产一区二区三| 久久久久国产精品人妻aⅴ院| 国产一区二区三区在线臀色熟女| 欧美一级a爱片免费观看看 | 国产一区二区在线av高清观看| 黄片播放在线免费| 一进一出抽搐gif免费好疼| 欧美日韩一级在线毛片| 999精品在线视频| 亚洲五月婷婷丁香| 久久香蕉精品热| 中亚洲国语对白在线视频| 在线十欧美十亚洲十日本专区| 国产精品爽爽va在线观看网站 | 嫩草影视91久久| 99riav亚洲国产免费| 在线观看66精品国产| 亚洲国产欧美一区二区综合| 国产精品1区2区在线观看.| 亚洲精品粉嫩美女一区| 黄色a级毛片大全视频| 精品久久久久久,| tocl精华| 亚洲国产高清在线一区二区三 | 精品久久蜜臀av无| 亚洲全国av大片| 99精品久久久久人妻精品| 久久久久久免费高清国产稀缺| 男人操女人黄网站| 成人av一区二区三区在线看| a在线观看视频网站| 熟女电影av网| www.www免费av| 午夜两性在线视频| 午夜免费激情av| 一区二区三区激情视频| 日本 欧美在线| 国产乱人伦免费视频| 亚洲国产欧美一区二区综合| 老熟妇乱子伦视频在线观看| 久久亚洲真实| 一级a爱视频在线免费观看| 国产精品久久视频播放| 亚洲色图av天堂| 国产精品久久视频播放| 搞女人的毛片| 99国产精品一区二区蜜桃av| 好看av亚洲va欧美ⅴa在| 听说在线观看完整版免费高清| 精品高清国产在线一区| 一个人免费在线观看的高清视频| 亚洲av片天天在线观看| 露出奶头的视频| 搡老熟女国产l中国老女人| 成在线人永久免费视频| 久久久久免费精品人妻一区二区 | 一本精品99久久精品77| 88av欧美| 高潮久久久久久久久久久不卡| 88av欧美| 夜夜躁狠狠躁天天躁| 精华霜和精华液先用哪个| 色综合欧美亚洲国产小说| 丁香欧美五月| 法律面前人人平等表现在哪些方面| 国产又爽黄色视频| 欧美另类亚洲清纯唯美| 在线观看一区二区三区| 日本三级黄在线观看| 国产精品免费一区二区三区在线| 亚洲人成网站高清观看| 亚洲欧美日韩无卡精品| 免费在线观看成人毛片| 大型黄色视频在线免费观看| 精品一区二区三区四区五区乱码| 一边摸一边做爽爽视频免费| 一边摸一边抽搐一进一小说| 日本黄色视频三级网站网址| 母亲3免费完整高清在线观看| 亚洲国产欧美网| 制服丝袜大香蕉在线| 国产黄片美女视频| 丝袜人妻中文字幕| 国产成人欧美| 精品一区二区三区四区五区乱码| 午夜影院日韩av| 免费在线观看成人毛片| 久久欧美精品欧美久久欧美| 夜夜夜夜夜久久久久| 日本五十路高清| 一进一出抽搐动态| 久久人人精品亚洲av| 少妇的丰满在线观看| 美女免费视频网站| 法律面前人人平等表现在哪些方面| 18禁国产床啪视频网站| 中文在线观看免费www的网站 | 久久久久久免费高清国产稀缺| 久久久国产成人免费| 嫩草影视91久久| 欧美中文日本在线观看视频| 日韩欧美一区二区三区在线观看| 黑人欧美特级aaaaaa片| 久久久水蜜桃国产精品网| 9191精品国产免费久久| 欧美日韩乱码在线| 国产精品一区二区精品视频观看| 一个人免费在线观看的高清视频| 99国产精品99久久久久| 日韩欧美免费精品| 亚洲一区中文字幕在线| 桃红色精品国产亚洲av| 亚洲专区中文字幕在线| e午夜精品久久久久久久| 国内揄拍国产精品人妻在线 | 好男人电影高清在线观看| av视频在线观看入口| 国产免费男女视频| 狠狠狠狠99中文字幕| 手机成人av网站| 人成视频在线观看免费观看| 欧美激情久久久久久爽电影| 亚洲精品中文字幕一二三四区| 亚洲国产精品合色在线| cao死你这个sao货| 国产亚洲av高清不卡| 国产成人一区二区三区免费视频网站| 男女午夜视频在线观看| 国产成人啪精品午夜网站| 男女床上黄色一级片免费看| 精品高清国产在线一区| 国产成人精品无人区| 日本熟妇午夜| 18禁国产床啪视频网站| 中文字幕高清在线视频| 免费观看人在逋| 一级黄色大片毛片| 欧美色视频一区免费| 91成人精品电影| www.熟女人妻精品国产| 黄色视频不卡| 757午夜福利合集在线观看| 高清毛片免费观看视频网站| 午夜精品久久久久久毛片777| 日韩欧美 国产精品| e午夜精品久久久久久久| 美女午夜性视频免费| 很黄的视频免费| 美女免费视频网站| 久久午夜综合久久蜜桃| 国产一区二区在线av高清观看| 国产精品电影一区二区三区| 亚洲av第一区精品v没综合| 中文亚洲av片在线观看爽| 美女 人体艺术 gogo| 亚洲国产看品久久| 50天的宝宝边吃奶边哭怎么回事| 亚洲无线在线观看| 在线国产一区二区在线| 欧美在线一区亚洲| 国产一级毛片七仙女欲春2 | 国产精品影院久久| 校园春色视频在线观看| 中文字幕人妻丝袜一区二区| 一本大道久久a久久精品| 18美女黄网站色大片免费观看| 精品一区二区三区视频在线观看免费| 久久这里只有精品19| 男女做爰动态图高潮gif福利片| 高潮久久久久久久久久久不卡| 视频区欧美日本亚洲| 亚洲最大成人中文| 大型av网站在线播放| 成人特级黄色片久久久久久久| 美女 人体艺术 gogo| 国产高清激情床上av| 人人澡人人妻人|