• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer

    2022-11-21 09:28:54KaiFengYin尹凱峰JiXiLu陸吉璽FeiLu逯斐BoLi李博BinQuanZhou周斌權(quán)andMaoYe葉茂
    Chinese Physics B 2022年11期
    關(guān)鍵詞:周斌葉茂李博

    Kai-Feng Yin(尹凱峰) Ji-Xi Lu(陸吉璽) Fei Lu(逯斐) Bo Li(李博)Bin-Quan Zhou(周斌權(quán)) and Mao Ye(葉茂)

    1School of Instrumentation Science and Optoelectronics Engineering,Beihang University,Beijing 100191,China

    2Research Institute for Frontier Science,Beihang University,Beijing 100191,China

    3Beihang Hangzhou Innovation Institute Yuhang,Xixi Octagon City,Hangzhou 310023,China

    Zero-field single-beam atomic magnetometers with transverse parametric modulation for ultra-weak magnetic field detection have attracted widespread attention recently. In this study, we present a comprehensive response model and propose a modification method of conventional first harmonic response by introducing the second harmonic correction.The proposed modification method gives improvement in dynamic range and reduction of linearity error. Additionally,our modification method shows suppression of response instability caused by optical intensity and frequency fluctuations. An atomic magnetometer with single-beam configuration is built to compare the performance between our proposed method and the conventional method. The results indicate that our method’s magnetic field response signal achieves a 5-fold expansion of dynamic range from 2 nT to 10 nT,with the linearity error decreased from 5%to 1%. Under the fluctuations of 5% for optical intensity and ±15 GHz detuning of frequency, the proposed modification method maintains intensityrelated instability less than 1%and frequency-related instability less than 8%while the conventional method suffers 15%and 38%, respectively. Our method is promising for future high-sensitive and long-term stable optically pumped atomic sensors.

    Keywords: atomic magnetometer,dynamic range,linearity error,response signal stability

    1. Introduction

    Optically-pumped magnetometers (OPMs) based on the detection of spin polarization of optically polarized atoms have raised widespread interest in recent years. Zero-field atomic magnetometers operated in the regime of spinexchange-relaxation-free(SERF)have reported extraordinary sensitivity of sub-femtotesla,[1,2]and are widely applied in testing of materials, fundamental physics including the measurement of the permanent electric dipole moment, and biomagnetic measurements.[3–6]To date, atomic magnetometers featured in miniaturization,high sensitivity and cryogenfree have become promising alternatives to superconductor quantum interference device (SQUID) magnetometers in bio-magnetic measurements such as magnetoencephalography(MEG)and magnetocardiography(MCG).[7,8]

    Atomic magnetometers operated in zero-field are implemented in many configurations to satisfy the various applications, including magnetometers based on crossed pumpprobe beams,[9–11]nearly parallel pump-probe beams,[12]single elliptically polarized light,[13,14]single circularly polarized light,[15,16]as well as schemes with multi-channel[17,18]and gradiometer.[19]Among these configurations,single-beam magnetometers have been widely applied in MEG and MCG with considerably less cost and reduction of volume.[20–22]The ambient magnetic field would induce the precession of the spin polarization, resulting in light absorption or polarization changes in alkali vapor, which forms the basis of the single-beam atomic magnetometer. In the single-beam configuration, it is a conventional practice that the magnetic field can be measured using the demodulated first harmonic signal by applying the transverse parametric modulation on the spin polarization.[23,24]The demodulated first harmonic dispersive signal limits the magnetometer’s dynamic range typically at 2 nT with 5% linearity error,[25]restricting the application scenarios of atomic magnetometers. Meanwhile,the instability of the response signal caused by linearity error decreases the accuracy in source imaging, which is critical for OPM-MEG.[26]Although atomic magnetometers with active closed-up operation show the dynamic range of 10 nT with 5%linearity error, the compensating magnetic field generated by the closed-up operation will introduce the cross-talk between adjacent magnetometers.[27]

    This study begins with investigating the response signal to the magnetic field in zero-field single-beam magnetometers and proposes a response modification method of the first harmonic response by introducing the second harmonic correction. Our method shows the capability to expand the dynamic range and reduce the linearity error. Furthermore, by suppressing the influence of optical intensity and frequency, the response signal remains stable under optical intensity and frequency fluctuations. Finally, the experiments are carried out to evaluate the proposed modification method’s performance in dynamic range,linearity and response signal stability.

    2. Methods

    Zero-field atomic magnetometer works with the polarized atoms created by optical pumping. The spin polarization evolved under the combined effects of optical pumping,spin relaxation,and magnetic field induced precession. In the SERF regime when the spin-exchange rate is much larger than the Larmor precession frequency,the evolution of spin polarization can be described with the Bloch equation

    wherePis the spin polarization vector,qis the slowing-down factor,γis the electron gyromagnetic ratio,sis the photon polarization of the pump beam,Ropis the optical pumping rate, andRrelis the relaxation rate mainly caused by spindestruction and wall-collisions. The circularly polarized light at D1 line propagates along thez-axis and the transmission obeys[28,29]

    whereIis the transmitted light intensity,I0is the incident intensity,Pzis thez-axis projection ofP, andνis the incident optical frequency.Equation(2)shows the basis of polarization measurement through light intensity detection. Optical depthκ(Pz,ν)that depends on spin polarizationPzand incident optical frequencyνcan be expressed as[30]

    wherenis the number density of the alkali atoms,Lis the light propagation length in the vapor cell,κ0is the absorption coefficient of alkali atoms at resonance,?(Δν) is the Lorentzian function related to frequency detuning Δν=ν-νD1, andΓD1is the pressure broadened optical width. The relationship between transmitted light intensityIand the spin polarizationPzcan be described by first-order approximation atP0(0<P0<1)

    As shown in Eq. (4), the attenuation of the incident light in the vapor cell can provide information about the spin projection along thez-axis. In our single-beam configuration, a transverse modulation magnetic fieldBmodsin(ωmodt)was applied along they-axis.Therefore the components of total magnetic fieldBwereBx=Bx0,By=Bmodsin(ωmodt)+By0,andBz=Bz0, whereBx0,By0, andBz0are the residual environment magnetic field components. By solving Eq.(1),the spin polarization along thez-axis is[23,24]

    whereJn(n=0,1,2)is then-order Bessel function of the first kind, andu=γBmod/qωmodis the modulation index. Consequently,by combining Eqs.(4)–(6),we can get the demodulation voltage signals at the first and second harmonic

    whereG1andG2are the output voltage gain factors for different channels of the lock-in amplifier,K1is the current–voltage conversion coefficient of transimpedance amplifier,SPDis the photosensitivity of photodiodes,andK2is a conversion coefficient between transmitted light intensity and spin polarizationPz

    The conventional first harmonic response signal is affected by the incident optical intensityI0,frequencyνand the modulation indexuas indicated in Eq.(7). Based on Eqs.(7)and(8),we introduce the modification method with the correction of the second harmonic response and the corresponding response signal is

    As indicated in Eq. (10), response signalVMODshows the improved dynamic range and lower linearity error toBy0for eliminating the nonlinear termγ2B2y0inVω. Meanwhile,in contrast to the first harmonic signalVω, termsK1,SPD,K2(I0,ν)are removed inVMOD,which gives a more stable response signal by suppressing the influence of optical intensityI0and frequencyνfluctuations. In summary, the proposed modification method promises an accurate and stable response signal in a larger measurement range of magnetic fields.

    3. Experimental setup and procedures

    A potassium spherical glass vapor cell with a diameter of 10 mm was filled with 1.8 amg4He and 0.1 amg N2. The N2acted as the quenching gas to prevent the radiation trapping while the4He efficiently decreased the effect of wall collisions. The vapor cell was electrically heated to 170°C by a printed double-layer resistance wire, generating an atomic number density of 4.97×1013cm-3according to Ref. [31].The heating resistance wire was specially designed to make the current flow in opposite directions between adjacent wires to eliminate the heating-current-induced magnetic field. The vapor cell temperature was stabilized by a proportional-integralderivative (PID) controller at an accuracy of±0.02°C, and the accuracy was obtained by a non-magnetic Pt-1000 temperature sensor that closed to the vapor cell.

    The experiments were carried out on a single-beam atomic magnetometer,as shown in Fig.1. The optical pumping beam was generated from an external-cavity diode laser(ECDL, New Focus TLB-6813), and carried into the magnetometer through a single-mode polarization-maintaining fiber.The optical frequency was tuned and locked to the D1 line of potassium at 770.1033 nm (389.2886 THz) by the feedback of a wavelength meter(HighFinesse WS-7). An acousto-optic modulator(AOM,G&H 3080-125)was placed in front of the optical fiber to modulate the light and generate artificial intensity fluctuations. The light emitted from the fiber was expanded and collimated to a diameter of 4 mm, then passed through the polarizer and quarter-wave plate in sequence. The incident intensityI0=6.35 mW/cm2traversed through the vapor cell alongz-direction and was finally exposed to the photodiode.The photosensitivitySPDof the photodiode was about 0.55 A/W at 389.2886 THz.

    Fig. 1. Schematic of the experimental apparatus. ECDL: external-cavity diode laser, TIA: transimpedance amplifier, LIA: lock-in amplifier, PD:silicon photodiode,DAQ:data acquisition system,λ/4: quarter-wave plate,AOM:acousto-optic modulator,PMF:polarization-maintaining fiber.

    The atomic magnetometer was placed inside a four-layers μ-metal magnetic shield, and the internal residual magnetic field was below 2 nT.Before running the experiment,the magnetic field surrounding the vapor cell was compensated to near zero-field (typically below 1 pT) by triaxial magnetic field coils integrated inside the magnetometer driven by the waveform generators (Keysight 33522B). The response signalVω,V2ωto magnetic fieldBy0was extracted using the digital lockin amplifier (Zurich Instruments MFLI) following the process: the lock-in amplifier generated the modulation voltage signalVmodsin(ωmodt) and applied to they-axis coil through a series resistance to produce the modulation magnetic fieldBmodsin(ωmodt) whereBmod=110 nT,ωmod=900 Hz; the spin polarization evolved in the modulation magnetic field,yielding the variation of transmitted light intensityIas indicated in Eq. (4); the corresponding light intensity variations were detected by a silicon photodiode and converted to the voltage signal by the transimpedance amplifier (Thorlabs PDA200C) with conversion coefficientK1subsequently; this voltage signal was finally sent to the lock-in amplifier for demodulation at first and second harmonic, generating the corresponding voltage responseVωandV2ωwith gain factorG1andG2, respectively. In practice, we madeG1=G2in the subsequent experiments.

    The queen then began to put the room in order and prepare food, so that when the man came home he found everything neat and tidy, and this seemed to give him some pleasure

    To investigate the magnetometer’s dynamic range and linearity, a sweep magnetic field ranging in±30 nT was applied to they-axis coil. The corresponding response voltagesVωandV2ωwere recorded simultaneously withBy0by the data acquisition system (NI PXIe-4464) at the sampling rate of 1 kHz. Furthermore, to estimate the stability of magnetometer’s response signal under optical intensity and frequency fluctuations,the artificial variations were applied to the incident light. For optical intensity fluctuations, a 40 mVpp triangular modulation at 1 Hz was applied to the AOM,generating a 5%variation of optical intensity,resulting inI0varying from 6.2 mW/cm2to 6.51 mW/cm2periodically. For optical frequency fluctuations, by controlling the piezoelectric transducer(PZT)voltage inside the ECDL,the incident optical frequency was varied atν389.2886 THz±15 GHz.Additionally,a 100 pT sinusoidal calibration magnetic field at 31 Hz was applied along they-axis, and the corresponding peak-to-peak amplitude in the response signal was extracted to evaluate the signal stability under optical intensity and frequency fluctuations.

    4. Results and discussion

    4.1. Dynamic range and linearity

    As shown in Fig.2,the first and second harmonic signalsVωandV2ωextracted from the lock-in amplifier were illustrated with black and blue lines. The modification response in Fig. 2 with the red line referred to the response signal calculated through our modification method as indicated in Eq.(10).By adjusting the voltage gain factorG1andG2,the modification response was made consistently with the first harmonic response to the same magnetic fieldBy0.

    Fig.2. The first harmonic(black line)and second harmonic(blue line)responses of the magnetic field By0 and the modification response(red line)calculated from Eq.(10). The shaded areas of the curves indicated multiple measurement errors.

    Referring to the study by Reaet al.,[26]the dynamic range of the atomic magnetometer was defined as the measurement range where the linearity error was less than 5%. As shown in Fig.3(a)with the shaded region,the calibrated first harmonic response showed the dynamic range of 2 nT,while the modification response remained a linear response over the range of 10 nT.

    Fig. 3. (a) Calibrated response of conventional first harmonic (black line) and modification response (red line); (b) linearity error of both conventional model(black line)and modification model(red line); inset: linearity error within 10 nT range with y-axis in logarithmic scale.

    Figure 3(b)demonstrated the linearity errorδLcomparison of the first harmonicVωand modification responseVMOD.It was apparent that the linearity error of the first harmonic response increased rapidly when the magnetic field exceeded its dynamic range of 2 nT, while the modification response maintained its linearity within 10 nT. Notably, the modification response showed a relatively small linearity error within the dynamic range of 10 nT,givingδL<1%as shown in the inset.

    4.2. Response signal stability

    The proposed modification responseVMODshowed the suppression of response instability induced by optical intensityI0and frequencyνfluctuations as indicated in Eq. (12).Firstly, the response signal stability was investigated by applying artificial fluctuations on optical intensity.As indicated in Fig. 4, the first harmonic and modification responses were recorded with black and red lines,against the variation of 5%in optical intensity with the blue line. It was seen from the figure that the instability of the first harmonic influenced by optical intensity fluctuations was suppressed in our modification method, which gave a stable response signal as shown with the red line.

    Fig.4. First harmonic(black line)and the modification response curves(red line)to 100 pT sinusoidal magnetic field at 31 Hz under the 5%optical intensity fluctuations(blue line).

    Fig.5.Linearity error of the first harmonic response(red line)and modification response(black line)induced by optical intensity fluctuations calculated by Eq.(13).

    Moreover, the linearity error was taken to quantify the suppression of optical intensity fluctuations. The peak-topeak amplitude of the response signal in a period was taken asSresponsefor both first harmonicVωand modification responseVMODandSsignalwas the averaged peak-to-peak amplitude ofVωandVMODduring the measurement time, respectively. As shown in Fig. 5, the first harmonic response suffered a 15%variation and showed a trend consistent with optical intensity fluctuations. As a comparison, the linearity error of modification response was maintained lower than 1%, independent from the influence of optical intensity fluctuations.

    Fig. 6. Modulation on the incident optical frequency with 1 Hz triangular wave(black line)and the accompanied optical intensity noise(red line).

    Fig.7. First harmonic response(black line)and the modification response(red line)to the 100 pT sinusoidal magnetic field at 31 Hz under the influence of the optical frequency fluctuations at±15 GHz(blue line).

    Moreover,the influence of optical frequency fluctuations on the response signal was studied. By controlling the PZT voltage inside the ECDL,a linear optical frequency variation of 389.2886 THz±15 GHz was obtained, accompanied by undesired optical intensity noise,as shown in Fig.6. The unexpected optical intensity fluctuations were caused by the limitation of the ECDL,but they would not have fatal impacts on subsequent analysis.

    As shown in Fig. 7, with the combined influence of optical frequency and intensity fluctuations, the first harmonic responseVωchanged significantly while the modification responseVMODshowed slight variations. The linearity errorδLof the first harmonic response varied 38% under the optical frequency fluctuations,as demonstrated in Fig.8. On the contrary,the modification response maintained a level of 8%under the combined effects of optical intensity and frequency variations. In addition, the asymmetry of the linearity error between±15 GHz frequency detuning in Fig.8 was because the magnetometer worked with the slight frequency detuning(about 7 GHz redshift in our experiment)for the optimal performance.

    Fig.8. First harmonic(red line)and modification(black line)linearity error caused by optical frequency variation.

    Finally,the noise spectral density averaged for 2 minutes of both the first harmonicVω(in red line) and the modification responseVMOD(in red dashed line)was shown in Fig.9.As seen, the noise spectral density of the proposed modification response was 8 fT/Hz1/2, which may be limited by the magnetic noise of the magnetic shield,[35]consistently with the first harmonic response signal.

    Fig.9.Noise spectral densities of the conventional response and our modification method.The peak at 31 Hz was the calibration signal we applied,the peak at 50 Hz Hz was the power frequency of the environment, and the blue line was a fit to the atomic magnetometer noise floor.

    5. Conclusion

    In this study, we develop a comprehensive response model for magnetic field measurement in zero-field singlebeam atomic magnetometer. Then the modification method for magnetometer’s response that introduces the second harmonic correction is proposed, which is advantageous in dynamic range expansion,linearity error reduction,and response signal stability. The experiments showed that the dynamic range was expanded to 10 nT, 5-fold larger than 2 nT in the conventional method. Furthermore, the linearity error of the proposed method was maintained at 1%in the dynamic range,five times lower than the first harmonic response. In addition,when optical intensity fluctuated at 5%and frequency detuned between±15 GHz, the response signal was maintained at intensity-related bias less than 1%and frequency-related bias less than 8%, whereas the conventional method suffers instability of 15%and 38%,respectively.

    Additionally,the modified response is as sensitive as the first harmonic signal, ensuring high-sensitive and accurate magnetic field measurement. Furthermore, our modification method operated in real-time without introducing extra interferences to the environment,which is advantageous for the applications of MEG and MCG,where sensor arrays are utilized.

    Acknowledgements

    The authors would like to give special thanks to Feifan Tan for her encouragement.

    Project supported by the National Key R&D Program of China(Grant No.2018YFB2002405)and the National Natural Science Foundation of China(Grant No.61903013).

    猜你喜歡
    周斌葉茂李博
    Higher-order topological Anderson insulator on the Sierpi′nski lattice
    BIFURCATION CONTROL FOR A FRACTIONAL-ORDER DELAYED SEIR RUMOR SPREADING MODEL WITH INCOMMENSURATE ORDERS?
    楊國珍
    周斌書法作品欣賞
    LabVIEW下通信原理實驗教改探討
    根深才會葉茂源遠(yuǎn)方能流長
    尋根(2020年1期)2020-04-07 03:44:34
    Dynamic Modeling of Variable Stiffness and Damping for Spatial Linkage Weft Insertion Mechanism with Clearance
    遼寧法庫葉茂臺七號遼墓的年代及墓主身份
    Muelleria pseudogibbula, a new species from a newly recorded genus (Bacillariophyceae) in China*
    Harry Potter 哈利·波特
    国产亚洲欧美精品永久| 丁香六月天网| 国语对白做爰xxxⅹ性视频网站| 亚洲一码二码三码区别大吗| 国产成人欧美| 一区在线观看完整版| 热99国产精品久久久久久7| 欧美xxⅹ黑人| 久久久久久人妻| 最近中文字幕高清免费大全6| 日本色播在线视频| 午夜福利,免费看| 老司机靠b影院| 亚洲精品久久午夜乱码| 日韩大码丰满熟妇| 亚洲人成网站在线观看播放| 国产精品国产三级国产专区5o| 国产视频首页在线观看| 婷婷色麻豆天堂久久| 宅男免费午夜| 最近的中文字幕免费完整| 中文精品一卡2卡3卡4更新| 一级片免费观看大全| 免费在线观看完整版高清| 晚上一个人看的免费电影| 中文字幕精品免费在线观看视频| 亚洲国产中文字幕在线视频| 日韩av不卡免费在线播放| 免费看不卡的av| 精品国产超薄肉色丝袜足j| 好男人视频免费观看在线| 亚洲成国产人片在线观看| 悠悠久久av| 91精品国产国语对白视频| 亚洲美女黄色视频免费看| 欧美激情极品国产一区二区三区| 女人被躁到高潮嗷嗷叫费观| 久久精品亚洲熟妇少妇任你| 又大又黄又爽视频免费| 久久久国产欧美日韩av| 国产精品久久久久久精品电影小说| 免费人妻精品一区二区三区视频| 亚洲少妇的诱惑av| 久久国产亚洲av麻豆专区| av片东京热男人的天堂| 大话2 男鬼变身卡| 少妇精品久久久久久久| 一边摸一边做爽爽视频免费| 久久久久精品国产欧美久久久 | 精品人妻一区二区三区麻豆| 国产老妇伦熟女老妇高清| 亚洲精品久久午夜乱码| 少妇人妻 视频| 黄频高清免费视频| 另类亚洲欧美激情| 一区二区日韩欧美中文字幕| www.自偷自拍.com| 婷婷色综合www| 国产亚洲午夜精品一区二区久久| 两性夫妻黄色片| 波野结衣二区三区在线| 国产一区有黄有色的免费视频| 亚洲综合精品二区| 亚洲精品国产色婷婷电影| 亚洲av男天堂| 亚洲一码二码三码区别大吗| 亚洲在久久综合| 国产亚洲精品第一综合不卡| 亚洲欧美日韩另类电影网站| 我要看黄色一级片免费的| 欧美国产精品一级二级三级| 亚洲伊人久久精品综合| 日韩精品有码人妻一区| 精品福利永久在线观看| 国产免费现黄频在线看| 日韩视频在线欧美| 人人妻,人人澡人人爽秒播 | 久久99一区二区三区| 高清视频免费观看一区二区| 国产在线一区二区三区精| 水蜜桃什么品种好| 久久97久久精品| xxx大片免费视频| 母亲3免费完整高清在线观看| 久久av网站| 999精品在线视频| netflix在线观看网站| 国产片内射在线| 国产欧美日韩综合在线一区二区| 看免费成人av毛片| 亚洲图色成人| 中文乱码字字幕精品一区二区三区| 伦理电影免费视频| 国产精品偷伦视频观看了| 天天添夜夜摸| 亚洲,欧美,日韩| 丝袜喷水一区| 在线免费观看不下载黄p国产| 久久国产亚洲av麻豆专区| 男女国产视频网站| 大片电影免费在线观看免费| 亚洲av成人精品一二三区| 天天躁夜夜躁狠狠久久av| 男女免费视频国产| 大话2 男鬼变身卡| 久久久国产精品麻豆| 精品少妇黑人巨大在线播放| av视频免费观看在线观看| av线在线观看网站| 中文字幕精品免费在线观看视频| 亚洲情色 制服丝袜| 国产精品 欧美亚洲| 国产亚洲欧美精品永久| 亚洲成国产人片在线观看| 日本wwww免费看| 青草久久国产| 亚洲国产av影院在线观看| 欧美中文综合在线视频| 国产1区2区3区精品| 青青草视频在线视频观看| 久久精品久久精品一区二区三区| 日韩欧美精品免费久久| 亚洲成人一二三区av| kizo精华| 青草久久国产| 毛片一级片免费看久久久久| 精品人妻一区二区三区麻豆| 久久99一区二区三区| 国产人伦9x9x在线观看| 超碰97精品在线观看| 国产在线免费精品| 精品一区二区免费观看| 又黄又粗又硬又大视频| 美女午夜性视频免费| 久久免费观看电影| 两个人看的免费小视频| 久久久久久久国产电影| 国产av精品麻豆| 2018国产大陆天天弄谢| 亚洲精品成人av观看孕妇| 欧美黑人欧美精品刺激| 视频区图区小说| 午夜福利影视在线免费观看| 巨乳人妻的诱惑在线观看| av网站免费在线观看视频| 国产精品女同一区二区软件| 亚洲精品国产av蜜桃| 欧美日韩一区二区视频在线观看视频在线| 高清av免费在线| 在线观看www视频免费| 黄色一级大片看看| 一本—道久久a久久精品蜜桃钙片| 亚洲国产精品成人久久小说| 亚洲精华国产精华液的使用体验| 亚洲熟女精品中文字幕| av卡一久久| 国产成人系列免费观看| 满18在线观看网站| 久久久精品94久久精品| 亚洲成人一二三区av| 国产高清不卡午夜福利| 色综合欧美亚洲国产小说| 激情视频va一区二区三区| 大香蕉久久网| 国产成人欧美在线观看 | 欧美97在线视频| 18在线观看网站| 中文字幕av电影在线播放| 国产野战对白在线观看| 久久99一区二区三区| 两个人看的免费小视频| 精品亚洲乱码少妇综合久久| 人成视频在线观看免费观看| 亚洲精品久久午夜乱码| 91成人精品电影| 天天躁夜夜躁狠狠久久av| 啦啦啦中文免费视频观看日本| 波多野结衣av一区二区av| 久久天躁狠狠躁夜夜2o2o | 亚洲美女搞黄在线观看| 亚洲第一区二区三区不卡| 中国国产av一级| 人人妻,人人澡人人爽秒播 | 日韩伦理黄色片| 一本大道久久a久久精品| 赤兔流量卡办理| 成人国产麻豆网| 国产精品熟女久久久久浪| 亚洲男人天堂网一区| 一级毛片 在线播放| 国产精品99久久99久久久不卡 | 日韩免费高清中文字幕av| 国产又色又爽无遮挡免| 免费在线观看黄色视频的| 成年人午夜在线观看视频| 不卡视频在线观看欧美| 日韩中文字幕视频在线看片| 一边摸一边做爽爽视频免费| 午夜福利在线免费观看网站| 欧美少妇被猛烈插入视频| 欧美成人精品欧美一级黄| 大话2 男鬼变身卡| 黄色怎么调成土黄色| 丁香六月天网| 在线观看免费日韩欧美大片| netflix在线观看网站| 热99久久久久精品小说推荐| 日韩精品有码人妻一区| 777久久人妻少妇嫩草av网站| 19禁男女啪啪无遮挡网站| 国产亚洲欧美精品永久| 亚洲国产成人一精品久久久| 纵有疾风起免费观看全集完整版| 啦啦啦在线免费观看视频4| 日韩 欧美 亚洲 中文字幕| 亚洲熟女精品中文字幕| 99久国产av精品国产电影| 国产成人一区二区在线| 成年女人毛片免费观看观看9 | 91成人精品电影| 大香蕉久久成人网| 一本大道久久a久久精品| 高清视频免费观看一区二区| 18禁裸乳无遮挡动漫免费视频| 久久精品久久久久久久性| 免费观看人在逋| 国产成人av激情在线播放| 久久精品国产a三级三级三级| 亚洲av中文av极速乱| 天天躁日日躁夜夜躁夜夜| 1024香蕉在线观看| 色婷婷av一区二区三区视频| 亚洲五月色婷婷综合| 午夜福利在线免费观看网站| 国产日韩一区二区三区精品不卡| 97在线人人人人妻| 成人手机av| www日本在线高清视频| 国产探花极品一区二区| 熟女少妇亚洲综合色aaa.| 久久久久久人人人人人| 欧美在线一区亚洲| 亚洲成人手机| 久久亚洲国产成人精品v| 国产97色在线日韩免费| 国产亚洲一区二区精品| 一级毛片黄色毛片免费观看视频| 观看美女的网站| 国产又爽黄色视频| 人人妻人人澡人人看| 97人妻天天添夜夜摸| 久久久国产精品麻豆| 中国国产av一级| 搡老岳熟女国产| av免费观看日本| a级毛片黄视频| 人人妻人人澡人人爽人人夜夜| 国产精品偷伦视频观看了| av电影中文网址| 两个人免费观看高清视频| 99热网站在线观看| 在线观看www视频免费| 国产福利在线免费观看视频| 日日爽夜夜爽网站| 久热这里只有精品99| 日韩制服骚丝袜av| 亚洲精品国产区一区二| 欧美在线一区亚洲| 欧美日韩国产mv在线观看视频| 久久亚洲国产成人精品v| 亚洲综合色网址| 久久精品国产a三级三级三级| 黄片无遮挡物在线观看| 国产老妇伦熟女老妇高清| 欧美最新免费一区二区三区| 人人澡人人妻人| 国产xxxxx性猛交| 免费在线观看黄色视频的| 日韩一区二区三区影片| 高清黄色对白视频在线免费看| 久久国产亚洲av麻豆专区| 熟女av电影| 大片电影免费在线观看免费| 精品亚洲乱码少妇综合久久| 哪个播放器可以免费观看大片| 狂野欧美激情性bbbbbb| 中文字幕人妻丝袜制服| av在线播放精品| 18禁国产床啪视频网站| 国产精品免费大片| av在线app专区| 最黄视频免费看| 一级黄片播放器| 国产福利在线免费观看视频| 咕卡用的链子| 亚洲精品美女久久av网站| 中文字幕最新亚洲高清| 男女无遮挡免费网站观看| e午夜精品久久久久久久| 美女视频免费永久观看网站| 婷婷色麻豆天堂久久| 女性被躁到高潮视频| av有码第一页| 校园人妻丝袜中文字幕| 1024香蕉在线观看| 欧美中文综合在线视频| 国产又爽黄色视频| 最新在线观看一区二区三区 | 久久国产精品男人的天堂亚洲| 日韩精品有码人妻一区| 黄色 视频免费看| 亚洲激情五月婷婷啪啪| 成年人午夜在线观看视频| 精品国产露脸久久av麻豆| 少妇猛男粗大的猛烈进出视频| 欧美激情 高清一区二区三区| 国产成人啪精品午夜网站| videos熟女内射| 少妇被粗大猛烈的视频| 黄网站色视频无遮挡免费观看| 亚洲精品aⅴ在线观看| 日韩欧美精品免费久久| videosex国产| 亚洲精品av麻豆狂野| 男女床上黄色一级片免费看| 国产高清国产精品国产三级| 精品视频人人做人人爽| 亚洲国产欧美在线一区| 亚洲少妇的诱惑av| 午夜老司机福利片| 在线亚洲精品国产二区图片欧美| 亚洲色图 男人天堂 中文字幕| 久热爱精品视频在线9| 大话2 男鬼变身卡| 欧美 亚洲 国产 日韩一| 亚洲av电影在线进入| 一二三四中文在线观看免费高清| 国产精品二区激情视频| 国产视频首页在线观看| 考比视频在线观看| 国产精品免费大片| 久久狼人影院| 国产精品人妻久久久影院| 丁香六月天网| 亚洲av男天堂| 女人高潮潮喷娇喘18禁视频| 少妇被粗大猛烈的视频| 老司机亚洲免费影院| 精品酒店卫生间| 亚洲情色 制服丝袜| 精品人妻一区二区三区麻豆| 只有这里有精品99| 日韩一区二区三区影片| 又大又爽又粗| 日韩 亚洲 欧美在线| 男的添女的下面高潮视频| 亚洲四区av| 天堂中文最新版在线下载| 中文字幕精品免费在线观看视频| 你懂的网址亚洲精品在线观看| 人妻人人澡人人爽人人| 国产高清不卡午夜福利| 午夜91福利影院| 国产免费现黄频在线看| 大片免费播放器 马上看| 午夜福利免费观看在线| 亚洲婷婷狠狠爱综合网| 夫妻性生交免费视频一级片| 99九九在线精品视频| 久久久国产精品麻豆| 精品少妇内射三级| 性高湖久久久久久久久免费观看| 国产av国产精品国产| 19禁男女啪啪无遮挡网站| 高清不卡的av网站| 国产欧美亚洲国产| 中文字幕av电影在线播放| 国产一区二区激情短视频 | 在线观看国产h片| 国产午夜精品一二区理论片| 国产精品 欧美亚洲| 国产av一区二区精品久久| 一级毛片电影观看| 赤兔流量卡办理| 国产人伦9x9x在线观看| 免费在线观看完整版高清| 9色porny在线观看| 国产探花极品一区二区| 啦啦啦视频在线资源免费观看| 欧美激情极品国产一区二区三区| 少妇猛男粗大的猛烈进出视频| 看十八女毛片水多多多| 国产免费一区二区三区四区乱码| 精品国产一区二区三区久久久樱花| 国语对白做爰xxxⅹ性视频网站| 国产有黄有色有爽视频| 热99国产精品久久久久久7| 国产福利在线免费观看视频| 欧美日韩精品网址| a级毛片在线看网站| 九色亚洲精品在线播放| 男女边摸边吃奶| 一边摸一边做爽爽视频免费| 欧美精品一区二区免费开放| 欧美 日韩 精品 国产| 久久精品久久久久久噜噜老黄| 黑人巨大精品欧美一区二区蜜桃| 国产精品秋霞免费鲁丝片| 丝瓜视频免费看黄片| 精品一区二区三区四区五区乱码 | 久久精品aⅴ一区二区三区四区| 久久久精品94久久精品| 久久av网站| 免费观看性生交大片5| 美女高潮到喷水免费观看| 国产免费视频播放在线视频| 黑丝袜美女国产一区| 我要看黄色一级片免费的| 久久99一区二区三区| 国产精品一区二区精品视频观看| 亚洲人成电影观看| 亚洲国产欧美日韩在线播放| 亚洲av成人精品一二三区| 新久久久久国产一级毛片| 可以免费在线观看a视频的电影网站 | 国产成人午夜福利电影在线观看| 久久人人爽av亚洲精品天堂| 伦理电影大哥的女人| 中文字幕高清在线视频| 欧美日韩一区二区视频在线观看视频在线| 国产片特级美女逼逼视频| 亚洲精品自拍成人| 性色av一级| 免费观看a级毛片全部| 九九爱精品视频在线观看| 十分钟在线观看高清视频www| 青春草视频在线免费观看| 亚洲欧洲精品一区二区精品久久久 | 丝袜人妻中文字幕| 亚洲精品在线美女| 视频区图区小说| 久久久国产欧美日韩av| av片东京热男人的天堂| 青春草视频在线免费观看| 亚洲精品国产色婷婷电影| 亚洲久久久国产精品| av天堂久久9| 久久鲁丝午夜福利片| 久久韩国三级中文字幕| 免费观看av网站的网址| av在线播放精品| 国产成人午夜福利电影在线观看| 亚洲,一卡二卡三卡| 波野结衣二区三区在线| 久久精品亚洲熟妇少妇任你| 视频在线观看一区二区三区| 老司机靠b影院| 日本vs欧美在线观看视频| 少妇精品久久久久久久| 国产高清国产精品国产三级| 亚洲视频免费观看视频| 少妇猛男粗大的猛烈进出视频| 一级毛片黄色毛片免费观看视频| 一级a爱视频在线免费观看| 又大又爽又粗| 亚洲精品国产av蜜桃| 一本—道久久a久久精品蜜桃钙片| 午夜福利乱码中文字幕| 久久99热这里只频精品6学生| 久久久国产精品麻豆| av国产久精品久网站免费入址| 精品免费久久久久久久清纯 | 另类亚洲欧美激情| 日本爱情动作片www.在线观看| 欧美日韩综合久久久久久| 亚洲一区中文字幕在线| 制服诱惑二区| 97在线人人人人妻| 丰满乱子伦码专区| 亚洲精品美女久久av网站| 一二三四中文在线观看免费高清| 在线看a的网站| 久久精品亚洲熟妇少妇任你| 91国产中文字幕| 国产在线一区二区三区精| 日韩av免费高清视频| 人人妻人人爽人人添夜夜欢视频| 亚洲欧美一区二区三区久久| 日韩av在线免费看完整版不卡| 晚上一个人看的免费电影| 色吧在线观看| 国产精品久久久人人做人人爽| 久久97久久精品| 精品免费久久久久久久清纯 | 久久av网站| 国产免费一区二区三区四区乱码| 久久久亚洲精品成人影院| 最近2019中文字幕mv第一页| 精品国产乱码久久久久久小说| 午夜影院在线不卡| 91老司机精品| 精品国产乱码久久久久久男人| 免费黄色在线免费观看| 亚洲美女视频黄频| 久热这里只有精品99| 久久97久久精品| 国产成人精品久久久久久| 韩国高清视频一区二区三区| 女人精品久久久久毛片| 亚洲欧美成人精品一区二区| 99九九在线精品视频| 日韩av不卡免费在线播放| 午夜精品国产一区二区电影| 日韩av免费高清视频| 欧美日本中文国产一区发布| 中文字幕精品免费在线观看视频| 成人手机av| 91成人精品电影| 久久久久人妻精品一区果冻| 最近中文字幕2019免费版| 成年人午夜在线观看视频| 波多野结衣一区麻豆| 在线观看人妻少妇| 国产精品女同一区二区软件| 中文字幕人妻丝袜制服| 啦啦啦啦在线视频资源| 十分钟在线观看高清视频www| 18禁国产床啪视频网站| 一区二区三区乱码不卡18| 国产精品国产三级专区第一集| 亚洲精品一区蜜桃| 国产高清国产精品国产三级| 99国产综合亚洲精品| 一二三四在线观看免费中文在| 欧美日韩福利视频一区二区| 精品一区二区三卡| 日本av手机在线免费观看| 亚洲欧美精品自产自拍| 久久久久久免费高清国产稀缺| 日韩一卡2卡3卡4卡2021年| 国产又色又爽无遮挡免| 咕卡用的链子| 成人手机av| 国产精品久久久av美女十八| 最近中文字幕高清免费大全6| 国产成人精品久久久久久| 丝袜在线中文字幕| 熟女少妇亚洲综合色aaa.| 精品酒店卫生间| 777久久人妻少妇嫩草av网站| 日本一区二区免费在线视频| 日韩精品免费视频一区二区三区| 色视频在线一区二区三区| 亚洲七黄色美女视频| 女人被躁到高潮嗷嗷叫费观| 欧美中文综合在线视频| 欧美最新免费一区二区三区| 国产乱来视频区| 国产精品亚洲av一区麻豆 | 日韩欧美精品免费久久| 十八禁人妻一区二区| 无遮挡黄片免费观看| 两个人看的免费小视频| 国产免费福利视频在线观看| 在线亚洲精品国产二区图片欧美| 免费av中文字幕在线| 久久久久久久久久久免费av| 久久人人爽人人片av| 日韩大片免费观看网站| 久久久久精品人妻al黑| 亚洲精品日本国产第一区| 久久精品久久久久久噜噜老黄| 80岁老熟妇乱子伦牲交| 女人爽到高潮嗷嗷叫在线视频| 两性夫妻黄色片| 日韩 欧美 亚洲 中文字幕| 在线观看免费高清a一片| 这个男人来自地球电影免费观看 | 国产高清国产精品国产三级| 中文字幕人妻丝袜制服| 久久久久久久大尺度免费视频| 国产精品 欧美亚洲| 精品国产一区二区三区久久久樱花| 激情视频va一区二区三区| 啦啦啦在线观看免费高清www| 女性生殖器流出的白浆| 国产乱来视频区| 精品午夜福利在线看| 女性生殖器流出的白浆| 国产精品国产三级国产专区5o| 成年女人毛片免费观看观看9 | 国产免费福利视频在线观看| 狠狠精品人妻久久久久久综合| 精品一区在线观看国产| 国产av精品麻豆| 国产成人欧美| 久久久精品94久久精品| 香蕉丝袜av| 美女视频免费永久观看网站| 欧美国产精品一级二级三级| 欧美日韩亚洲综合一区二区三区_| 久久久久久免费高清国产稀缺| 美女扒开内裤让男人捅视频| 成人亚洲精品一区在线观看| 在线观看www视频免费| 日韩av免费高清视频| 天天添夜夜摸| 亚洲国产欧美日韩在线播放| 男女国产视频网站| 欧美xxⅹ黑人| 韩国精品一区二区三区| 天堂8中文在线网| 亚洲国产欧美一区二区综合| 无遮挡黄片免费观看| 国产成人免费无遮挡视频|