• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    BIFURCATION CONTROL FOR A FRACTIONAL-ORDER DELAYED SEIR RUMOR SPREADING MODEL WITH INCOMMENSURATE ORDERS?

    2023-12-14 13:07:04葉茂林蔣海軍
    關(guān)鍵詞:葉茂海軍

    (葉茂林) (蔣海軍)

    College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China

    E-mail: 1733981567@stu.xju.edu.cn; jianghaijunxju@163.com

    Abstract A fractional-order delayed SEIR rumor spreading model with a nonlinear incidence function is established in this paper,and a novel strategy to control the bifurcation of this model is proposed.First,Hopf bifurcation is investigated by considering time delay as bifurcation parameter for the system without a feedback controller.Then,a state feedback controller is designed to control the occurrence of bifurcation in advance or to delay it by changing the parameters of the controller.Finally,in order to verify the theoretical results,some numerical simulations are given.

    Key words rumor spreading;fractional-order;time delay;bifurcation control

    1 Introduction

    A rumor is an unsubstantiated exposition or interpretation of a matter,event or issue which the public are interested in spreading through various channels.Nowadays,with the rapid development of science and technology,online social media platforms bring great convenience,but also have accelerated the spread of rumors in social media networks.The form of rumor transmission has changed from the traditional word of mouth to various online social platforms such as Twitter,WeChat,Weibo,etc..Rumors can have a great impact on people’s daily life and on social order [1–3].For example,the report that shuanghuanglian oral liquid could effectively suppress the spread of COVID-19 caused a panic buying phenomenon and resulted in the shortage of drugstores.However,shuanghuanglian oral liquid can only be used to clear heat and for detoxify,and further clinical data are needed to determine whether it can actually effectively suppress COVID-19.This event demonstrates that it is of great practical significance to study the dynamics of rumor propagation in social networks.

    Research on the dynamics of rumor propagation dates back to the 1960s.In [4,5],the classic DK model was proposed by Daley and Kendall.It divided the population into three categories–ignorant,spreader and removed– and it used numerical methods similar to those used in the study of infectious diseases to understand the process through which rumors spread.After Daley and Kendall,Maki and Thomson,in 1973,improved the DK model and established the MK model [6].Based on that researches,various compartment models have appeared and been widely used in the study of the rumor propagation process;these include SIR [7,8],SEIR [9],ILSCR [10],etc..In recent years,researchers have continued to improve the rumor propagation model.Wanget al.established a SIR rumor propagation model considering the cross-propagation mechanism in a multi-language environment,then conducted global dynamics analysis and sensitivity analysis on the model [11].Liet al.conducted stability analysis and a sensitivity analysis for the I2S2R rumor propagation model in heterogeneous networks [12].Afassinou analyzed the influence of the education level of social media users on rumor spreading mechanisms [13].

    Time delay is a factor that cannot be ignored with regard to rumor propagation;it can be used to help simulate the process by which rumors spread and the process by which governments and social media platforms educate rumor propagators in order to stop spreading rumors[14–17].Functional differential equations provide a dynamic system with infinite dimensions in essence,and the slight change of system parameters may cause a change of equilibrium stability.When the parameters exceed a certain critical value,a branch of periodic orbits can be separated from the equilibrium point and the Hopf bifurcation phenomenon can be generated.For functional differential equations,the delay is generally taken as a parameter,and the condition of bifurcation is considered when the delay changes.In the field of rumor propagation research,Ankuret al.considered the double time delay caused by expert intervention and government control measures and established the 2SI rumor propagation model,and the critical value of expert intervention delay and Hopf bifurcation conditions were obtained through calculation[18].Wanget al.established the I2S2R rumor propagation model with a time delay in a multi-language environment,and obtained the bifurcation conditions of the system [19].

    Bifurcation control has become more and more popular in recent years.The purpose of a bifurcation controller is to change the dynamic properties of the original solution of the system by considering a control criterion.Various controllers are designed to control the dynamic behavior of systems;these include the Proportional-Derivative feedback controller [20],the state feedback controller [21]and so on.Chenget al.established a complex network model with time delays,then performed bifurcation analysis on the model and proposed a hybrid control strategy in [22].

    Fractional calculus after referred to as generalized calculus or arbitrary calculus is a generalization of integral calculus and has a short-term memory effect and a genetic effect.Fractional differential equations have been used in a wide range of fields[23–26],and mainly includes analysis and synthesis of fractional dynamic systems.Wanget al.established a fraction-order delay SIR epidemic model with saturation incidence and recovery functions and then analyzed the stability of the disease-free equilibrium and disease-prevalence equilibrium of the system[27].In recent years,some scholars considered adding controllers to control the bifurcation that occurrs in fractional systems with a time delay;these include the state feedback controller [28]and the fractional PD controller [29].The influence of a memory effect on information transmission process was considered in [30,37],where it can be seen that multiple redundant contacts of the same rumor will change people’s initial thoughts regarding it,and the cumulative effect will impact upon the behavior of individuals in social networks.Due to the memory effect of fractional calculus,the rumor propagation process can be analyzed accurately by studying the rumor propagation process with fractional calculus.In [38],Singh established a SIR rumor spreading model in a social network with the Atangana-Baleanu derivative:

    At the same time,the dynamic behavior of the model was studied.Renet al.investigated a stochastic SIR model in the sense of Caputo’s fractional derivative for rumor spreading in social networks:

    The stability of the given model’s equilibrium point was studied in [39].However,fractional differential equations have rarely been used in the study of rumor propagation,which has fended to mainly focus on the application of the SIR rumor model.Based on the above work,combining the nonlinear function and time delay,we establish a fraction-order SEIR rumor model in a homogeneous network and add a feedback controller to control the occurrence of bifurcation in advance or delay by changing the parameters of the controller.

    The rest of this article is arranged as follows: in Section 2,some preparations related to fractional equations are introduced.In Section 3,a fraction-order SEIR rumor spreading model is proposed.In Section 4,bifurcation conditions for the uncontrolled system and the controlled system are obtained.Two numerical simulation examples are illustrated in Section 5 in order to verify the theoretical results.In Section 6,a brief summary of the whole paper is presented.

    2 Preliminaries

    In this section,some preparations related to fractional differential equations are given.

    Definition 2.1([31]) The Caputo fractional derivative of orderαof a functionf(x) is defined as

    wherenis the positive integer andn-1<α

    Lemma 2.2([32]) Consider the followingn-dimensional linear fractional differential system with multiple time delays:

    Hereqiis real and lies in(0,1),the initial valuesxi=φi(t)are given for-maxi,j τij=-τmax≤t ≤0 andi=1,2,···,n.In this system,the time-delay matrix isT=(τij)n×n ∈(R+)n×n,the coefficient matrix isA=(aij)n×n,the state variables arexi(t),xi(t-τij)∈R,and initial values areφi(t)∈C0[-τmax,0].Then,the characteristic matrix of system (2.1) can be presented:

    Lemma 2.3([32]) Suppose thatτij=0 and that allqisare rational numbers between 0 and 1 fori,j=1,···,n.LetMbe the lowest common multiple of the denominatorsuisofqis,where,(ui,vi)=1,ui,vi ∈Z+,i=1,···,n.Then the zero solution of system (2.1)is Lyapunov globally asymptotically stable if of all the rootsλsof the equation

    3 Description of the Rumor Spreading Model

    We establish the following fractional-order (0<α1,α2,α3,α4<1) rumor propagation model and study the Hopf bifurcation of the model with time delay:

    Here we have the initial conditions

    (H1)〈k〉A(chǔ)βδ-u(δ+u)(θ+u)>0.

    By using (H1),system (3.1) has a rumor-spreading equilibriumP?(S?,E?,I?,R?),where

    4 Main Result

    In this section,the Hopf bifurcation of system (3.1) atP?is studied;hereτis chosen as a bifurcation parameter,and the bifurcation point is identified.Then,after the controller is added to the original system,τis still selected as the bifurcation parameter and a new bifurcation point is obtained.

    4.1 Bifurcation Induced by τ of the Uncontrolled System (3.1)

    In this subsection,τis chosen as the bifurcation parameter that is used to find the bifurcation point of system (3.1) and to get the conditions of the Hopf bifurcation.

    By applying Lemma 2.2,the characteristic matrix of system (4.2) at (0,0,0) is expressed as follows:

    Whenτ=0,the characteristic equation of system (4.2) can be written as

    From Lemma 2.3,the zero solution of system (4.2) is asymptotically stable when all of solutionλiof the above equation satisfies the condition

    Whenτ>0,the characteristic equation that corresponds to system (4.2) is

    Multiplying both sides of eq.(4.3) by eλτ,we have that

    where Re[mj(iω1)]is the real part ofmj(iω1) and Im[mj(iω1)]is the imaginary part ofmj(iω1)(j=1,2,3).Furthermore,

    By eq.(4.5),we obtain

    Squaring both sides of eq.(4.6),we have that

    Define the bifurcation point

    whereτ0(k)is defined by eq.(4.8).

    Remark 4.1In the same way with eq.(4.8),we can also choose the second equation of eq.(4.7) to calculateτ0(k).

    The following assumption is made to obtain our main results:

    Here Re[ρ1(iω0)],Im[ρ1(iω0)],Re[υ1(iω0)],Im[υ1(iω0)]are mentioned in eq.(4.10).

    Lemma 4.2Letλ(τ)=ξ(τ)+iω1(τ) be the root of eq.(4.4) nearτ=τ0satisfying thatξ(τ0)=0,ω1(τ0)=ω0.Then the following condition holds:

    ProofDifferentiate both sides of eq.(4.4) with respect toτ.Then we get that

    As a result,

    where

    It is deduced from eq.(4.9) that

    where Re[ρ1(iω0)],Im[ρ1(iω0)]are the real and imaginary parts,respectively,ofρ1(iω0).Re[υ1(iω0)],Im[υ1(iω0)]are the real and imaginary parts,respectively,ofυ1(iω0).Furthermore,

    Applying (H2) completes the proof.

    According to Lemmas 2.2 and 2.3,the following results can be obtained:

    Theorem 4.3Under (H1) and (H2),we have that

    (1) the equilibriumP?of system (3.1) is asymptotically stable whenτ ∈[0,τ0);

    (2) the equilibriumP?of system (3.1) is unstable whenτ ∈[τ0,+∞).Furthermore,the uncontrolled system (3.1) undergoes a Hopf bifurcation atP?whenτ=τ0.

    Remark 4.4The stability definition in the Lyapunov sense shows that for linear systems,if the equilibrium is asymptotically stable,then it must be globally asymptotically stable.However,asymptotic stability is not globally asymptotic stability for nonlinear systems.Furthermore,it can be seen that system (3.1) is locally asymptotically stable in the Lyapunov sense whenτ ∈[0,τ0).

    4.2 Bifurcation Induced by τ of the Controlled System

    In recent years,bifurcation control has become a hot research topic.Feedback controllers are used in many fractional systems.In [28],Wanget al.established the following fractional order eco-epidemiological system

    Here,a feedback controllerμ(t)=h[I(t)-I(t-ν)]is designed to control the bifurcation behavior of the system with time delayτas the bifurcation parameter.Similarly,Huanget al.established the fractional predator-prey system in [40]:

    At the same time,an effective extended feedback controlleru(t)=K[x1(t)-x1(t-σ)]can be designed for the above system for controlling the creation of bifurcation.In the field of rumor propagation,Huanget al.established following delay reaction-diffusion malware propagation model in [41]

    Furthermore,a state feedback controlleru(t)=-k1(I-I?)-k2(I-I?)2-k3(I-I?)3is designed to control the creation of the Hopf bifurcation for the given system.However,there has been little research on the application of the state feedback controller to the fractional rumor propagation model.In this subsection,we design the feedback controller

    whereσrepresents the feedback controller delay andKdenotes the feedback gain.

    Remark 4.5In this paper,we only take-1≤K ≤1.It is clear thatη(t)=0 whenK=0 orσ=0.

    In order to control the bifurcation and make the bifurcation advance or delay,τis chosen as the bifurcation parameter to get the conditions of Hopf bifurcation.The model with a feedback controller is as follows:

    Here we have the initial conditions

    By the same linearization treatment as the one mentioned above,the characteristic equation of the controlled system (4.11) can be obtained.

    Remark 4.6For the sake of the simplicity of the derivation,we linearize the controller separately when linearizing the controlled system (4.11).

    For convenience,we still just deal with the first three equations.The characteristic matrix of system (4.12) at (0,0,0) is expressed as follows:

    Hence,the characteristic equation that corresponds to system (4.12) is

    Multiplying both sides of eq.(4.13) by eλτ,we have that

    where Re[nj(iω2)]is the real part ofnj(iω2) and Im[nj(iω2)]is the imaginary part ofnj(iω2)(j=1,2,3).Furthermore,

    By eq.(4.15),we obtain that

    Squaring both sides of eq.(4.16),we have that

    Define the bifurcation point

    whereτ01(k) is defined by eq.(4.18).

    The following assumption is made to obtain our main results:

    Lemma 4.7Letλ(τ)=ξ(τ)+iω2(τ)be the root of eq.(4.14)nearτ=satisfying thatThen the following condition holds:

    ProofDifferentiating both sides of eq.(4.14) with respect toτ,we get

    As a result,

    It can be deduced from eq.(4.19) that

    applying (H3) completes the proof.

    According to Lemmas 2.2 and 4.7,the following results can be concluded:

    Theorem 4.8Under (H1) and (H3),we have that

    (1) the equilibriumP?of system (4.11) is asymptotically stable whenτ ∈[0,);

    (2) the equilibriumP?of system (4.11) is unstable whenτ ∈[,+∞).Furthermore,the controlled system (4.11) undergoes a Hopf bifurcation atP?whenτ=.

    Remark 4.9Compared with the results of [19],the ordinary differential equation theory is replaced by the fractional differential equation theory to study the Hopf bifurcation of the rumor spreading model;this is consistent with the memory effect of the rumor spreading process.

    Remark 4.10Apart from the results of the bifurcation condition in [19],this paper not only conducts a bifurcation analysis for the fractional order rumor propagation model with a time delay,but also adds a state feedback controller and controls the advance or delay of bifurcation by adjusting the controller parameters.

    Remark 4.11For the selection of a bifurcation controller,differently from the fractional PD controller used in[29],the state feedback controller is simple in design and is easy to operate.More importantly,the state feedback controller has a wide range of applications,including in neural networks [21],eco-epidemiological systems [28]and predator-prey systems [34].

    5 Numerical Simulations

    In this section,some numerical simulation examples are given to verify the correctness of the theoretical results.To solve the fractional differential equations,we mainly use a predictorcorrector method which is described in [35,36].

    Case 1A specific example for the uncontrolled system (3.1).

    In this case,A=0.01,〈k〉=3,β=0.09,u=0.01,α=0.1,δ=0.85,θ=0.006,α1=0.99,α2=0.98,α3=0.98,α4=0.95 are selected,and then the specific system is as follows:

    By a simple calculation,we can obtain the rumor-spreading equilibrium point

    It is calculated thatω0=0.130,τ0=11.27.Based on Theorem 4.1,theP?of system (5.1)is asymptotically stable whenτ ∈[0,τ0),however,Hopf bifurcation occurs atP?whenτ=τ0.We chooseτ=11.26<11.27 andτ=12.05>11.27.The results are shown in Figures 1 and 2.

    Case 2A specific example for the controlled system (4.11).

    In this case,A=0.01,〈k〉=3,β=0.09,u=0.01,α=0.1,δ=0.85,θ=0.006,α1=0.99,α2=0.98,α3=0.98,α4=0.95 are chosen,and then the specific system is as follows:

    By a simple calculation,we can obtain the rumor-spreading equilibrium

    Remark 5.1In the process of calculating the equilibrium point of the controlled system(5.2),the added controller does not affect the original state of system (5.1),which means that whateverKandσare,they do not affect the equilibrium of the original system (5.1).

    Now the influence of controller parameters on bifurcation points studied based on the original uncontrolled system (5.1).

    First,letK=0.2,σ=1.It is calculated that=0.166,=8.94.Based on Theorem 4.2,theP?of system (5.2) is asymptotically stable whenτ ∈[0,),however,Hopf bifurcation occurs atP?whenτ=.Letτ=8.93<8.94 andτ=9.04>8.94.The results are shown in Figures 3 and 4.

    Then,letK=-0.21,σ=1.By a simple calculation,we get that=0.105,=13.91.We chooseτ=13.9<13.91 andτ=15.01>13.91.The results are shown in Figures 5 and 6.

    Furthermore,in order to study the effect of the feedback gainKon the bifurcation pointτ0for system (5.2),we selectσ=1 and takeK ∈[-1,0],K ∈[0,1].We can note that the value of the bifurcation point decreases with the increase ofKwhenK ∈[-1,0],and the value of the bifurcation point decreases first and then increases whenK ∈[0,1].These results are shown in Figures 7 and 8.

    Remark 5.2When the feedback gain isK<0,the controllerη(t)contributes to the system stability,while the controller has the opposite effect on system stability when the feedback gain isK>0.

    Next,the influence of a controller delay on the bifurcation points is discussed.We chooseK=0.2 andK=-0.2.Figure 9 shows that the stability of the controlled system(5.2)increases as the feedback delayσincreases whenK=0.2,however,the stability of the controlled system(5.2) decreases as the feedback delayσincreases whenK=-0.2,which can be seen in Figure 10.

    Figure 1 State trajectories of system (5.1) when τ=11.26<τ0

    Figure 2 State trajectories of system (5.1) when τ=12.05>τ0ν

    Figure 3 State trajectories of system (5.2) when K=0.2, σ=1, τ=8.93<

    Figure 4 State trajectories of system (5.2) when K=0.2, σ=1, τ=9.04>

    Figure 5 State trajectories of system (5.2) when K=-0.21, σ=1, τ=13.9<

    Figure 6 State trajectories of system (5.2) when K=-0.21, σ=1, τ=15.01>

    Figure 7 Effect of feedback gain K (K ∈[-1,0]) on bifurcation point τ0 for system (5.2)

    Figure 8 Effect of feedback gain K (K ∈[0,1]) on bifurcation point τ0 for system (5.2)

    Figure 10 Phase diagrams of system (5.2) with K=-0.2 and τ=15.7

    Finally,the effect of the fractional order on system stability is discussed.α2=0.97,α3=0.98 andα4=0.95 are selected.For convenience,only the effect of fractional orderα1is studied.From Figure 11 and Figure 12,it can be seen that the solution of system(5.2)changes from stable to unstable as the fractional order increases,and this is the case whetherK ∈[0,1]orK ∈[-1,0].

    Figure 12 State trajectories of system (5.2) with K=-0.15,τ=15,σ=1

    Remark 5.3It can be seen from Figure 11 and Figure 12 that the stability of system(5.2)changes while changing the order.Also,the solution of system(5.2)changes from unstable to asymptotically stable as the fractional order decreases.Thus,the order of the fractional differential system can be considered in order to discuss Hopf bifurcation under certain conditions,and these bifurcation conditions will be studied in the future.

    6 Conclusions

    In this paper,a fractional-order delayed SEIR rumor spreading model with a nonlinear incidence function was analyzed.Fractional order theory was used so as to make the rumor propagation process more accurate.First,we studied the asymptotically stable condition of rumor-spreading equilibrium and a time delay was chosen as a bifurcation parameter to discuss the bifurcation induced by a time delay.Then,we added feedback controllers to the original system in order to control the occurrence of bifurcation in advance or delay.In the numerical simulation,we discussed the influence of the controller parameters and the fractional order on the value of the bifurcation point.With the increase of the fractional order,the value of the bifurcation point increased continuously.Finally,the effect of controller parameters on the value of bifurcation points was discussed.It was shown that the feedback gain and delay of the controller has a great influence on the stability of the controlled system.

    Conflict of InterestThe authors declare no conflict of interest.

    猜你喜歡
    葉茂海軍
    Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
    楊國(guó)珍
    曉褐蜻
    綠色天府(2022年6期)2022-07-14 11:59:42
    A套餐
    我的海軍之夢(mèng)
    軍事文摘(2020年22期)2021-01-04 02:17:24
    相信愛
    根深才會(huì)葉茂源遠(yuǎn)方能流長(zhǎng)
    尋根(2020年1期)2020-04-07 03:44:34
    遼寧法庫(kù)葉茂臺(tái)七號(hào)遼墓的年代及墓主身份
    絲瓜
    封面人物·楊海軍
    新聞愛好者(2016年3期)2016-12-01 06:04:24
    咕卡用的链子| 久久毛片免费看一区二区三区| 老汉色av国产亚洲站长工具| 18在线观看网站| 亚洲国产欧美在线一区| 91精品伊人久久大香线蕉| 欧美精品亚洲一区二区| 老司机亚洲免费影院| 久久久久久人人人人人| 1024香蕉在线观看| 久久免费观看电影| 亚洲国产中文字幕在线视频| 免费黄色在线免费观看| 国产午夜精品一二区理论片| 日韩,欧美,国产一区二区三区| 深夜精品福利| 亚洲,一卡二卡三卡| 丁香六月欧美| 亚洲欧洲日产国产| 啦啦啦在线免费观看视频4| www日本在线高清视频| 亚洲国产欧美日韩在线播放| 男女无遮挡免费网站观看| 丝袜美腿诱惑在线| 亚洲天堂av无毛| 国产视频首页在线观看| 又黄又粗又硬又大视频| 免费看av在线观看网站| 少妇被粗大的猛进出69影院| 亚洲人成77777在线视频| 亚洲一码二码三码区别大吗| 操美女的视频在线观看| 久久影院123| 在现免费观看毛片| 久久久久久人人人人人| 亚洲成人国产一区在线观看 | 国产亚洲av片在线观看秒播厂| 18禁国产床啪视频网站| 国产av码专区亚洲av| 别揉我奶头~嗯~啊~动态视频 | 欧美激情高清一区二区三区 | 亚洲美女搞黄在线观看| 久久久欧美国产精品| 大陆偷拍与自拍| 日本av免费视频播放| 国产精品秋霞免费鲁丝片| 午夜激情久久久久久久| 日日摸夜夜添夜夜爱| 国产在视频线精品| 欧美日韩av久久| 乱人伦中国视频| 女人被躁到高潮嗷嗷叫费观| 国产午夜精品一二区理论片| 国产一区二区激情短视频 | www.精华液| 精品午夜福利视频在线观看一区| 亚洲国产精品久久男人天堂| 亚洲在线自拍视频| 亚洲午夜理论影院| 国产精品一区二区精品视频观看| 女同久久另类99精品国产91| 国产男靠女视频免费网站| 一进一出好大好爽视频| 淫秽高清视频在线观看| 电影成人av| 国产国语露脸激情在线看| 老司机福利观看| 50天的宝宝边吃奶边哭怎么回事| 午夜福利影视在线免费观看| 亚洲一区二区三区色噜噜| 美女午夜性视频免费| 国产三级黄色录像| 亚洲免费av在线视频| 国产伦一二天堂av在线观看| 免费少妇av软件| 男女下面插进去视频免费观看| 成熟少妇高潮喷水视频| 久久精品91蜜桃| 99精品欧美一区二区三区四区| 给我免费播放毛片高清在线观看| 中文字幕久久专区| 国产三级在线视频| 亚洲五月天丁香| 制服人妻中文乱码| 国产高清视频在线播放一区| av有码第一页| 久久久久久亚洲精品国产蜜桃av| 国产精品1区2区在线观看.| 丰满的人妻完整版| 欧美日韩福利视频一区二区| 亚洲自偷自拍图片 自拍| 日本欧美视频一区| 91国产中文字幕| 看免费av毛片| 久久久久亚洲av毛片大全| 国产精品av久久久久免费| 国产亚洲欧美98| 日韩国内少妇激情av| 美女午夜性视频免费| 国产精品久久视频播放| 免费在线观看日本一区| 日本五十路高清| 香蕉丝袜av| 欧美中文日本在线观看视频| 成年版毛片免费区| 久久久水蜜桃国产精品网| 18禁黄网站禁片午夜丰满| 搡老熟女国产l中国老女人| 久久国产乱子伦精品免费另类| 一夜夜www| 欧洲精品卡2卡3卡4卡5卡区| 纯流量卡能插随身wifi吗| 欧美日韩中文字幕国产精品一区二区三区 | 久久久国产成人精品二区| 欧美国产精品va在线观看不卡| 男人舔女人下体高潮全视频| 国产成人影院久久av| 久久国产精品人妻蜜桃| 此物有八面人人有两片| 久久人妻熟女aⅴ| 亚洲国产精品久久男人天堂| 国产午夜福利久久久久久| 久久久久久国产a免费观看| 最新在线观看一区二区三区| 精品不卡国产一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 国产又色又爽无遮挡免费看| 亚洲第一青青草原| 日韩大码丰满熟妇| 欧美日韩亚洲国产一区二区在线观看| 香蕉久久夜色| 无遮挡黄片免费观看| 男女之事视频高清在线观看| 狂野欧美激情性xxxx| 中文字幕高清在线视频| 欧美+亚洲+日韩+国产| 一个人免费在线观看的高清视频| 欧美日韩一级在线毛片| 91大片在线观看| 手机成人av网站| 国产成人系列免费观看| 国产精品爽爽va在线观看网站 | 亚洲精品国产精品久久久不卡| 亚洲五月婷婷丁香| 大码成人一级视频| 亚洲色图av天堂| 18禁国产床啪视频网站| 黄片大片在线免费观看| √禁漫天堂资源中文www| 欧美精品亚洲一区二区| 久久亚洲精品不卡| 99国产综合亚洲精品| 久久香蕉激情| 两个人看的免费小视频| 久久精品91蜜桃| 亚洲久久久国产精品| 大型av网站在线播放| √禁漫天堂资源中文www| 又紧又爽又黄一区二区| 99热只有精品国产| 十八禁人妻一区二区| 欧美黄色淫秽网站| 中文字幕精品免费在线观看视频| 国产男靠女视频免费网站| 中文字幕另类日韩欧美亚洲嫩草| 国产精品亚洲av一区麻豆| 久久精品亚洲精品国产色婷小说| 巨乳人妻的诱惑在线观看| 国产成人精品久久二区二区91| 99久久综合精品五月天人人| 少妇熟女aⅴ在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 日日干狠狠操夜夜爽| 亚洲avbb在线观看| 美女国产高潮福利片在线看| av视频免费观看在线观看| 母亲3免费完整高清在线观看| 亚洲avbb在线观看| 在线观看66精品国产| 午夜免费观看网址| 18禁裸乳无遮挡免费网站照片 | 可以在线观看的亚洲视频| 欧美黄色淫秽网站| 成年女人毛片免费观看观看9| 亚洲午夜理论影院| 人人妻人人澡欧美一区二区 | 老司机深夜福利视频在线观看| 国产精品影院久久| 精品国产乱码久久久久久男人| 69精品国产乱码久久久| 最近最新中文字幕大全电影3 | 欧美久久黑人一区二区| 成人特级黄色片久久久久久久| 精品久久久久久,| 黄频高清免费视频| 老司机午夜十八禁免费视频| 欧美国产精品va在线观看不卡| 午夜福利18| 欧美日韩乱码在线| 欧美中文日本在线观看视频| 亚洲午夜理论影院| 国产三级在线视频| 精品免费久久久久久久清纯| 欧美黄色淫秽网站| 啦啦啦观看免费观看视频高清 | 欧美激情极品国产一区二区三区| 一级,二级,三级黄色视频| 人妻久久中文字幕网| 亚洲午夜理论影院| 成人国产一区最新在线观看| 日韩三级视频一区二区三区| 一区二区三区精品91| 中文字幕最新亚洲高清| 精品少妇一区二区三区视频日本电影| av欧美777| 免费人成视频x8x8入口观看| 国产亚洲欧美精品永久| 免费在线观看视频国产中文字幕亚洲| 亚洲欧美日韩无卡精品| 制服丝袜大香蕉在线| 色av中文字幕| 久久久久国产精品人妻aⅴ院| 深夜精品福利| 在线播放国产精品三级| 99re在线观看精品视频| 久久久国产成人免费| 欧美不卡视频在线免费观看 | 日韩欧美三级三区| 亚洲欧美精品综合久久99| 悠悠久久av| 两个人视频免费观看高清| 久久青草综合色| 一a级毛片在线观看| 18禁黄网站禁片午夜丰满| 一级a爱视频在线免费观看| 国产精品自产拍在线观看55亚洲| 亚洲精品av麻豆狂野| 久久婷婷人人爽人人干人人爱 | 国产主播在线观看一区二区| 成人国语在线视频| 伊人久久大香线蕉亚洲五| 又大又爽又粗| 曰老女人黄片| 免费看美女性在线毛片视频| 黑人欧美特级aaaaaa片| 久久精品国产亚洲av香蕉五月| 极品人妻少妇av视频| 亚洲 欧美 日韩 在线 免费| 视频在线观看一区二区三区| 亚洲午夜精品一区,二区,三区| 90打野战视频偷拍视频| 日日夜夜操网爽| 一区二区日韩欧美中文字幕| 久久久久国产一级毛片高清牌| 一区二区三区高清视频在线| 色精品久久人妻99蜜桃| 女性被躁到高潮视频| 亚洲av成人av| 欧美丝袜亚洲另类 | 久久精品国产亚洲av香蕉五月| 老司机午夜十八禁免费视频| 精品电影一区二区在线| 两性夫妻黄色片| 9热在线视频观看99| 亚洲狠狠婷婷综合久久图片| 中文字幕av电影在线播放| 丰满的人妻完整版| 人妻久久中文字幕网| 国产精品影院久久| 无人区码免费观看不卡| ponron亚洲| 这个男人来自地球电影免费观看| 亚洲av五月六月丁香网| а√天堂www在线а√下载| 精品高清国产在线一区| 亚洲中文av在线| 九色国产91popny在线| 国产又色又爽无遮挡免费看| 亚洲一区高清亚洲精品| av中文乱码字幕在线| 99在线视频只有这里精品首页| 国产精品免费视频内射| av网站免费在线观看视频| 亚洲午夜理论影院| or卡值多少钱| 一区二区三区国产精品乱码| 欧美日本中文国产一区发布| 欧美一级a爱片免费观看看 | 91成人精品电影| 免费搜索国产男女视频| 我的亚洲天堂| 日韩欧美国产一区二区入口| 丝袜美腿诱惑在线| 免费在线观看亚洲国产| 欧美日韩精品网址| 老汉色av国产亚洲站长工具| 国产亚洲欧美98| 国产精品国产高清国产av| 国产真人三级小视频在线观看| 国产成人影院久久av| 精品国内亚洲2022精品成人| 女人高潮潮喷娇喘18禁视频| 一级片免费观看大全| 午夜久久久久精精品| 亚洲专区中文字幕在线| 性色av乱码一区二区三区2| 国产激情久久老熟女| 一二三四在线观看免费中文在| 国产私拍福利视频在线观看| 女人被狂操c到高潮| 亚洲中文字幕一区二区三区有码在线看 | 亚洲,欧美精品.| 桃色一区二区三区在线观看| netflix在线观看网站| 纯流量卡能插随身wifi吗| 亚洲七黄色美女视频| 此物有八面人人有两片| 国产精品久久久久久人妻精品电影| 欧美国产日韩亚洲一区| 97碰自拍视频| 亚洲五月婷婷丁香| 亚洲av成人一区二区三| 欧美激情 高清一区二区三区| 99久久精品国产亚洲精品| 身体一侧抽搐| 满18在线观看网站| 欧美一级a爱片免费观看看 | 人人澡人人妻人| 国产三级在线视频| 青草久久国产| 免费在线观看视频国产中文字幕亚洲| 美女高潮喷水抽搐中文字幕| 精品欧美一区二区三区在线| 纯流量卡能插随身wifi吗| 免费人成视频x8x8入口观看| 日韩大尺度精品在线看网址 | 性欧美人与动物交配| 亚洲精品中文字幕在线视频| 欧美成人性av电影在线观看| 怎么达到女性高潮| 搡老岳熟女国产| 午夜精品久久久久久毛片777| 中文字幕av电影在线播放| 久久久久久大精品| 亚洲成国产人片在线观看| 一边摸一边做爽爽视频免费| 一夜夜www| 波多野结衣巨乳人妻| 亚洲视频免费观看视频| 97超级碰碰碰精品色视频在线观看| 亚洲自偷自拍图片 自拍| 亚洲成人国产一区在线观看| 老司机午夜十八禁免费视频| 在线观看66精品国产| 99国产精品免费福利视频| 亚洲成国产人片在线观看| 国产精品综合久久久久久久免费 | 黄片大片在线免费观看| 丁香六月欧美| 丰满的人妻完整版| 色av中文字幕| 日韩成人在线观看一区二区三区| 午夜福利在线观看吧| 香蕉久久夜色| 国产蜜桃级精品一区二区三区| 免费av毛片视频| 大码成人一级视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲精华国产精华精| 国内精品久久久久精免费| 日韩 欧美 亚洲 中文字幕| 女警被强在线播放| 亚洲 欧美 日韩 在线 免费| 久久精品91无色码中文字幕| 精品国产国语对白av| 国产精品九九99| 怎么达到女性高潮| 久热这里只有精品99| 极品人妻少妇av视频| 国产精品亚洲美女久久久| 男男h啪啪无遮挡| 久久亚洲精品不卡| 国产成人一区二区三区免费视频网站| 一区二区三区激情视频| av网站免费在线观看视频| 午夜福利影视在线免费观看| 一区二区日韩欧美中文字幕| 满18在线观看网站| 欧美另类亚洲清纯唯美| 亚洲 欧美 日韩 在线 免费| 国产高清激情床上av| 一本久久中文字幕| 久久人人爽av亚洲精品天堂| 亚洲人成网站在线播放欧美日韩| 99热只有精品国产| 两人在一起打扑克的视频| 精品国产国语对白av| av视频免费观看在线观看| 非洲黑人性xxxx精品又粗又长| 国产亚洲精品av在线| 国产av一区二区精品久久| 十八禁人妻一区二区| 亚洲va日本ⅴa欧美va伊人久久| 少妇被粗大的猛进出69影院| 性少妇av在线| 国产高清视频在线播放一区| www.www免费av| 国语自产精品视频在线第100页| 俄罗斯特黄特色一大片| 日日夜夜操网爽| 深夜精品福利| 日本在线视频免费播放| 国产精品久久久av美女十八| 亚洲一卡2卡3卡4卡5卡精品中文| 9热在线视频观看99| 韩国av一区二区三区四区| 国产高清激情床上av| 精品无人区乱码1区二区| 欧美国产精品va在线观看不卡| 国产午夜精品久久久久久| √禁漫天堂资源中文www| 啦啦啦免费观看视频1| 国产97色在线日韩免费| 97人妻天天添夜夜摸| 精品免费久久久久久久清纯| 亚洲中文日韩欧美视频| 一区二区日韩欧美中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 搡老岳熟女国产| 欧美色欧美亚洲另类二区 | av有码第一页| 免费在线观看日本一区| 88av欧美| 中文字幕色久视频| 日韩精品青青久久久久久| 国产亚洲av嫩草精品影院| 老司机在亚洲福利影院| or卡值多少钱| 亚洲精品国产色婷婷电影| 香蕉丝袜av| 日本a在线网址| 淫妇啪啪啪对白视频| 久久国产乱子伦精品免费另类| 1024视频免费在线观看| 成人永久免费在线观看视频| 露出奶头的视频| 国产亚洲精品一区二区www| 女生性感内裤真人,穿戴方法视频| 国产精品永久免费网站| 亚洲第一av免费看| 免费在线观看黄色视频的| av免费在线观看网站| 巨乳人妻的诱惑在线观看| 国产不卡一卡二| 亚洲一区高清亚洲精品| 亚洲精品在线观看二区| 国产成人一区二区三区免费视频网站| 妹子高潮喷水视频| 亚洲五月天丁香| 欧美 亚洲 国产 日韩一| 露出奶头的视频| 成人欧美大片| 啦啦啦 在线观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久国产一级毛片高清牌| 国产精品久久久久久亚洲av鲁大| 国产色视频综合| 色老头精品视频在线观看| 大陆偷拍与自拍| 国产成人免费无遮挡视频| 日日爽夜夜爽网站| 涩涩av久久男人的天堂| 亚洲人成伊人成综合网2020| 欧美亚洲日本最大视频资源| 午夜福利视频1000在线观看 | 女性生殖器流出的白浆| 国产99久久九九免费精品| 久久天堂一区二区三区四区| 国产精品久久电影中文字幕| 国产xxxxx性猛交| 国产成人欧美在线观看| 涩涩av久久男人的天堂| 亚洲人成伊人成综合网2020| 国产乱人伦免费视频| 国产一区二区激情短视频| 亚洲 欧美一区二区三区| 巨乳人妻的诱惑在线观看| 好男人在线观看高清免费视频 | 成人国产一区最新在线观看| 日韩有码中文字幕| 午夜精品国产一区二区电影| 一区在线观看完整版| 日韩精品青青久久久久久| 午夜福利成人在线免费观看| 老汉色av国产亚洲站长工具| 亚洲va日本ⅴa欧美va伊人久久| 高清毛片免费观看视频网站| 午夜免费成人在线视频| 亚洲精品国产色婷婷电影| 成人免费观看视频高清| 手机成人av网站| 久久久国产成人免费| 亚洲国产精品999在线| 伦理电影免费视频| 国产成人精品在线电影| 亚洲专区国产一区二区| 可以在线观看的亚洲视频| 中文字幕人成人乱码亚洲影| 中文字幕久久专区| av视频在线观看入口| 亚洲精品中文字幕在线视频| 精品久久蜜臀av无| 免费高清视频大片| 亚洲国产精品合色在线| 男人操女人黄网站| 国产一区在线观看成人免费| 啦啦啦韩国在线观看视频| 狠狠狠狠99中文字幕| 亚洲一区二区三区色噜噜| 国产成人欧美在线观看| 中文字幕人妻丝袜一区二区| 欧美性长视频在线观看| 99在线视频只有这里精品首页| 97人妻精品一区二区三区麻豆 | 韩国av一区二区三区四区| 免费看十八禁软件| 国产男靠女视频免费网站| 中文字幕最新亚洲高清| 叶爱在线成人免费视频播放| 亚洲 欧美 日韩 在线 免费| 少妇的丰满在线观看| 中文字幕人妻丝袜一区二区| 欧美 亚洲 国产 日韩一| 如日韩欧美国产精品一区二区三区| 无遮挡黄片免费观看| 精品久久久久久久久久免费视频| 香蕉丝袜av| 精品一区二区三区视频在线观看免费| 亚洲成国产人片在线观看| 亚洲久久久国产精品| 欧美国产精品va在线观看不卡| 波多野结衣一区麻豆| 日韩 欧美 亚洲 中文字幕| 国产激情欧美一区二区| 母亲3免费完整高清在线观看| 91字幕亚洲| 国产成人啪精品午夜网站| 久久精品人人爽人人爽视色| 精品不卡国产一区二区三区| 最新在线观看一区二区三区| 亚洲男人天堂网一区| 亚洲va日本ⅴa欧美va伊人久久| 好男人在线观看高清免费视频 | 夜夜爽天天搞| 日韩精品青青久久久久久| 国产人伦9x9x在线观看| 日韩欧美免费精品| 999久久久精品免费观看国产| 可以免费在线观看a视频的电影网站| 亚洲熟妇中文字幕五十中出| 成人国产综合亚洲| 国产精品秋霞免费鲁丝片| 国产一卡二卡三卡精品| 国产伦一二天堂av在线观看| 真人一进一出gif抽搐免费| 国产xxxxx性猛交| 黄色毛片三级朝国网站| 一级,二级,三级黄色视频| 人人妻人人澡欧美一区二区 | 91av网站免费观看| 麻豆久久精品国产亚洲av| 精品午夜福利视频在线观看一区| 美女高潮到喷水免费观看| 久久国产精品影院| 国产午夜精品久久久久久| 天天一区二区日本电影三级 | 丁香欧美五月| 丁香六月欧美| 这个男人来自地球电影免费观看| 久久国产乱子伦精品免费另类| 怎么达到女性高潮| 一级片免费观看大全| 免费看a级黄色片| 精品国产乱子伦一区二区三区| 久久久精品欧美日韩精品| 757午夜福利合集在线观看| 51午夜福利影视在线观看| 久久香蕉激情| 999久久久国产精品视频| 桃色一区二区三区在线观看| 村上凉子中文字幕在线| 精品欧美一区二区三区在线| 搡老岳熟女国产| 午夜福利成人在线免费观看| 国产一卡二卡三卡精品| 中文字幕av电影在线播放| 亚洲国产欧美网| 国产欧美日韩一区二区三| 久久久久久久久免费视频了| 久久精品国产清高在天天线| 精品高清国产在线一区| 亚洲av熟女| 精品国产亚洲在线| 很黄的视频免费| 一a级毛片在线观看| 久久人人爽av亚洲精品天堂| 啦啦啦 在线观看视频| 中文字幕精品免费在线观看视频| 免费搜索国产男女视频| 精品一区二区三区视频在线观看免费| 黄色片一级片一级黄色片| 啦啦啦免费观看视频1| 最近最新中文字幕大全电影3 | а√天堂www在线а√下载| 又紧又爽又黄一区二区|