• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ENTIRE SOLUTIONS OF LOTKA-VOLTERRA COMPETITION SYSTEMS WITH NONLOCAL DISPERSAL?

    2023-12-14 13:05:48郝玉霞李萬同

    (郝玉霞) (李萬同)

    1. School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China

    2. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China

    E-mail: haoyx15@lzu.edu.cn; wtli@lzu.edu.cn

    Jiabing WANG (王佳兵)

    School of Mathematics and Physics, Center for Mathematical Sciences, China University of Geosciences, Wuhan 430074, China

    E-mail: wangjb@cug.edu.cn

    Wenbing XU (許文兵)

    School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

    E-mail: 6919@cnu.edu.cn

    Abstract This paper is mainly concerned with entire solutions of the following two-species Lotka-Volterra competition system with nonlocal (convolution) dispersals:Here a ≠ 1, b ≠ 1, d,and r are positive constants.By studying the eigenvalue problem of (0.1) linearized at (φc(ξ),0),we construct a pair of super-and sub-solutions for (0.1),and then establish the existence of entire solutions originating from (φc(ξ),0) as t →-∞,where φc denotes the traveling wave solution of the nonlocal Fisher-KPP equation ut=k ?u-u+u(1-u).Moreover,we give a detailed description on the long-time behavior of such entire solutions as t →∞.Compared to the known works on the Lotka-Volterra competition system with classical diffusions,this paper overcomes many difficulties due to the appearance of nonlocal dispersal operators.

    Key words entire solutions;Lotka-Volterra competition systems;nonlocal dispersal;traveling waves

    1 Introduction

    In this paper,we study entire solutions of the following nonlocal (convolution) dispersal Lotka-Volterra competition system:

    (K)k ∈C1(R),k(x)=k(-x)≥0,andk(·) is compactly supported.

    (H)d ≥r>1.

    In (H),r>1 implies thatvhas a higher inherent growth rate thanu,and the assumption thatd ≥r,which is a technical requirement to obtain the Lipschitz continuity of the entire solution with respect tox,can be regarded as an acknowledgement that the dispersal term ofvplays a more important role than the reaction term.

    Model (1.1) can capture the spatial dynamics of two competing species,which relies precisely on the choice of the initial data and the parametersaandb.In particular,whenkis a Dirac delta function,(1.1) becomes the following ordinary differential system:

    The solution (u(t),v(t)) exhibits the following asymptotic behavior ast →+∞(see [27,38]):

    (i) if 0

    (ii) if 0

    (iii) if 0

    (iv) ifa,b>1,then (u(t),v(t)) converges to one of the equilibria u1and u2depending on the initial data (strong competition).

    For when the movements of the two competing species happen only between adjacent spatial locations,the following reaction-diffusion Lotka-Volterra competition system,as a counterpart of (1.1),has been widely studied:

    We refer to [5,16,26,35,49]for the stability of the steady states u?,u1,and u2in (1.2).

    We consider the wave propagation phenomena of (1.1),which include the studies of traveling wave solutions,entire solutions,and spreading speeds.The traveling wave solution describes the propagation mode of the two competing species,which connects one equilibrium to another equilibrium.We recall some results about the traveling wave solutions of (1.1).The function(u,v)(x,t)=(?c,ψc)(ξ) (ξ=x-ct) is called a traveling wave solution of (1.1) with a speedc ∈R if it satisfies that

    The existence of positive solutions to(1.3)depends on the parametersaandband the following asymptotic boundary conditions:

    (i) when 0

    and also admits a positive solution satisfying that (?c,ψc)(-∞)=u?and (?c,ψc)(+∞)=u2for each speed

    (see Houet al.[25]);

    (ii) when 0

    (iii) similarly to(ii),when 0

    (iv) whena,b>1,system (1.3) admits a unique positive solution satisfying that (?c,ψc)(-∞)=u2and (?c,ψc)(+∞)=u1with the unique speedc=Cuv ∈R (see Zhang and Zhao[51]).

    We refer to [1,7,11,19,53]for more works about traveling wave solutions for (1.1) and[13,23,24]for (1.2).

    The entire solution,(which means the solution defined for allx ∈R andt ∈R) is another important research topic.The study of entire solutions can be traced back to the pioneering work of Hamel and Nadirashvili [20,21],in which the authors constructed entire solutions for classical KPP equations in the one-dimensional and high-dimensional spaces by considering the interaction of traveling wave solutions.Since then,many efforts have been made to construct entire solutions of various types;these include the annihilating-front type,which behaves as two opposite wave fronts with positive speed(s) approaching each other from both sides of the real axis and then annihilating as time increases (see e.g.[4,17,31,48]);the merging-front type,which behaves as two monostable fronts approaching each other from both side of the real axis and merging and converging to a bistable front or behaves as a monostable front merging with a bistable front and one chases another from the same side of the real axis (see e.g.[37,47]);the catching-up/invading type,which behaves ast →-∞,like two monostable/bistable fronts moving in the same direction,the faster one then invading the slower one ast →+∞(see,e.g.[22,42]).

    In (1.1),different types of entire solutions can provide different propagation and invasion modes of the competing species.For the case 01,Zhanget al.[50]showed the existence of traveling wave solutions and the asymptotic behavior of traveling wave solutions at infinity.For the system (1.2),Duet al.[8,9]studied front-like entire solutions in a periodic habitat.Guo and Wu [18]constructed some new entire solutions which behave as two traveling wave fronts moving towards each other from both sides of thex-axis for discrete diffusive equations.Morita and Tachibana [38]proved the existence of an entire solution which behaves as two monotone waves propagating from both sides of thex-axis.Wanget al.[45]considered the entire solution,which behaves as two wave fronts coming from both sides of thex-axis,for a diffusive and the competitive Lotka-Volterra type system with nonlocal delays.In particular,a new type of entire solution of (1.2),which is different from the aforementioned results,was constructed recently by Lamet al.[29].They showed the existence of entire solutions which asymptotically converge,ast →-∞,to a traveling wave solution consisting of a single species of (1.2) for both the weak and the strong competition cases.Moreover,these entire solutions evolve to distinctive diverging front,whose profiles ast →+∞r(nóng)ely heavily on the competency of each species.

    In this paper,we are interested in whether or not the new entire solutions constructed in [29]also exist in (1.1),and in what influence the appearance of the nonlocal dispersals operator has on the construction of this type of entire solution.We show the existence of entire solutions of (1.1) corresponding to (φc(ξ),0) att →-∞,where (φc(ξ),0) is the traveling wave solution of (1.1)consisting of a single species.We also describe the asymptotic behavior of these entire solutions ast →+∞.In the study of the entire solutions,the appearance of a nonlocal dispersal(convolution)operator creates many difficulties.For example,nonlocal dispersal leads to the lack of a regularizing effect;this leads us to encounter a lot of difficulties in sense of the calculation process.Concretely,for the classical Lotka-Volterra competition system studied in[29],the authors studied the existence of entire solutions by introducing co-moving frame,and the existence on entire solutions can be resolved by super-and sub-solutions and estimates for parabolic equations,where the super-and sub-solutions were constructed by considering an eigenvalue-problem.However,we cannot use the estimate for parabolic equations,so we give some estimates and use the Lebesgue dominated convergence theorem to overcome this.Additionally,some methods used for the classical system cannot be applied;these include the fact that the existence of a solution to the eigenvalue-problem for a local system can be obtained directly by virtue of the Hille-Yosida Theorem,but we cannot verify that the Hille-Yosida Theorem is suitable for the system we study,since we cannot prove that the linear operator we construct generates an analytic semigroup of contractions onC0(R),due to the addition of a derivative with respect tox.Hence,we utilize the super-and sub-solutions method to resolve this.During this process,we introduce a technical condition (H) to prove Theorem 2.1.We conjecture that the condition (H) may be non-essential,and that it can be removed by constructing other super-and sub-solutions.Meanwhile,there are many difficulties when we consider the asymptotic behavior of entire solutions ast →∞,since the spreading speed of system(1.1),which will help us to obtain asymptotic behavior att →∞,is not solved for cases 0

    Finally,we recall some results on the spreading speed of (1.1).For the casea,b>1,the spreading speed of (1.1) was studied by [51].Moreover,the authors of [12]mentioned that ifa<1

    The rest of this paper is organized as follows: Section 2 is devoted to the study of an eigenvalue-problem.Then we construct some new types of entire solutions and study their properties in Section 3.Finally,we present some simulations to illustrate the analytical results in Section 4.

    2 Eigenvalue Problems

    In this section,we consider the eigenvalue problem of the linearized system of (1.3) at(φc,0).Hereφc(x) is the traveling wave solution of

    The equation (2.1) is referred to as the nonlocal version of the classical Fisher-KPP equation[14,28].By the work of Carr and Chmaj [2]and Schumacher [41],we know that (2.1) admits a unique (up to translation) traveling wave solutionu(x,t)=φc(x-ct) connecting 1 to 0 with each wave speed

    that is,φc(ξ) solves

    For eachc>c?,there exist some constantsα ∈(α(c),min{1,2α(c)}),A0?1,x0?0,(c)>0 andA1such that,by a proper translation the wave profile,φcsatisfies that

    whereα(c) and(c) are the smallest positive solutions of

    respectively;see [6,36].

    In what follows,we always assume (K) and thatr>1.Forc ∈[c?,+∞),define that

    Then there exists a uniqueλ0>0 such that

    andF(·) is strictly decreasing on (0,λ0) and strictly increasing on (λ0,+∞).We have that

    Byr>1 andb>0,the set ??(c) is nonempty.For anyλ ∈??(c),we denote thatμ?F(λ)>r(1-b).For anyc ≥c?,define that

    Note that

    Then there exists a uniqueγ>0 such that

    The following theorem is the main result of this section:

    Theorem 2.1Let (K) and (H) hold.For anyc ∈[c?,+∞) andλ ∈??(c),we denote thatμ?F(λ).Then there exists a solutionwith?,ψ ∈C1(R)∩L∞(R) of the following system:

    Furthermore,if there existsM<0 such that

    then we have that

    In order to obtain Theorem 2.1,we first prove the following two lemmas about the existence ofψsatisfying (2.6):

    Lemma 2.2Under the same assumptions of Theorem 2.1,there existsψ ∈C1(R)∩L∞(R)satisfying that

    whereL>0,λ′∈(λ,min{λ0,λ+α(c)}) withF(λ′)

    ProofFor anyλ′∈(λ,min{λ0,λ+α(c)}),the strictly decreasing property ofF(·) on(0,λ0) implies thatF(λ′)

    Now we construct a super-solution.For anyβ ∈(0,γ),it follows from(2.5)thatG(β)<μ.Byφc(-∞)=1,we can find a constant∈R small enough such that

    Define that

    This completes the proof.

    Next we recall an important tool called Ikehara’s theorem,whose proof can be found in[10,46].

    Theorem 2.3(Ikehara’s) Letwithz ∈C,where?(·)is a positive increasing function on R-.For some real number Λ>0,assume thatP(z) can be written as

    wherek>-1,and there is a positive numberεsuch thatQ(z) is analytic in the strip Λ-ε

    By Ikehara’s theorem,we can give a more accurate description of the decaying behavior of the solutionψo(hù)f (2.9) asx →-∞.

    Lemma 2.4If there existsM<0 such that

    where the functionψis given in Lemma 2.2,then we have that

    ProofWe first prove that the equationG(z)=μwithz ∈C has no root exceptz=γin the strip 0

    IfG(z)=μ,then

    Whenp=γ,byG(γ)=μand the first equation of (2.10),we get that

    which implies thatq=0.Whenp ∈(0,γ),by (2.5),we have that

    HenceG(z)=μhas no root exceptz=γin the strip 0

    Multiplying (2.9) by e-zxand integrating it over R,we obtain that

    We have that

    which implies that

    Define that

    It follows from (2.5) that

    Theng(·) is continuous on (0,γ].In the strip 0

    and it holds that

    ThusQ(z) is analytic in the strip 0

    which is essentially equivalent to the case whereψ′/ψ ≥Mfor allx<0.This completes the proof.

    Now we are ready to prove Theorem 2.1.

    Proof of Theorem 2.1By Lemmas 2.2 and 2.4,we only need to prove the existence of?(x).Byψ(x)∈L∞(R) in Lemma 2.2,there existsZ>0 such thatψ(x)≤Z.Define

    whereA ≥a/2 andB>aZ/(μ-1).Clearly,(x) is a super-solution of the first equation of (2.6).We next verify thatis a sub-solution of the first equation of (2.6).Whenx≥-λ-1ln(B/A),we have that(x)=-Ae-λx,which,along withψ(x)≤e-λxand (H),implies that

    Whenx≤-λ-1ln(B/A),we can get that(x)=-Band

    By the standard method of super-and sub-solutions,there is a solution?<0 of the first equation of (2.6) satisfying that?(∞)=0.This completes the proof.

    3 Entire Solutions

    In this section,we construct some entire solutions of (1.1) and study some qualitative properties of them.We first introduce some notations.For anyc ≥c?andλ ∈??(c),denote thatμ?F(λ),and let (?,ψ) be the solution of (2.6) obtained in Theorem 2.1.For simplicity,we rewrite (1.1) as

    where u=(u,v) and

    We introduce two increasing functions,p(t) andq(t),satisfying that

    whereEis an arbitrary positive constant andω ∈(0,μ/E).Some calculations imply that

    It follows that

    Define that

    It is easy to check thatCλ>Cuv,whereCuvis the unique speed that admits the traveling wave solution connecting u1and u2.Moreover,for eachc ≥c?,since-cλ+r>0,?λ ∈??(c),it follows thatCλ>c.The next two theorems are the main results in this paper.

    Theorem 3.1Suppose that (K) and (H) hold.Letc ≥c?andλ ∈??(c).Then there exists a unique entire solution uc,λ(x,t)=(uc,λ(x,t),vc,λ(x,t)) of (1.1) satisfying that

    Furthermore,for anyν ∈R{0},there exist two positive constantsandsuch that,for any(x,t)∈R2,uc,λ(x,t) satisfies that

    Theorem 3.2Suppose that all of the assumptions in Theorem 3.1 hold.Let uc,λ?(uc,λ(x,t),vc,λ(x,t)) be the entire solution of (1.1) obtained in Theorem 3.1.Then

    Furthermore,we have the following statements,which imply that,ast →+∞,the asymptotic behavior of the entire solution depends essentially on the competitiveness of the two species,i.e.,the range ofaandb:

    (i) if 0c>C2?>-C1?and it holds that

    (ii) if 0c>C2?and it holds that

    (iii) ifa,b>1,then there existsξ1∈R such that

    where uuv=(?uv,ψu(yù)v) is the traveling wave solution connecting u1at-∞to u2at +∞,with speedCuv.Furthermore,it holds that

    Remark 3.3Notice that the conclusions (3.14) and (3.18) in Theorem 3.2 are obtained onx ∈[(c+?)t,(Cλ-?)t]ast →+∞.Actually,we expect that (3.14) and (3.18) hold onx ∈[(C2?+?)t,(Cλ-?)t]ast →+∞,but this is challenging,and fails,sinceC2?is the minimal wave speed of the traveling waves of the corresponding linearized system (1.1) at (0,1).A classical way of constructing the super-solution of(1.1)iswhenx-ct>0 for some appropriateb,c>0.However,the initial functionvc,λ(x,0) is essentially compactly supported,which does not satisfy that(x,0)≤vc,λ(x,0)whenxis large enough.Hence,we usein (3.8) as a super-solution;this method makes us only prove that uc,λ(x,t) converges to u2forx ∈[(c+?)t,(Cλ-?)t]ast →+∞.It is not clear whether or not uc,λ(x,t) converges to u2forx ∈[(C2?+?)t,(c+?)t) ast →+∞;we will leave this for now and hope to solve it later.

    For the rest of this section,we focus on the proofs of Theorems 3.1 and 3.2.We first recall the definitions of sub-/super-solutions and the comparison principle of (1.1);see[51,Definition 4.6 and Lemma 4.8].In the next Definition,the definitions of sub-/super-solutions in the weak sense mean that sub-/super-solutions satisfy the integral-differential inequality for all but finite manyt ∈R.

    Definition 3.4Let u(x,t)=(u(x,t),v(x,t)) be a piecewise smooth function on R×I,whereI ?R is an open interval.Then,

    (i) the function u(x,t)=(u(x,t),v(x,t)) is called a sub-solution of (1.1) on R×Iif

    (ii) the function u(x,t)=(u(x,t),v(x,t)) is called a super-solution of (1.1) on R×Iif

    The following lemma states that,defined by (3.7) and (3.8),are,respectively,sub-and super-solutions of (1.1):

    Lemma 3.6Suppose that all the assumptions in Theorem 2.1 hold.Then,forE>max{‖?+aψ‖∞,r‖b?+ψ‖∞} and 0<ω<,we have that

    ProofBy (2.2),(2.6) and (3.1),we have that,for any (x,t)∈R×(-∞,0],

    Similarly,by (2.6) and (3.1),some calculations imply that

    Note that?<0<ψ,as stated in Theorem 2.1.By (3.5) and the definitions ofandin (3.8) and (3.7),the proof of (ii) is obvious.

    This completes the proof.

    The following lemma is a direct consequence of Proposition 3.5 and Lemma 3.6:

    Lemma 3.7For anyn ∈Z+,x ∈R andt ∈[-n,0],we have that

    In particular,whent=0,it follows that

    Now define that

    By (3.24),we obtain un(x,t),which,together with the definition of(x,t),yields thatun(x,t)≤1,and there is a constant?>0 such that

    For any givent?∈(-∞,0],there existsn ∈Z+such thatt?>-nand

    whereh1=1+a?,h2=d+r?+rb,and

    Then it follows that

    The following lemma states some properties about the Lipschitz continuity of(un(x,t),vn(x,t))with respect tox,and the purpose of this lemma is to prove (3.11):

    Lemma 3.8Let (K) hold.There is a positive constant,which is independent ofn,xandt,such that,for any (x,t)∈R×(-n,0],

    In addition,if(H)holds,then,for anyν ∈R{0}and(x+ν,t),(x,t)∈??R×(-n,0],where? is any compact set,there are some constantsN0andindependent ofn,t,andνsuch that

    ProofSinceun(x,t)≤1 andvn(x,t)≤?,we can get from (3.28) that,for (x,t)∈R×(-n,0],

    By a similar argument as to that for (un)tand (vn)t,we have that

    Then (3.32) is proved by taking that

    Now,we prove(3.33)and(3.34)on an arbitrary compact set ?.For anyν ∈R,define that

    By the assumptions ofk(x),we have that K′(x)∈L1.Then there is a positive constantKsuch that

    Denote that U(x,t)=(U(x,t),V(x,t))=un(x+ν,t)-un(x,t).In order to prove (3.33),we only need to show that

    and

    Now consider the case in which U(x,t)≥0.Noting that(·,-n)∈C1(R×(-n,0]),there exists a constantM>0 such that

    From the first equation of (3.28),we have that

    whereM>0 is defined as in (3.35).Then,fort ∈(-n,0],there existsN1>0 such that

    SinceUsatisfies that

    by the comparison method of ODE,we have that,forx ∈R andt ∈(-n,0],

    which implies that

    From the second equation of (3.28) and (H),it follows that

    Then,fort ∈(-n,0],there existsN2>0 such that

    SinceVsatisfies that

    by using the comparison method of ODE again,we obtain that,forx ∈R andt ∈(-n,0],

    which implies that

    For the case where U(x,t)≤0,the proof of U(x,t)≥-N0|ν| is similar.Then (3.33) is proven by taking thatN0=max{N1,N2}.

    Forx ∈R,t ∈(-n,0]andν ∈R{0},we can get that

    Then we obtain (3.34) by taking thatwhich completes the proof.

    Define that

    It follows from (3.2) and (3.3) that

    We prove the uniqueness of the entire solution satisfying (3.10) by showing that the pair of super-and sub-solutions are deterministic via translation,where the definition is given in [4,Definition 1].Suppose that uc,λ,i(x,t)=(uc,λ,i(x,t),vc,λ,i(x,t)) withi=1,2 are two solutions of (1.1) satisfying (3.10).Then,for anyn ≥|t| and (x,t)∈R×R,we have that

    According to (3.8),(3.7),(3.36) and (3.10),we can obtain that

    Fori,j ∈{1,2},it follows from (3.36) that

    Asn →∞,we get from (3.36) that

    which implies that uc,λ,1(x,t)=uc,λ,2(x,t),?(x,t)∈R2.

    According to Lemma 3.8,by the Arzela-Ascoli Theorem and a diagonal extraction process,there exists a function (uc,λ+(x,t),vc,λ+(x,t)) and a subsequence (uni(x,t),vni(x,t)) of(un(x,t),vn(x,t)) such that

    converge uniformly in any compact set ?∈R2to

    By the uniqueness of the limit,we have that

    Hence,it holds that

    The second inequality in (3.11) can be obtained similarly,so the proof is completed.

    In order to prove Theorem 3.2,we need to study the asymptotic behavior at infinity of the entire solution uc,λ=(uc,λ,vc,λ) of system (1.1).Notice that the asymptotic behavior of uc,λatt →-∞is a direct result of (3.10).Then we show the asymptotic behavior of uc,λatt →+∞.

    Lemma 3.9It holds that

    ProofRecall the definition of(x,t) in(3.8).We know that the upper bound in(3.10)holds for allt ∈R;that is,

    Therefore,for each?>0,

    On the other hand,the proof of Lemma 2.2 indicates thatψ(x)≤e-λxfor anyx ∈R.Combined with the definition of(x,t) in (3.7),there exists a constantE1>1 such that

    Note that e-λ(x-Cλt) andvc,λ(x,t) are a pair of super-and sub-solutions of the following Fisher-KPP equation:

    Then the comparison principle yields that

    Thus,(3.39) and (3.40) imply (3.37),which completes the proof.

    Lemma 3.10It holds that

    ProofLemma 3.9 implies that,for any?>0,

    It remains to show that

    Similarly to [51,Proposition 4.13],we can prove that

    The proof of (3.42) is a straightforward consequence of (3.43).Indeed,if (3.42) is not true,we can suppose,to the contrary,that there exist sequences (tn)n∈N,(xn)n∈Nsatisfying that(c+?)tn

    Lemma 3.11Assuming that 0

    ProofFromb<1 anda<1,it follows thatC1?>0 andC2?>0,which implies thatC2?>-C1?.

    We only provide a detailed proof for(ii),since(i)and(iii)can be proven by similar methods.Suppose,by contradiction,that (ii) is false.Then there exists (xn,tn) satisfying that

    with initial data (U(0),V(0))=(θ,?),so that (U,V)(∞)=(u?,v?).For eachT>0,we have thatand then the comparison in the time interval [-T,0]yields that

    In particular,for everyT>0,(,)(0,0)(U,V)(T).LettingT → ∞,we have thatThen it holds that

    This is a contradiction,so (ii) is proven.

    Finally,we are ready to prove Theorem 3.2.

    Proof of Theorem 3.2Note that (3.12) is a direct consequence of (3.10).Now we prove the asymptotic behavior of uc,λast →+∞.

    (i) According to the definitions ofCλ,c?,C2?,we have thatCλ>c ≥c?>C2?.Also,the definitions ofC1?,C2?anda,b<1 imply thatC2?,C1?>0,and thusCλ>c>C2?>-C1?.Furthermore,the conclusion ofc

    Next,we prove that

    It is clear thatvc,λ(x,t) and?form a pair of super-and sub-solutions of the equation

    withvc,λ(x,t)≥?on the boundary of the domain

    Then the maximum principle implies thatvc,λ ≥?in ?.Thus,(3.44) holds.

    Analogously,we can get that

    Naturally,

    which,along with (3.45),implies (3.19),by Lemma 3.11 (iii).

    (iii) Letξ1∈R,s1,s2,? ∈R+,and define thatThen,similarly to [51,Lemmas 4.16 and 4.19],we can construct a pair of super-and sub-solutions

    of (1.1)to prove(3.20).Furthermore,(3.21)–(3.23)follows from[51,Theorem 4.10].The proof is complete.

    4 The Exponential Decay Estimates of the Entire Solutions

    In this section,we state the exponential decay estimates ofuc,λatx=+∞under the conditions that

    Theorem 4.1Letc ≥c?andλ ∈??(c).Then we have that

    whereα(c) is the smallest positive root of the equationFurthermore,whenb ∈(0,1),we have that

    whereγsatisfies (2.5) andNis the constant given by Theorem 2.1.

    ProofFrom (3.10),we obtain that

    whereψis given by Theorem 2.1.Then (4.2) follows from (2.3),(4.4) and

    Since the proof of (4.3) is similar to that of (4.1),we can now prove (4.1) by considering only the following two claims:

    Claim 1If there isω0>0 andt0∈R such thatvc,λ(x+Cλt0,t0)≤ω0e-λxforx ∈R,then

    Obviously,vc,λ(x+Cλt,t) andω0e-λxform a pair of sub-and super-solutions of the equation

    As a consequence,Claim 1 is true.

    Claim 2If there existsλ′∈(λ,min{α(c)+λ,λ0}),t0∈R,B0>0 andω0>0 such that

    then there existsB1∈(B0,∞) such that

    By the second equation of (1.1)anduc,λ(x+Cλt,t)≤φc(x+(Cλ-c)t)≤min{1,e-α(c)(x+(Cλ-c)t)},it can be proven thatvc,λ(x+Cλt,t) is a super-solution of

    On the other hand,using a similar argument to that of the proof of Lemma 2.2,we can show that max{0,ω0(e-λx-B1e-λ′x)} is a sub-solution of (4.6),provided thatB1?B0.Then Claim 2 is obtained.

    In virtue of Lemma 2.2 and (4.5),there isB0>0 such that,for any (x,)∈R×R-,

    Furthermore,combining this with Claims 1 and 2,we can obtain that,for any<0,there existssuch that

    Similarly,one can obtain (4.3).The proof is complete.

    Remark 4.2Note that the assumptionis reasonable.Indeed,sinceφc(x)→0 andψ(x)→0 asx →+∞,then,whenx →+∞,the first equation of (2.6)which is satisfied by?(x) becomes

    Let?=-e-δxfor someδ>0.Thenδsatisfies thatNote thatα(c) is the smallest positive solution of

    and due toT(0)=1<μ,it follows thatδ>α(c).This,together withyields thatFurthermore,note that the exponential decay estimate ofuc,λwas obtained only atx=+∞(it was absent atx=-∞).The primary reason for this is that the exponential decay estimate ofuc,λwas proven by virtue of (4.4),but the decay estimate of function?in (4.4) is not clear atx=-∞,hence we leave this for the further study.

    5 Numeric Simulations

    We present some numeric simulation results for system (1.1) to demonstrate our analytic.To be computable,we choose the following kernel:

    Next,we give a visual description on the behavior of the entire solutions ast →±∞.According to Theorem 3.2,the entire solutions behave like (φc,0) ast →-∞;see Figure 1.

    Figure 1 The behavior of entire solutions as t →-∞

    Choosea=0.6,b=0.5,d=2 andr=1.7,and clearly 0

    According to Theorem 3.2 (i),the two species invade (1,0) from (u?,v?) to the left ofxwith speed-Cλ,invade (0,1) from (u?,v?) to the right ofxwith speedC2?

    Figure 2 The profiles of (u,v) at t=20,30,40 in the case where 0

    Choosea=0.6,b=1.2,d=2 andr=1.7,and clearly 0

    Figure 3 The profiles of (u,v) at t=20,30,40 in the case where 0

    Choosea=1.1,b=1.2,d=2.3 andr=2.2,and clearlya,b>1,we have that

    By Theorem 3.2 (iii),the two species invade (0,1) from (1,0) to the right ofxwith speedCuv,invade (0,0) from (0,1) to the right ofxwith speedCλ,and finally,the long-time behavior of the entire solutions ast →∞is described by (3.20)–(3.23);see Figure 4 for details.

    Figure 4 The profiles of (u,v) at t=15,30,45 in the case where a,b>1

    Conflict of InterestThe authors declare no conflict of interest.

    国产av一区在线观看免费| 精品国产亚洲在线| 国产乱人视频| 国产三级黄色录像| 国产真实乱freesex| 久久人妻av系列| 国内精品一区二区在线观看| 精品人妻视频免费看| 国产国拍精品亚洲av在线观看| 最后的刺客免费高清国语| 亚洲精品456在线播放app | 99精品在免费线老司机午夜| 国内精品美女久久久久久| 色综合亚洲欧美另类图片| av视频在线观看入口| 亚洲人成伊人成综合网2020| 在线国产一区二区在线| 精品人妻1区二区| 婷婷六月久久综合丁香| 国产黄a三级三级三级人| 丝袜美腿在线中文| 久久久久九九精品影院| 99热这里只有是精品50| 1000部很黄的大片| 九九热线精品视视频播放| 能在线免费观看的黄片| 在线国产一区二区在线| 亚洲专区中文字幕在线| 亚洲狠狠婷婷综合久久图片| 久久久国产成人精品二区| 在线观看舔阴道视频| av在线蜜桃| 久久久久久久久久黄片| 国产精品嫩草影院av在线观看 | 免费一级毛片在线播放高清视频| 大型黄色视频在线免费观看| or卡值多少钱| 国产精品久久久久久久久免 | 2021天堂中文幕一二区在线观| 日本与韩国留学比较| 中文资源天堂在线| 国产探花极品一区二区| .国产精品久久| 99国产极品粉嫩在线观看| 久久国产乱子免费精品| 亚洲精品一区av在线观看| 中文字幕人成人乱码亚洲影| 亚洲av免费在线观看| 国产蜜桃级精品一区二区三区| 国产一区二区激情短视频| 哪里可以看免费的av片| 午夜福利在线在线| 小说图片视频综合网站| 久久精品国产亚洲av涩爱 | 熟女人妻精品中文字幕| 欧美成人a在线观看| a级毛片a级免费在线| 亚洲av免费在线观看| 欧美精品国产亚洲| 亚洲av电影在线进入| 深夜精品福利| 久久国产乱子免费精品| 日本精品一区二区三区蜜桃| 18禁在线播放成人免费| 91久久精品国产一区二区成人| 亚洲国产色片| 99热6这里只有精品| 国产成人aa在线观看| 欧美色欧美亚洲另类二区| 亚洲欧美精品综合久久99| 九色国产91popny在线| 久久久久久久久中文| 国产黄片美女视频| 一区二区三区激情视频| 午夜福利在线观看免费完整高清在 | 午夜福利在线观看吧| 可以在线观看的亚洲视频| 午夜福利成人在线免费观看| 夜夜躁狠狠躁天天躁| 成人国产综合亚洲| 日韩人妻高清精品专区| av欧美777| 九九热线精品视视频播放| 97热精品久久久久久| 久久99热6这里只有精品| 亚洲在线自拍视频| 国产精品一区二区三区四区免费观看 | 特级一级黄色大片| 丰满的人妻完整版| 午夜福利在线观看吧| 色视频www国产| 国产高清三级在线| 国产精品电影一区二区三区| 成人欧美大片| 日日摸夜夜添夜夜添小说| 一本综合久久免费| 国产午夜福利久久久久久| 婷婷精品国产亚洲av在线| 久久精品久久久久久噜噜老黄 | 成人高潮视频无遮挡免费网站| 91狼人影院| 亚洲精品在线美女| 91av网一区二区| 宅男免费午夜| 国产精品三级大全| 欧美zozozo另类| 99在线视频只有这里精品首页| 亚洲国产色片| 蜜桃亚洲精品一区二区三区| 精品午夜福利视频在线观看一区| 怎么达到女性高潮| 国产精品99久久久久久久久| 国产精品一区二区三区四区免费观看 | av中文乱码字幕在线| 一区福利在线观看| АⅤ资源中文在线天堂| 亚洲狠狠婷婷综合久久图片| 欧美成人a在线观看| x7x7x7水蜜桃| 国内精品久久久久精免费| www.熟女人妻精品国产| 天堂av国产一区二区熟女人妻| 成人一区二区视频在线观看| 在线十欧美十亚洲十日本专区| 久久久久久九九精品二区国产| 久久久久久久久大av| 精品免费久久久久久久清纯| 在线免费观看不下载黄p国产 | 亚洲午夜理论影院| 国产高潮美女av| 丰满人妻一区二区三区视频av| 亚洲七黄色美女视频| 欧美成人免费av一区二区三区| 一级黄色大片毛片| 麻豆国产97在线/欧美| 老司机午夜十八禁免费视频| .国产精品久久| 男女床上黄色一级片免费看| 首页视频小说图片口味搜索| 亚洲 欧美 日韩 在线 免费| 国产一区二区亚洲精品在线观看| 欧美色视频一区免费| 高清在线国产一区| 欧美精品啪啪一区二区三区| 亚洲精品成人久久久久久| 一级毛片久久久久久久久女| 最新在线观看一区二区三区| 亚洲 欧美 日韩 在线 免费| 精品人妻1区二区| 久久中文看片网| 一区二区三区免费毛片| 精品久久久久久成人av| 国内精品一区二区在线观看| 深夜a级毛片| 丰满乱子伦码专区| 国产人妻一区二区三区在| 99热精品在线国产| 亚洲专区中文字幕在线| 久久精品影院6| 国产精品爽爽va在线观看网站| 久久久色成人| 国产色爽女视频免费观看| 女同久久另类99精品国产91| 久久亚洲精品不卡| 色播亚洲综合网| 欧美高清性xxxxhd video| 搞女人的毛片| 国产高潮美女av| 日韩欧美一区二区三区在线观看| 一级毛片久久久久久久久女| 99热这里只有是精品在线观看 | 亚洲精品色激情综合| 亚洲精品影视一区二区三区av| 老司机午夜十八禁免费视频| 免费一级毛片在线播放高清视频| 亚洲第一区二区三区不卡| 色综合亚洲欧美另类图片| 91久久精品国产一区二区成人| 久久草成人影院| 国产精品亚洲美女久久久| 亚洲真实伦在线观看| 色综合站精品国产| 国产人妻一区二区三区在| 亚洲三级黄色毛片| 不卡一级毛片| 亚洲av免费在线观看| 国产精品久久视频播放| 免费黄网站久久成人精品 | 久久6这里有精品| 老司机午夜福利在线观看视频| 91狼人影院| 色在线成人网| 久久久色成人| 白带黄色成豆腐渣| 国产一区二区三区在线臀色熟女| 直男gayav资源| 亚洲 国产 在线| 两个人视频免费观看高清| 人妻丰满熟妇av一区二区三区| 成人三级黄色视频| 美女cb高潮喷水在线观看| 搡老熟女国产l中国老女人| 九九久久精品国产亚洲av麻豆| 久99久视频精品免费| 黄色一级大片看看| 国产一区二区三区在线臀色熟女| 高潮久久久久久久久久久不卡| 国产真实伦视频高清在线观看 | 亚洲在线观看片| 深夜a级毛片| 亚洲成av人片免费观看| 国产精品亚洲美女久久久| 97超视频在线观看视频| 又爽又黄无遮挡网站| 亚洲第一区二区三区不卡| АⅤ资源中文在线天堂| 非洲黑人性xxxx精品又粗又长| 亚洲午夜理论影院| 中文字幕人成人乱码亚洲影| 97热精品久久久久久| 久久久久久久亚洲中文字幕 | 亚洲五月天丁香| 深夜精品福利| 18禁黄网站禁片午夜丰满| 好看av亚洲va欧美ⅴa在| 成人av一区二区三区在线看| 久久精品影院6| xxxwww97欧美| 国产黄片美女视频| www.999成人在线观看| 在现免费观看毛片| 9191精品国产免费久久| 亚洲精品日韩av片在线观看| 日韩高清综合在线| av在线老鸭窝| 国产爱豆传媒在线观看| 欧美日韩乱码在线| 成人亚洲精品av一区二区| 九九在线视频观看精品| 午夜福利免费观看在线| 成人鲁丝片一二三区免费| 变态另类成人亚洲欧美熟女| 亚洲自偷自拍三级| 国产成人aa在线观看| 人人妻人人看人人澡| 精品人妻视频免费看| 老鸭窝网址在线观看| 亚洲av不卡在线观看| 亚洲av五月六月丁香网| 黄色女人牲交| 国产亚洲av嫩草精品影院| 啦啦啦观看免费观看视频高清| 嫩草影视91久久| 男女之事视频高清在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲人成网站在线播放欧美日韩| 在线免费观看的www视频| 麻豆国产av国片精品| 小蜜桃在线观看免费完整版高清| 久久久久亚洲av毛片大全| 观看美女的网站| 国产av一区在线观看免费| 亚洲精品在线美女| 久久久久久久午夜电影| 麻豆av噜噜一区二区三区| 亚洲欧美日韩东京热| 黄色女人牲交| 日韩有码中文字幕| 午夜福利在线观看免费完整高清在 | xxxwww97欧美| 欧美日韩黄片免| 色播亚洲综合网| 91九色精品人成在线观看| www.999成人在线观看| 欧洲精品卡2卡3卡4卡5卡区| 久久精品国产自在天天线| 国产中年淑女户外野战色| 999久久久精品免费观看国产| 欧美激情在线99| 韩国av一区二区三区四区| 男女做爰动态图高潮gif福利片| 男插女下体视频免费在线播放| 99久久九九国产精品国产免费| 人人妻人人看人人澡| 亚洲精品在线观看二区| 我要搜黄色片| 亚洲一区高清亚洲精品| 亚洲经典国产精华液单 | 欧美成狂野欧美在线观看| 免费观看精品视频网站| 日本与韩国留学比较| 欧美性猛交黑人性爽| 成人鲁丝片一二三区免费| 精品福利观看| 国产免费av片在线观看野外av| 成年人黄色毛片网站| 欧美日本视频| 午夜a级毛片| 高清毛片免费观看视频网站| 少妇的逼水好多| 日韩精品青青久久久久久| 69av精品久久久久久| 久久久久久久亚洲中文字幕 | 一进一出抽搐动态| 色5月婷婷丁香| 国内揄拍国产精品人妻在线| 日韩亚洲欧美综合| 国产亚洲精品综合一区在线观看| 欧美bdsm另类| 亚洲av免费高清在线观看| 在线播放无遮挡| 久久亚洲精品不卡| 99在线视频只有这里精品首页| 日日摸夜夜添夜夜添av毛片 | 九色成人免费人妻av| 午夜激情福利司机影院| 老熟妇乱子伦视频在线观看| 亚洲av成人av| 中文字幕精品亚洲无线码一区| 亚洲av成人精品一区久久| 精品国产亚洲在线| 国产精品一及| 能在线免费观看的黄片| 伊人久久精品亚洲午夜| 少妇被粗大猛烈的视频| 好男人在线观看高清免费视频| 午夜日韩欧美国产| 一区福利在线观看| 国产麻豆成人av免费视频| 一个人看视频在线观看www免费| 国产av不卡久久| 亚洲欧美精品综合久久99| 日韩中文字幕欧美一区二区| 俄罗斯特黄特色一大片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产男靠女视频免费网站| 亚洲中文字幕一区二区三区有码在线看| 亚洲无线在线观看| 国内久久婷婷六月综合欲色啪| 日韩精品青青久久久久久| 啪啪无遮挡十八禁网站| 中文字幕免费在线视频6| 中文字幕免费在线视频6| 成年女人看的毛片在线观看| 午夜福利18| 国产伦精品一区二区三区视频9| 给我免费播放毛片高清在线观看| 国产精品国产高清国产av| 我要看日韩黄色一级片| 夜夜躁狠狠躁天天躁| 久久精品久久久久久噜噜老黄 | 国产免费av片在线观看野外av| 一进一出抽搐动态| 国产精品98久久久久久宅男小说| 亚洲精品色激情综合| 一级av片app| 国内精品美女久久久久久| 久久久久久久久久黄片| 国产亚洲精品久久久com| 韩国av一区二区三区四区| 美女大奶头视频| 亚洲av第一区精品v没综合| 午夜久久久久精精品| 99视频精品全部免费 在线| 一a级毛片在线观看| 亚洲最大成人手机在线| 观看免费一级毛片| 每晚都被弄得嗷嗷叫到高潮| a级毛片免费高清观看在线播放| 亚洲第一欧美日韩一区二区三区| 亚洲国产高清在线一区二区三| 黄片小视频在线播放| 非洲黑人性xxxx精品又粗又长| 国内精品一区二区在线观看| 久久精品影院6| 亚洲国产精品久久男人天堂| 日本免费一区二区三区高清不卡| 亚洲欧美日韩卡通动漫| 中文字幕精品亚洲无线码一区| 真实男女啪啪啪动态图| 每晚都被弄得嗷嗷叫到高潮| 嫩草影院入口| 日本在线视频免费播放| 国产一级毛片七仙女欲春2| 国产亚洲欧美在线一区二区| 国产乱人视频| a级毛片免费高清观看在线播放| 国产在视频线在精品| 久久国产乱子免费精品| 别揉我奶头~嗯~啊~动态视频| 国内精品久久久久精免费| 久久久久国产精品人妻aⅴ院| 国产欧美日韩一区二区三| 一个人免费在线观看的高清视频| 十八禁国产超污无遮挡网站| avwww免费| 国产单亲对白刺激| av中文乱码字幕在线| 欧美乱妇无乱码| 亚洲精品一卡2卡三卡4卡5卡| 一个人免费在线观看的高清视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 丁香欧美五月| 三级毛片av免费| 永久网站在线| 色精品久久人妻99蜜桃| 好看av亚洲va欧美ⅴa在| 99在线人妻在线中文字幕| 亚洲精品456在线播放app | 亚洲国产精品999在线| 可以在线观看的亚洲视频| 精品一区二区三区视频在线观看免费| 男女视频在线观看网站免费| 天天一区二区日本电影三级| 制服丝袜大香蕉在线| 国产亚洲精品av在线| 综合色av麻豆| 免费一级毛片在线播放高清视频| 亚洲av成人av| 动漫黄色视频在线观看| 一夜夜www| 国产熟女xx| 亚洲熟妇中文字幕五十中出| 久久人妻av系列| 色吧在线观看| 欧美国产日韩亚洲一区| 欧美激情久久久久久爽电影| 国产精品女同一区二区软件 | 一本综合久久免费| 日韩中字成人| 男女做爰动态图高潮gif福利片| 久久久精品欧美日韩精品| 日韩大尺度精品在线看网址| 91麻豆精品激情在线观看国产| 欧美丝袜亚洲另类 | 日韩欧美国产在线观看| 黄色女人牲交| 国产精品永久免费网站| 精华霜和精华液先用哪个| 成年女人毛片免费观看观看9| 自拍偷自拍亚洲精品老妇| 国产中年淑女户外野战色| 大型黄色视频在线免费观看| 国产精品嫩草影院av在线观看 | 老熟妇乱子伦视频在线观看| 91在线精品国自产拍蜜月| 午夜a级毛片| 51午夜福利影视在线观看| a级毛片a级免费在线| 丰满人妻熟妇乱又伦精品不卡| 国产一区二区在线观看日韩| x7x7x7水蜜桃| 精品人妻偷拍中文字幕| 久久性视频一级片| 国产乱人伦免费视频| 日韩中文字幕欧美一区二区| 五月玫瑰六月丁香| 精品久久久久久久久久免费视频| av在线观看视频网站免费| 国产人妻一区二区三区在| 亚洲 欧美 日韩 在线 免费| 丝袜美腿在线中文| 国产精品乱码一区二三区的特点| 亚洲七黄色美女视频| 欧美日韩瑟瑟在线播放| 女人十人毛片免费观看3o分钟| 日本熟妇午夜| 一个人免费在线观看电影| 亚洲中文日韩欧美视频| 久久精品影院6| 亚洲欧美日韩高清在线视频| 色综合亚洲欧美另类图片| 国产精品久久电影中文字幕| 国产午夜精品久久久久久一区二区三区 | 在线天堂最新版资源| 亚洲国产精品成人综合色| 伦理电影大哥的女人| 岛国在线免费视频观看| 天天一区二区日本电影三级| 最近中文字幕高清免费大全6 | 精品久久久久久久人妻蜜臀av| 国产亚洲欧美在线一区二区| 国产精品一区二区免费欧美| 久久久久久久久大av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | a级毛片a级免费在线| 日韩欧美在线乱码| 91狼人影院| or卡值多少钱| 午夜久久久久精精品| 国产高清激情床上av| 色视频www国产| 99久久久亚洲精品蜜臀av| 国产精华一区二区三区| 中文亚洲av片在线观看爽| 久久久久国内视频| 国产一级毛片七仙女欲春2| 久久久国产成人免费| 12—13女人毛片做爰片一| av女优亚洲男人天堂| 亚洲中文字幕日韩| 精品久久久久久久末码| 欧美激情国产日韩精品一区| 我要看日韩黄色一级片| 亚洲男人的天堂狠狠| 亚洲自拍偷在线| 国产亚洲欧美98| av天堂在线播放| 日本黄色片子视频| 在线观看一区二区三区| 中文字幕免费在线视频6| 最好的美女福利视频网| 精品一区二区三区视频在线| 亚洲专区中文字幕在线| 久久久色成人| 人妻制服诱惑在线中文字幕| 国产黄色小视频在线观看| 国产午夜精品论理片| 一个人免费在线观看电影| 国产精品99久久久久久久久| 欧美成人a在线观看| 亚洲一区二区三区色噜噜| 亚洲精品久久国产高清桃花| 女同久久另类99精品国产91| 俄罗斯特黄特色一大片| 日韩有码中文字幕| 国产乱人视频| 在线看三级毛片| 亚洲真实伦在线观看| 国产成人欧美在线观看| 亚洲美女黄片视频| 亚洲人成伊人成综合网2020| 欧美一区二区精品小视频在线| 99riav亚洲国产免费| 亚洲电影在线观看av| 精品一区二区三区视频在线| 欧美三级亚洲精品| 国产真实乱freesex| 91九色精品人成在线观看| 一个人免费在线观看的高清视频| 午夜视频国产福利| 天美传媒精品一区二区| 国产乱人伦免费视频| 一区二区三区免费毛片| 午夜两性在线视频| 男人和女人高潮做爰伦理| 日本免费一区二区三区高清不卡| 国产真实乱freesex| 嫩草影视91久久| 99久久精品国产亚洲精品| 亚洲自拍偷在线| 老司机福利观看| 久久精品国产清高在天天线| 丁香六月欧美| 国产精品爽爽va在线观看网站| 亚洲中文日韩欧美视频| av视频在线观看入口| 全区人妻精品视频| 真人一进一出gif抽搐免费| 亚洲专区中文字幕在线| 99热6这里只有精品| 少妇被粗大猛烈的视频| 一本精品99久久精品77| 色哟哟·www| 国产探花极品一区二区| 国模一区二区三区四区视频| 国产一级毛片七仙女欲春2| 日韩有码中文字幕| 国产午夜福利久久久久久| 成人国产一区最新在线观看| 嫁个100分男人电影在线观看| 三级国产精品欧美在线观看| 成人性生交大片免费视频hd| 亚洲第一区二区三区不卡| 亚洲精品久久国产高清桃花| 欧美最新免费一区二区三区 | 精品欧美国产一区二区三| 不卡一级毛片| 国产人妻一区二区三区在| av在线观看视频网站免费| 精品午夜福利视频在线观看一区| 搡老岳熟女国产| 久久久久九九精品影院| 99热精品在线国产| 欧美日韩中文字幕国产精品一区二区三区| 日韩国内少妇激情av| 精品久久久久久久末码| 91久久精品电影网| 欧美中文日本在线观看视频| 国产精品一及| 久久久久久久久中文| 我要看日韩黄色一级片| 国产精品一区二区三区四区免费观看 | 亚洲男人的天堂狠狠| 国产高清视频在线观看网站| 色5月婷婷丁香| 97热精品久久久久久| 精品人妻偷拍中文字幕| 色av中文字幕| 天堂动漫精品| 国产成+人综合+亚洲专区| 91在线精品国自产拍蜜月| 日韩中文字幕欧美一区二区| 亚洲最大成人av| 国产午夜精品久久久久久一区二区三区 | 亚洲三级黄色毛片| 欧美绝顶高潮抽搐喷水| 精品国内亚洲2022精品成人| 亚洲 欧美 日韩 在线 免费| 一二三四社区在线视频社区8| 成年人黄色毛片网站| 怎么达到女性高潮| 深夜a级毛片| 国产精品精品国产色婷婷| 内地一区二区视频在线|