• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NOTES ON THE LOG-BRUNN-MINKOWSKI INEQUALITY?

    2023-12-14 13:05:38楊云龍江楠
    關(guān)鍵詞:云龍

    (楊云龍) (江楠)

    School of Science, Dalian Maritime University, Dalian 116026, China

    E-mail: ylyang@dlmu.edu.cn; 995125315@qq.com

    Deyan ZHANG (張德燕)?

    School of Mathematical Sciences, Huaibei Normal University, Huaibei 235000, China

    E-mail: zhangdy8005@126.com

    Abstract B?r?czky-Lutwak-Yang-Zhang proved the log-Brunn-Minkowski inequality for two origin-symmetric convex bodies in the plane in a way that is stronger than for the classical Brunn-Minkowski inequality.In this paper,we investigate the relative positive center set of planar convex bodies.As an application of the relative positive center,we prove the log-Minkowski inequality and the log-Brunn-Minkowski inequality.

    Key words cone-volume measure;dilation position;log-Brunn-Minkowski’s inequality;log-Minkowski’s inequality;relative positive center

    1 Introduction

    We denote the usualn-dimensional Euclidean space with Rnas the canonical inner product.A compact convex setK ?Rnis a convex body if it contains the origin and has a nonempty interior.Whenn=2,it is called a planar convex body.For two convex bodies,KandL,the Minkowski sum ofKandLand the Minkowski scalar product ofKfor a positive real numbertare defined,respectively,byK+L={x+y|x ∈K,y ∈L} andtK={tx|x ∈K}.LetKandLbe two convex bodies in Rnandλ ∈(0,1).The classical Brunn-Minkowski inequality states that

    whereV(·) denotes then-dimensional volume (i.e.,the Lebesgue measure) functional.The equality in (1.1) holds if and only ifKandLare homothetic.The inequality (1.1) has become a significant tool in convex geometry,and it has extensive applications in various areas of mathematics.More comprehensive introductions to this topic can be found in Gardner’s review[11]and Schneider’s monograph [32].

    In the early 1960s,Firey [8](see also Gardner-Hug-Weil [12,p2311]and Schneider [32,Section 9.1]) extended the Minkowski addition of convex bodies to theLpMinkowski addition for eachp ≥1 and established theLpBrunn-Minkowski inequality;that is,

    with equality if and only ifKandLare dilates,where

    is theLpMinkowski addition ofKandL,andhKandhLare the support functions ofKandL,respectively.Lutwak [23,24]set up a broad framework for theLpBrunn-Minkowski theory and promoted it for rapid development.TheLpBrunn-Minkowski theory,as a generalization of the classical Brunn-Minkowski theory,has attracted increasing interest in recent years,partly due to its wide range of connections with other subjects,such as affine geometry,Banach space theory,harmonic analysis,and partial differential equations.

    B?r?czky-Lutwak-Yang-Zhang [2]extended (1.3) into allp>0.For the case 0

    which is the limiting case of theLpMinkowski addition asp →0.

    In [2],the authors conjectured that the log-Brunn-Minkowski inequality

    and the log-Minkowski inequality

    hold for two o-symmetric convex bodiesKandL,whereis the cone-volume probability measure ofKandλ ∈[0,1].

    Xi-Leng [37]composed the definition of a “dilation position”,and obtained the log-Brunn-Minkowski inequality and the answer to Dar’s conjecture for when two planar convex bodies are in a dilation position.Ma [25]gave an alternative proof of (1.5) for the planar case.Saroglou[30]established (1.4),together with its equality cases for pairs of convex bodies that are both unconditional with respect to some orthonormal basis,and dealt with generalizations of (1.4)in [31].Stancu [35]proved some variants of the logarithmic Minkowski inequality for general convex bodies and developed some special cases for the equality in(1.5)without the symmetric assumption.Other aspects of the log-Brunn-Minkowski and log-Minkowski inequalities can be found in Colesanti-Livshyts-Marsiglietti [5],Colesanti-Livshyts [6],Eskenazis-Moschidis [7],Henk-Pollehn [16],Kolesnikov-Milman [22],Putterman [27],Rotem [28],Roysdon-Xing [29],Yang-Zhang [41],Yang-Yang-Zhu [39],etc..

    This paper aims to show proofs of the log-Brunn-Minkowski and log-Minkowski inequalities for when two planar convex bodies are at a dilation position.Distinct from Xi-Leng’s technique,our proof is based on the relative positive center of convex bodies (see Definition 2.2),which is a generalization of the positive center given by Gage [9].

    The aspect of“dilation position”is the key to the work of Xi-Leng[37].The most important of our proof is establishing a connection between the “dilation position” and the “relative positive center”.Concretely,we obtain the following proposition by comparing these definitions:

    Proposition 1.1LetKandLbe two planar convex bodies.IfKandLare at a dilation position and the origino ∈int(K ∩L),thenomust be a relative positive center ofKwith respect toL.

    To describe the positive center set of planar convex bodies,we have the following two theorems:

    Theorem 1.2LetKandLbe two planar convex bodies.IfKandLare at a dilation position and the origino ∈int(K ∩L),then the relative positive center set ofKwith respect toL,βK,Lis a closed convex set,and for any boundary pointxof βK,L,at least one ofBK,L(rx(K,L))=0 andBK,L(Rx(K,L))=0 holds.

    Theorem 1.3LetKandLbe two planar convex bodies.IfKandLare at a dilation position and the origino ∈int(K ∩L),then the relative positive center set ofKwith respect toL,βK,Lis a closed convex set and

    (i)βK,Lhas only one point if and only ifKandLare dilates or parallelograms with parallel sides;

    (ii) βK,Lis a line segment if and only if eitherKis a Minkowski addition of a dilation ofLand a line segment orLis a Minkowski addition of a dilation ofKand a line segment;

    (iii) βK,Lhas a positive area if and only ifKandLare neither (i) nor (ii).

    As applications regarding the positive center set of planar convex bodies,we have the following log-Minkowski and log-Brunn-Minkowski inequalities for when two planar convex bodies are at a dilation position (obtained by Xi-Leng [37]):

    Theorem 1.4LetKandLbe two planar convex bodies.IfKandLare at a dilation position,then

    with equality if and only ifKandLare dilates or parallelograms with parallel sides.

    Theorem 1.5LetKandLbe two planar convex bodies.IfKandLare at a dilation position,then,forλ ∈[0,1],

    Whenλ ∈(0,1),the equality in(1.7)holds if and only ifKandLare dilates or parallelograms with parallel sides.

    The rest of this paper is organized as follows: Section 2 presents some concepts and lemmata about convex bodies.Section 3 discusses the relative positive center set of two planar convex bodies when they are at a dilation position,and shows the proofs of Theorems 1.2 and 1.3.Section 4 proves Theorems 1.4 and 1.5 via the positive center set of planar convex bodies.

    2 Preliminaries

    This section reviews some basic notations and definitions in convex geometry.Good general references for the theory of convex bodies are provided by the books of Gardner [11],Gruber[13],Schneider [32]and Thompson [36].

    LetSn-1be the(n-1)-dimensional unit sphere.Forx,y ∈Rn,x·yrepresents the standard inner product ofxandy.The forms intAand?Adenote the interior and boundary ofA ?Rn.[M,N]denotes the line segment connecting pointsMandN.

    IfKis a convex body in Rn,its support functionhK:Rn →R ishK(x)=max{x·y|y ∈K}.

    For a convex bodyKin Rn,its surface area measureSKis a Borel measure onSn-1defined for a Borel setω ?Sn-1by

    whereνK:?′K →Sn-1is the Gauss map ofK,defined on?′K,the set of points of?Kthat have a unique outer unit normal,andHn-1is the (n-1)-dimensional Hausdorffmeasure.

    LetKbe a convex body containing the origin in its interior.The cone-volume measureVKofKis a Borel measure on the unit sphereSn-1defined for a Borel setω ?Sn-1as

    the cone-volume probability measureofKis defined by

    The cone-volume measure plays a significant role in the log-Minkowski problem.Many works have recently focused on this subject;see,e.g.,[1,3,4,10,14,15,17,19,33,34,38,42].

    Suppose thatKandLare two convex bodies in Rn.The relative Steiner formula states that

    whereVi(K,L) is thei-th mixed volume ofKandL.In particular,one has thatV0(K,L)=V(K),Vn(K,L)=V(L),Vi(K,L)=Vn-i(L,K),and

    Then,V1(K,L)=V1(L,K) forn=2,and for the rest of this paper,we denote thatV(K,L)rather thanV1(K,L).Forn=2,Equation (2.2) becomes

    be the inradius and outradius,respectively,ofKwith respect toL.Thus,

    Forx ∈K,setrx(K,L)=max{t ≥0|x+tL ?K} andRx(K,L)=min{t ≥0|x+tL ?K}.Ifx ∈K ∩L,then

    Definition 2.1([37]) LetK,Lbe two planar convex bodies.KandLare at a dilation position if the origino ∈K ∩Landr(K,L)L ?K ?R(K,L)L.

    The properties of convex bodies are at a dilation position,as found in Lemma 3.2 (see also Xi-Leng[37]).Some papers recently considered the dilation position;these include Jin[20]and Yang [40].By the relative Bonnesen function ofKwith respect toL,

    we give the following definition of the relative positive center:

    Definition 2.2LetK,Lbe two planar convex bodies.A pointx ∈intKis a relative positive center ofKwith respect toLif it satisfies that

    Ifx ∈int(K ∩L) andxis a relative positive center ofKwith respect toL,thenxis the relative positive center ofLwith respect toK.The set of all relative positive centers ofKwith respect toLare denoted as βK,L.WhenLis the unit disc,the relative positive center turns into the positive center.The positive center set of plane curves was studied by [18,21,26].

    For the remainder of this paper,for a planar convex bodyE,Ex(r) represents the planar convex bodyx+rE.

    3 Relative Positive Center Set of Planar Convex Bodies

    To show the relationship between the relative positive center and the dilation position of planar convex bodies,we give two lemmata which appeared in B?r?czky-Lutwak-Yang-Zhang[2]and Xi-Leng [37].

    Lemma 3.1([2]) IfKandLare two planar convex bodies,then,forr(K,L)≤t ≤R(K,L),

    This inequality is strict wheneverr(K,L)

    Lemma 3.2([37]) LetKandLbe two convex bodies in Rn.Then,

    (i) there are a translate ofL,say,and a translate ofK,say,so thatandare at a dilation position;

    (ii) ifKandLare at a dilation position,then the origino ∈int(K ∩L)∪(?K ∩?L).

    The next three examples show that the relative positive center set ofKwith respect toL,βK,L,has only one point,and that it is a line segment.

    Example 3.3LetKandLbe two planar convex bodies.If they are dilates,then a simple computation shows that the relative positive center set ofKwith respect toL,βK,L,has only one point which is the center of dilation.

    Example 3.4LetKandLbe two parallelograms with parallel sidesa,candb,d(see Figure 1).The areas ofKandLareV(K)=acsinθandV(L)=bdsinθ,respectively,and the mixed area ofKwith respect toLisV(K,L)=(ab+cd)sinθ.Hence,

    Figure 1 The case of two parallelograms

    A simple computation shows that there is only one point (black dot in Figure 1) that satisfiesBK,L(t)≥0;that is,βK,Lhas only one point.

    Example 3.5LetKandLbe two planar convex bodies.IfK=λL+[o1,o2],whereλ>0 and [o1,o2]is a line segment of lengths,the area ofKisV(K)=λ2V(L)+λws,wherewis the width ofLin theudirection,which is normal to [o1,o2](see Figure 2).The mixed area ofKwith respect toLisHence,

    Figure 2 The case where K=λL+[o1,o2]

    A simple computation shows that βK,Lis a line segment.

    For two planar convex bodiesKandL,the following proposition shows that the relative positive center set is not empty whenKandLare at a dilation position:

    Proof of Proposition 1.1AsKandLare at a dilation position and the origino ∈int(K ∩L),r(K,L)L ?K ?R(K,L)L,comparing Definitions 2.1 and 2.2,one has thatro(K,L)=r(K,L) andRo(K,L)=R(K,L).It follows from Lemma 3.1 that

    Similarly,BK,L(Ro(K,L))≥0.Hence,the origin is the positive center ofKwith respect toL.

    Lemma 3.6LetKandLbe two planar convex bodies.IfKandLare at a dilation position and the origino ∈int(K ∩L),then the choice of originowith respect toKandLis unique.

    ProofSuppose that there exist two pointso1ando2such thato1∈int(K ∩L),o2∈int(K ∩L),and

    Then,Kbelongs to the intersection ofo1+R(K,L)Lando2+R(K,L)L,and contains the convex hull ofo1+r(K,L)Lando2+r(K,L)L.Figure 3 shows that there existso3∈(o1,o2)such that

    Figure 3 Illustration that the choice of origin is non-unique

    which contradicts the definitions ofr(K,L)andR(K,L);that is,the choice of the originowith respect toKandLis unique.

    The choice of the origin for planar convex bodies that are at a dilation position may vary as translations of the planar convex bodies.

    Remark 3.7The black dots in Figure 4 are the choices of the origins for two rectangles with sides of 4,6 and 2,10.

    Figure 4 Different choices of the origin as translations

    Proof of Theorem 1.2By Proposition 1.1,the originomust be the relative positive center ofKwith respect toLwhenKandLare at a dilation position ando ∈int(K ∩L);that is,βK,Lis not empty.From the definition of the relative positive center,βK,Lis closed,and for any boundary pointxof βK,L,at least one ofBK,L(rx(K,L))=0 andBK,L(Rx(K,L))=0 holds.Thus,it suffices to show that βK,Lis convex.If βK,Lhas only one point,its convexity is clear.If βK,Lhas more than one point,it is sufficient to show that for two relative positive centers ofKwith respect toL,o1ando2,the pointo3∈[o1,o2]is also a relative positive center ofKwith respect toL.In other words,one has to check that

    wheret1andt2(t1≤t2) are two roots ofBK,L(t)=0.

    AsKis convex,it containsLo1(ro1(K,L)),Lo2(ro2(K,L)),andLo3((K,L)).Figure 5 shows that

    Figure 5 Inscribed case

    Figure 6 shows thatLo1(Ro1(K,L)),Lo2(Ro2(K,L)) andLo3((K,L)) containK,which implies

    Figure 6 Circumscribed case

    Combining (3.2) and (3.3) and the fact thato1,o2∈βK,Lando1≠o2,we have that

    that is,o3is a point of βK,L.

    Theorem 1.2 shows that the relative positive center set of planar convex bodies is a closed convex set.

    Proposition 3.8LetKandLbe two planar convex bodies.IfKandLare at a dilation position and the origino ∈int(K ∩L),then βK,Lhas only one point if and only ifKandLare dilates or parallelograms with parallel sides.

    ProofExamples 3.3 and 3.4 show that βK,Lhas only one point whenKandLare dilates or parallelograms with parallel sides.Thus,it suffices to deal with the “only if” part.

    AsKandLare at a dilation position and the origino ∈int(K ∩L),Proposition 1.1 and Lemma 3.6 indicate thatois the only point of βK,L.By the definition of the relative positive center and dilation position of planar convex bodies,one has thatro(K,L)=r(K,L) andRo(K,L)=R(K,L).Theorem 1.2 states that at least one of the following equalities holds:

    Together with Lemma 3.1,this implies thatKis the Minkowski addition of a dilation ofLand a line segment or thatLis the Minkowski addition of a dilation ofKand a line segment.Thus,KandLare dilate and parallelograms with parallel sides,orKis a Minkowski addition of a dilation ofLand a line segment,orLis a Minkowski addition of a dilation ofKand a line segment.IfK(L) is a Minkowski addition of a dilation ofL(K) and a line segment,Example 3.5 shows that βK,Lis a line segment,which contradicts to the assumption that βK,Lhas only one point.

    Proposition 3.9LetKandLbe two planar convex bodies.IfKandLare at a dilation position and the origino ∈int(K ∩L),then βK,Lis a line segment if and only ifKis a Minkowski addition of a dilation ofLand a line segment orLis a Minkowski addition of a dilation ofKand a line segment.

    ProofExample 3.5 suggests that βK,Lis a line segment whenKis a Minkowski addition of a dilation ofLand a line segment,orLis a Minkowski addition of a dilation ofKand a line segment.Next,it suffices to deal with the “only if” part.

    If βK,Lis a line segment,Proposition 1.1 and Lemma 3.6 show that the originomust be the boundary point of βK,L.From the definition of the relative positive center and the dilation position of planar convex bodies,it follows thatro(K,L)=r(K,L) andRo(K,L)=R(K,L).Thus,similarly to the proof of Proposition 3.8,one has that

    which,together with Lemma 3.1,shows thatKis the Minkowski addition of a dilation ofLand a line segment,orLis the Minkowski addition of a dilation ofKand a line segment.Hence,KandLare dilates or parallelograms with parallel sides orK(L) is a Minkowski addition of a dilation ofL(K) and a line segment.IfKandLare dilates or parallelograms with parallel sides,Examples 3.3 and 3.4 suggest that βK,Lis a point,which contradicts the fact that βK,Lis a line segment.

    Proof of Theorem 1.3By Propositions 3.8 and 3.9,one gets the desired result.

    Remark 3.10Theorems 1.2 and 1.3 can be regarded as generalizations of Theorems 2.1,2.6 and 2.7 from Huang-Pan-Yang [18],for when a planar convex bodyLis chosen as a unit disc.

    4 Planar log-Brunn-Minkowski and log-Minkowski Inequalities

    Inspired by the work of B?r?czky-Lutwak-Yang-Zhang [2],Xi-Leng [37]and Ma [25],we first give the following technical lemma:

    Lemma 4.1LetKandLbe two planar convex bodies.IfKandLare at a dilation position,then fort ≥0,

    with equality if and only ifKandLare dilates or parallelograms with parallel sides.

    ProofBy Lemma 3.2,the origin iso ∈int(K ∩L)∪(?K ∩?L).To prove the inequality(4.1),it is sufficient to show the following two cases:

    Case 1o ∈int(K ∩L).

    which,together with (2.3),gives that

    which implies the desired inequality (4.1).

    IfKandLare dilates or parallelograms with parallel sides,the equality holds in (4.1).To prove thatKandLare dilates or parallelograms with parallel sides when the equality holds in(4.1),it is enough to show that the inequality (4.1) is strict whenKandLare neither dilates nor parallelograms with parallel sides.

    Case 2o ∈?K ∩?L.

    Aso ∈?K ∩?L,for allu ∈S1Σ2(Σ2as Case 1),then in a fashion similar to the proof of Case 1,one can get inequality (4.1).IfKandLare dilates or parallelograms with parallel sides,the equality holds in (4.1).

    If the equality holds in (4.1),then

    for allu ∈suppSK Σ2.By Lemma 3.1,one has that

    for allu ∈suppSK Σ2.AsKis a convex body,Σ2must be contained in an open subset of a half-sphere,and suppSKcannot be concentrated on a half-sphere.Thus,suppSK Σ2≠?.Without loss of generality,we assume that there is anu′∈suppSK Σ2such thathK(u′)=r(K,L)hL(u′).From Lemma 3.2 and its proof (see [2,Lemma 4.1]or [37,p.65]),it follows thatK=r(K,L)L+σ1,whereσ1is a line segment.Thus,

    for allu ∈S1,andobelongs to the relative boundary ofσ1.

    Note thatKandLare dilates if and only ifσ1={o}.IfKandLare not dilates,thenσ1is nondegenerate.From expression (4.3) and withobelonging to the relative boundary ofσ1,it follows that the set Σ′={u ∈S1|hK(u)=r(K,L)hL(u)} is contained in a half-sphere.AsKhas interior points,suppSKcannot be concentrated on a half-sphere.This,together with the fact that Σ′is contained in a half-sphere,shows that suppSKΣ′must contain at least one unit vectoru′′.By (4.2) and the fact Σ2?Σ′,one has thatSimilarly,

    whereobelongs to the relative boundary ofσ1.Again,expression (4.3) yields that

    Note thatKandLare not dilates if and only ifThus,

    which implies thatKis a parallelogram with sides parallel toσ1andσ2.Similarly,one has that

    which indicates thatLis also a parallelogram with sides parallel toσ1andσ2.

    Motivated by the work of Ma[25],we can get Theorem 1.4,and its proof is nearly the same as in [25].To ensure the integrity of this article,we provide the detailed proof.

    Proof of Theorem 1.4Set

    DifferentiatingF(t) with respect totgives that

    It follows from (3.1) thatF(t) is decreasing on [0,+∞).The desired results can be achieved if we show thatF(0)≥F(t)≥0 fort ∈[0,+∞).As

    the mean value theorem for integrals indicates that there is aμ∈S1such that

    IfKandLare dilates or parallelograms with parallel sides,then the equality holds in(1.6).To prove thatKandLare dilates or parallelograms with parallel sides when the equality holds in (1.6),it is sufficient to show that the inequality (1.6) is strict whenKandLare neither dilates nor parallelograms with parallel sides.

    Suppose thatKandLare neither dilates nor parallelograms with parallel sides.Lemma(4.1) shows that

    which implies thatF(t) is strictly decreasing on [0,+∞).Thus,F(0)>F(t)≥0.That is,the inequality (1.6) is strict.

    Similarly to the proof of [2,Lemma 3.2],one has the following proposition:

    Proposition 4.2LetKandLbe two planar convex bodies.IfKandLare at a dilation position,then the log-Brunn-Minkowski inequality

    and the log-Minkowski inequality

    are equivalent.

    Proof of Theorem 1.5By Theorem 1.4 and Proposition 4.2,one has the log-Brunn-Minkowski inequality.

    Conflict of InterestThe authors declare no conflict of interest.

    猜你喜歡
    云龍
    Research Status and Development Direction of Smart Clothing Materials
    解云龍
    丁云龍:公益路上顯大愛
    華人時刊(2022年11期)2022-09-15 00:54:38
    數(shù)字時代下大數(shù)據(jù)財(cái)務(wù)人才培養(yǎng)研究
    弘道
    寶藏(2021年7期)2021-08-28 08:18:06
    Bubble dynamics and its applications *
    蘇云龍作品
    Comparative study of the hemolytic and cytotoxic activities of nematocyst venoms from the jelly fish Cyanea nozakii Kishinouye and Nemopilema nomurai Kishinouye*
    周云龍教授
    云南云龍坡頭出土銅斧的科學(xué)分析
    97在线人人人人妻| 国产一区二区三区视频了| 99精品在免费线老司机午夜| 国产精品亚洲av一区麻豆| 高清毛片免费观看视频网站 | 日韩大片免费观看网站| 亚洲天堂av无毛| 中文欧美无线码| 亚洲精品粉嫩美女一区| av欧美777| 少妇粗大呻吟视频| 亚洲成人免费电影在线观看| 手机成人av网站| 丰满少妇做爰视频| 看免费av毛片| 2018国产大陆天天弄谢| 午夜精品久久久久久毛片777| 人成视频在线观看免费观看| 亚洲熟妇熟女久久| 亚洲精品一二三| av欧美777| 国产xxxxx性猛交| 丁香六月天网| 超碰97精品在线观看| 黑人巨大精品欧美一区二区mp4| 一本久久精品| 国产成人免费无遮挡视频| 久久午夜综合久久蜜桃| 亚洲国产中文字幕在线视频| 99热网站在线观看| 日韩欧美免费精品| 午夜福利,免费看| 亚洲视频免费观看视频| 涩涩av久久男人的天堂| 日韩免费av在线播放| 在线观看www视频免费| 黄色成人免费大全| 国产精品久久久久成人av| 99精品在免费线老司机午夜| 国产一区二区 视频在线| 大片电影免费在线观看免费| 亚洲国产av新网站| 欧美日韩福利视频一区二区| 亚洲人成电影观看| 亚洲一区二区三区欧美精品| cao死你这个sao货| 中文字幕另类日韩欧美亚洲嫩草| 成年人免费黄色播放视频| 蜜桃在线观看..| 国产不卡一卡二| 国产日韩欧美在线精品| 大型黄色视频在线免费观看| 不卡一级毛片| 国产精品亚洲一级av第二区| 国产精品国产高清国产av | 精品久久久精品久久久| 亚洲色图综合在线观看| 国产日韩一区二区三区精品不卡| 国产精品欧美亚洲77777| 国产精品久久电影中文字幕 | 又大又爽又粗| av网站免费在线观看视频| 国产成人精品无人区| 欧美黄色片欧美黄色片| 久久亚洲精品不卡| 国产主播在线观看一区二区| 久久狼人影院| 亚洲精品久久成人aⅴ小说| 国产91精品成人一区二区三区 | 黄色丝袜av网址大全| 一级毛片电影观看| 国产亚洲午夜精品一区二区久久| 2018国产大陆天天弄谢| 人妻久久中文字幕网| 狂野欧美激情性xxxx| 国产精品 欧美亚洲| 黄片播放在线免费| 久久 成人 亚洲| 色综合婷婷激情| 我要看黄色一级片免费的| 色婷婷久久久亚洲欧美| 下体分泌物呈黄色| 国产精品久久久久久精品电影小说| 美女国产高潮福利片在线看| 国产亚洲一区二区精品| 久久久久久人人人人人| 亚洲国产成人一精品久久久| 亚洲 国产 在线| 91成人精品电影| av在线播放免费不卡| 一区二区日韩欧美中文字幕| 两个人免费观看高清视频| 久久av网站| 亚洲人成77777在线视频| 一级片免费观看大全| 高清毛片免费观看视频网站 | 国产一区二区 视频在线| 日日夜夜操网爽| 国产精品电影一区二区三区 | 欧美乱码精品一区二区三区| 亚洲中文字幕日韩| 国产精品影院久久| 国产又爽黄色视频| 国产又爽黄色视频| 久久久欧美国产精品| 男女床上黄色一级片免费看| 亚洲久久久国产精品| 久久久国产精品麻豆| 露出奶头的视频| 免费女性裸体啪啪无遮挡网站| cao死你这个sao货| 两性夫妻黄色片| 中文字幕人妻熟女乱码| 成人国语在线视频| 女警被强在线播放| 色尼玛亚洲综合影院| 欧美大码av| 真人做人爱边吃奶动态| 香蕉久久夜色| 欧美日韩精品网址| 老熟妇仑乱视频hdxx| 国产亚洲精品第一综合不卡| 欧美黑人精品巨大| 精品少妇黑人巨大在线播放| 亚洲中文av在线| 久久中文字幕一级| 色精品久久人妻99蜜桃| 久久精品亚洲av国产电影网| 日日爽夜夜爽网站| 99国产精品一区二区三区| 女同久久另类99精品国产91| 午夜精品国产一区二区电影| tube8黄色片| 欧美黄色片欧美黄色片| 国产有黄有色有爽视频| 日韩大码丰满熟妇| 人人妻人人澡人人看| 自拍欧美九色日韩亚洲蝌蚪91| 我的亚洲天堂| 夜夜骑夜夜射夜夜干| 超碰97精品在线观看| 国产精品久久久av美女十八| 午夜福利,免费看| 午夜福利免费观看在线| 免费观看av网站的网址| 桃红色精品国产亚洲av| 国产成人一区二区三区免费视频网站| 免费久久久久久久精品成人欧美视频| 久久人妻av系列| 亚洲成人手机| 97人妻天天添夜夜摸| 丰满饥渴人妻一区二区三| 成人av一区二区三区在线看| 国产成人系列免费观看| 99精品欧美一区二区三区四区| 国产男女超爽视频在线观看| a级毛片在线看网站| 99热国产这里只有精品6| 亚洲第一欧美日韩一区二区三区 | 黄色成人免费大全| 国产高清视频在线播放一区| 国产真人三级小视频在线观看| 黄片小视频在线播放| 国产一区二区三区在线臀色熟女 | 久久婷婷成人综合色麻豆| 91成人精品电影| 欧美午夜高清在线| 国产在线免费精品| 国内毛片毛片毛片毛片毛片| 最新美女视频免费是黄的| 午夜成年电影在线免费观看| 精品少妇久久久久久888优播| 国精品久久久久久国模美| 搡老熟女国产l中国老女人| 侵犯人妻中文字幕一二三四区| 中文字幕制服av| avwww免费| 女人久久www免费人成看片| 18禁美女被吸乳视频| 欧美精品一区二区免费开放| 久久久久久亚洲精品国产蜜桃av| svipshipincom国产片| 中文字幕av电影在线播放| 老司机在亚洲福利影院| 久久久久久久国产电影| 啦啦啦免费观看视频1| 亚洲成av片中文字幕在线观看| 久久人妻熟女aⅴ| 在线观看免费日韩欧美大片| 久久久久久亚洲精品国产蜜桃av| 成人18禁高潮啪啪吃奶动态图| 在线十欧美十亚洲十日本专区| 在线亚洲精品国产二区图片欧美| 天天影视国产精品| 日本精品一区二区三区蜜桃| 亚洲欧美一区二区三区黑人| 国产熟女午夜一区二区三区| 精品欧美一区二区三区在线| 久久青草综合色| 亚洲中文字幕日韩| 十八禁高潮呻吟视频| 久久天堂一区二区三区四区| 黄频高清免费视频| 在线观看免费日韩欧美大片| 国产单亲对白刺激| 亚洲 欧美一区二区三区| 亚洲成人免费电影在线观看| 久久人人97超碰香蕉20202| 国产主播在线观看一区二区| 成人免费观看视频高清| 69av精品久久久久久 | 亚洲专区字幕在线| 另类精品久久| 精品一区二区三卡| 欧美激情极品国产一区二区三区| 亚洲七黄色美女视频| 欧美日韩视频精品一区| 婷婷丁香在线五月| 99国产精品99久久久久| 精品少妇一区二区三区视频日本电影| 精品国产乱码久久久久久男人| 亚洲欧美一区二区三区黑人| 日韩有码中文字幕| 黄色丝袜av网址大全| 黑人操中国人逼视频| 超碰成人久久| 我要看黄色一级片免费的| 手机成人av网站| 精品亚洲成a人片在线观看| 99re6热这里在线精品视频| 满18在线观看网站| 日韩有码中文字幕| 色尼玛亚洲综合影院| 夜夜骑夜夜射夜夜干| 午夜精品国产一区二区电影| 国产精品国产av在线观看| videosex国产| 欧美成狂野欧美在线观看| 国产亚洲欧美精品永久| 久久精品国产综合久久久| 飞空精品影院首页| 另类亚洲欧美激情| 亚洲国产精品一区二区三区在线| 老司机午夜十八禁免费视频| 脱女人内裤的视频| 日韩中文字幕欧美一区二区| 国产野战对白在线观看| 91精品三级在线观看| a级毛片在线看网站| 国产单亲对白刺激| 免费一级毛片在线播放高清视频 | 国产精品1区2区在线观看. | 日韩中文字幕欧美一区二区| 亚洲av美国av| 一级,二级,三级黄色视频| 日本撒尿小便嘘嘘汇集6| 精品一区二区三区av网在线观看 | 日本精品一区二区三区蜜桃| 国产色视频综合| 欧美另类亚洲清纯唯美| 欧美人与性动交α欧美软件| 成人国产一区最新在线观看| 中文字幕人妻丝袜一区二区| 国产福利在线免费观看视频| 国产国语露脸激情在线看| 在线播放国产精品三级| 午夜91福利影院| 激情视频va一区二区三区| 欧美在线黄色| 亚洲av电影在线进入| 黄片大片在线免费观看| av网站在线播放免费| 黑人操中国人逼视频| 老熟妇仑乱视频hdxx| 国产精品免费一区二区三区在线 | 久久亚洲精品不卡| 亚洲九九香蕉| 国产极品粉嫩免费观看在线| 91大片在线观看| 成年人午夜在线观看视频| 成人国产一区最新在线观看| 国产伦理片在线播放av一区| av网站免费在线观看视频| 成人国语在线视频| 成人精品一区二区免费| 丰满饥渴人妻一区二区三| 亚洲精品久久成人aⅴ小说| 中文字幕另类日韩欧美亚洲嫩草| 人人妻人人澡人人看| 亚洲欧美日韩高清在线视频 | 99国产精品一区二区蜜桃av | 成人国产av品久久久| 久久国产精品男人的天堂亚洲| 国产亚洲欧美在线一区二区| 久久九九热精品免费| www.精华液| 无限看片的www在线观看| 亚洲 国产 在线| www.999成人在线观看| 丝袜人妻中文字幕| 国产男女内射视频| 国产亚洲av高清不卡| 十八禁网站网址无遮挡| 69av精品久久久久久 | 国产精品影院久久| 亚洲中文av在线| 69精品国产乱码久久久| 黄色a级毛片大全视频| 一级a爱视频在线免费观看| 国产又爽黄色视频| 极品教师在线免费播放| 精品国产乱码久久久久久小说| 人人妻人人添人人爽欧美一区卜| 久久国产精品影院| av欧美777| 69av精品久久久久久 | 涩涩av久久男人的天堂| 亚洲av日韩精品久久久久久密| 国产熟女午夜一区二区三区| 黄片播放在线免费| 天堂俺去俺来也www色官网| 一进一出好大好爽视频| 老鸭窝网址在线观看| 欧美另类亚洲清纯唯美| 岛国在线观看网站| 国产在线观看jvid| 少妇裸体淫交视频免费看高清 | 久久久久久亚洲精品国产蜜桃av| 精品卡一卡二卡四卡免费| 成人国产一区最新在线观看| 黄色视频,在线免费观看| 国产精品偷伦视频观看了| 欧美精品av麻豆av| 国产日韩欧美视频二区| 欧美变态另类bdsm刘玥| a级毛片在线看网站| √禁漫天堂资源中文www| 下体分泌物呈黄色| avwww免费| 母亲3免费完整高清在线观看| 高清av免费在线| 下体分泌物呈黄色| 国产主播在线观看一区二区| 久久久久久久久久久久大奶| 大片电影免费在线观看免费| 久久久久网色| 在线观看免费视频网站a站| 啪啪无遮挡十八禁网站| 国产亚洲午夜精品一区二区久久| 国产精品98久久久久久宅男小说| 久久久精品免费免费高清| 男女边摸边吃奶| 国产高清国产精品国产三级| 国产日韩欧美视频二区| 国产97色在线日韩免费| 亚洲av片天天在线观看| 十八禁高潮呻吟视频| 久久人妻福利社区极品人妻图片| 首页视频小说图片口味搜索| 亚洲va日本ⅴa欧美va伊人久久| 精品国产一区二区三区四区第35| 欧美精品一区二区大全| 国产亚洲午夜精品一区二区久久| 97人妻天天添夜夜摸| 一区二区日韩欧美中文字幕| 一级片免费观看大全| 免费av中文字幕在线| 少妇 在线观看| 国产不卡av网站在线观看| 亚洲精华国产精华精| 久久久久精品国产欧美久久久| 亚洲欧美精品综合一区二区三区| 精品人妻在线不人妻| av网站免费在线观看视频| www.精华液| 一二三四在线观看免费中文在| 另类亚洲欧美激情| 国产成人影院久久av| 成人18禁高潮啪啪吃奶动态图| 天堂俺去俺来也www色官网| 午夜福利,免费看| 欧美日韩视频精品一区| 亚洲 欧美一区二区三区| 伊人久久大香线蕉亚洲五| 亚洲性夜色夜夜综合| 久久久久国产一级毛片高清牌| 在线 av 中文字幕| 国产av一区二区精品久久| 国产成人一区二区三区免费视频网站| 国产亚洲av高清不卡| 19禁男女啪啪无遮挡网站| 国产一区二区在线观看av| 国产成+人综合+亚洲专区| 搡老岳熟女国产| av超薄肉色丝袜交足视频| 国产高清国产精品国产三级| 国产一区二区三区视频了| 国产精品.久久久| 久久久久久亚洲精品国产蜜桃av| av不卡在线播放| 国产不卡一卡二| 超色免费av| 久久 成人 亚洲| 国产亚洲精品第一综合不卡| 亚洲av日韩在线播放| 男女高潮啪啪啪动态图| 国产无遮挡羞羞视频在线观看| 国产欧美亚洲国产| 日本vs欧美在线观看视频| 色婷婷久久久亚洲欧美| 另类亚洲欧美激情| 成人黄色视频免费在线看| 丝袜美足系列| 巨乳人妻的诱惑在线观看| 色精品久久人妻99蜜桃| 午夜免费鲁丝| 日本五十路高清| av网站免费在线观看视频| 久久久久久久久免费视频了| 嫩草影视91久久| 国产亚洲精品久久久久5区| 夫妻午夜视频| 久久婷婷成人综合色麻豆| 国产av精品麻豆| 多毛熟女@视频| 丝袜在线中文字幕| 99国产综合亚洲精品| 美女扒开内裤让男人捅视频| 久久国产精品影院| 国产三级黄色录像| 亚洲国产欧美在线一区| 成人特级黄色片久久久久久久 | 香蕉国产在线看| 午夜91福利影院| 国产免费av片在线观看野外av| 久9热在线精品视频| 国产成+人综合+亚洲专区| 午夜福利一区二区在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 天天躁日日躁夜夜躁夜夜| 在线永久观看黄色视频| 免费观看a级毛片全部| 久久精品亚洲精品国产色婷小说| 国产av一区二区精品久久| 亚洲一卡2卡3卡4卡5卡精品中文| 无限看片的www在线观看| 国产精品免费一区二区三区在线 | 国产精品.久久久| 精品一区二区三区视频在线观看免费 | 十八禁高潮呻吟视频| 色精品久久人妻99蜜桃| 久久 成人 亚洲| 欧美人与性动交α欧美软件| 国产精品国产av在线观看| 无人区码免费观看不卡 | 中文字幕人妻丝袜制服| 久久午夜综合久久蜜桃| 十八禁高潮呻吟视频| 久久天躁狠狠躁夜夜2o2o| 真人做人爱边吃奶动态| 久久狼人影院| 精品熟女少妇八av免费久了| www日本在线高清视频| 国产欧美日韩精品亚洲av| 亚洲第一欧美日韩一区二区三区 | 国产不卡av网站在线观看| 极品人妻少妇av视频| 国产亚洲av高清不卡| 99精国产麻豆久久婷婷| 欧美精品av麻豆av| 精品亚洲乱码少妇综合久久| 亚洲av国产av综合av卡| 王馨瑶露胸无遮挡在线观看| kizo精华| 在线av久久热| 999精品在线视频| 亚洲一码二码三码区别大吗| 看免费av毛片| h视频一区二区三区| 黄色片一级片一级黄色片| 国产精品1区2区在线观看. | 男人舔女人的私密视频| 一级,二级,三级黄色视频| 王馨瑶露胸无遮挡在线观看| 国产一卡二卡三卡精品| 最新在线观看一区二区三区| 国产无遮挡羞羞视频在线观看| 亚洲国产精品一区二区三区在线| 窝窝影院91人妻| avwww免费| 亚洲伊人久久精品综合| 动漫黄色视频在线观看| 狠狠狠狠99中文字幕| 久久国产亚洲av麻豆专区| 久久精品aⅴ一区二区三区四区| 久久这里只有精品19| 亚洲精品一卡2卡三卡4卡5卡| 成人亚洲精品一区在线观看| www.熟女人妻精品国产| 丁香六月天网| 午夜精品久久久久久毛片777| 欧美精品亚洲一区二区| 大陆偷拍与自拍| xxxhd国产人妻xxx| 久久久精品免费免费高清| 最新在线观看一区二区三区| 老汉色∧v一级毛片| 夜夜爽天天搞| 夜夜骑夜夜射夜夜干| 亚洲中文av在线| 久久热在线av| 久久精品熟女亚洲av麻豆精品| 菩萨蛮人人尽说江南好唐韦庄| 国产无遮挡羞羞视频在线观看| 久久久久久久久久久久大奶| 国产亚洲精品一区二区www | 国产在线视频一区二区| svipshipincom国产片| tube8黄色片| 三级毛片av免费| 亚洲精品中文字幕在线视频| 日韩人妻精品一区2区三区| 亚洲自偷自拍图片 自拍| 久久精品人人爽人人爽视色| 黄色a级毛片大全视频| 午夜福利一区二区在线看| 国产成人欧美在线观看 | 国产欧美日韩一区二区三区在线| 18在线观看网站| 亚洲色图av天堂| 免费女性裸体啪啪无遮挡网站| 亚洲成人手机| 亚洲熟妇熟女久久| 国产精品一区二区免费欧美| 两个人免费观看高清视频| 久久久久国产一级毛片高清牌| 国产男靠女视频免费网站| 99久久国产精品久久久| 老司机靠b影院| 91国产中文字幕| 亚洲欧美日韩另类电影网站| 大型av网站在线播放| 我要看黄色一级片免费的| 日韩视频一区二区在线观看| 国产成人免费无遮挡视频| 99国产精品免费福利视频| 国产高清国产精品国产三级| 亚洲精品久久成人aⅴ小说| 久久久久视频综合| 国产亚洲精品第一综合不卡| 久久久精品国产亚洲av高清涩受| 悠悠久久av| 后天国语完整版免费观看| 精品国产亚洲在线| 十八禁人妻一区二区| 侵犯人妻中文字幕一二三四区| 国产精品久久久久久人妻精品电影 | 欧美日韩黄片免| 欧美日韩成人在线一区二区| 麻豆成人av在线观看| 精品福利永久在线观看| 欧美激情久久久久久爽电影 | 久久亚洲真实| 国产精品久久久久久精品电影小说| 精品免费久久久久久久清纯 | 咕卡用的链子| 亚洲国产精品一区二区三区在线| 成年版毛片免费区| 在线看a的网站| 99国产精品一区二区三区| 中文字幕人妻丝袜制服| 美国免费a级毛片| 俄罗斯特黄特色一大片| 午夜91福利影院| 亚洲性夜色夜夜综合| 丰满少妇做爰视频| 国产精品av久久久久免费| 女人爽到高潮嗷嗷叫在线视频| 国产av精品麻豆| 国产成+人综合+亚洲专区| 免费女性裸体啪啪无遮挡网站| 国产成+人综合+亚洲专区| 欧美激情高清一区二区三区| 天天躁日日躁夜夜躁夜夜| 亚洲九九香蕉| 亚洲自偷自拍图片 自拍| 日本a在线网址| a级毛片黄视频| 最近最新免费中文字幕在线| 欧美日韩精品网址| 视频在线观看一区二区三区| 国产视频一区二区在线看| 黄片大片在线免费观看| 久久久精品区二区三区| 亚洲熟女精品中文字幕| 亚洲国产成人一精品久久久| 一进一出抽搐动态| 国产深夜福利视频在线观看| 免费不卡黄色视频| 少妇精品久久久久久久| 一级片'在线观看视频| 久久亚洲精品不卡| 欧美精品av麻豆av| 日本精品一区二区三区蜜桃| 国产av国产精品国产| 人人妻人人澡人人爽人人夜夜| 欧美日韩国产mv在线观看视频| 中文字幕人妻丝袜制服| 美女国产高潮福利片在线看| 一级,二级,三级黄色视频| 日韩中文字幕欧美一区二区| 如日韩欧美国产精品一区二区三区| 久久婷婷成人综合色麻豆| 国产极品粉嫩免费观看在线| 新久久久久国产一级毛片|