• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient method to calculate the eigenvalues of the Zakharov–Shabat system

    2024-01-25 07:11:34ShikunCui崔世坤andZhenWang王振
    Chinese Physics B 2024年1期
    關(guān)鍵詞:王振

    Shikun Cui(崔世坤) and Zhen Wang(王振)

    1School of Mathematical Sciences,Dalian University of Technology,Dalian 116024,China

    2School of Mathematical Sciences,Beihang University,Beijing 100191,China

    Keywords: Zakharov–Shabat system,eigenvalue,numerical method,Chebyshev polynomials

    1.Introduction

    The nonlinear Schr¨odinger (NLS) equation is an important integrable equation that is derived from hydrodynamics and has been used to describe the propagation of optical solitons,Langmuir waves in plasma physics,Bose–Einstein condensation, and other physical phenomena.[1–4]Considering the initial value problem for the nonlinear Schr¨odinger(NLS)equation

    whereq0(x) is a given function defined in Schwartz spaceS(R),subscriptsxandtrepresent the partial derivatives with respect to space and time, respectively.Whenλ=1, equation(1)is called a focusing NLS equation,and whenλ=?1,equation (1) is called a defocusing NLS equation.The NLS equation(1)is integrable and admits the following Lax pair:

    whereψis a column vector with a shape of 2×1,kis a spectral parameter defined in complex field C,qis the potential function, and ˉqrepresents the complex conjugation ofq.A long but standard computation shows that the compatibility conditionψxt=ψtxfor the eigenfunctionψis equivalent to the NLS equation iqt+qxx+2λ|q|2q=0 for classical solutionsq.[6]Equation(2)is called the Zakharov–Shabat(ZS)system,which is thex-part of the Lax pair.The properties of the solution for the NLS equation are determined by the eigenvalues for the ZS system.[6]

    The inverse scattering transform is an important method for solving integrable equations[5]and was a milestone of mathematical physics in the twentieth century.The inverse scattering transform of the NLS equation was proposed by Zakharov and Shabat.[6]The inverse scattering transform consists of direct scattering and inverse scattering.In direct scattering,we need to solve the ZS system and calculate the scattering data.The ZS system (2) is an eigenvalue problem and we need to find thekso that the ZS system exists as a nontrivial solution,wherekrepresents the eigenvalue andψis the corresponding eigenfunction.The eigenvalues for the ZS system consist of the discrete eigenvaluesκj, ˉκj(j=1,2,...,n1)and the continuous eigenvalues, whereκj ∈CR.The continuous spectrum of the ZS system is the real axis R, so we only need to calculate the discrete eigenvalues of the ZS system.The number of solitons that emerged inq(x,0) for the NLS equation is equal ton1.It is worth noting that the discrete eigenvalue of the ZS system can be an empty set and the solution will not evolve into solitons at this time.The amplitude of the soliton is determined by the imaginary part ofκj.The velocity of the soliton is determined by the real part ofκj.

    It is important to develop simple and effective methods to calculate the eigenvalues of the ZS system.In most cases,the eigenvalues of the ZS system (2) cannot be obtained analytically.Therefore, it is difficult to calculate the eigenvalues of the ZS system analytically.Calculating the eigenvalues of the ZS system is an important step in the inverse scattering transform.If we cannot efficiently calculate the discrete eigenvalues of the ZS system,then we will not be able to solve the equation by the inverse scattering transform.Meanwhile,calculating the eigenvalues of the ZS equation is of great significance for the study of the evolution of solutions.By analyzing the number and magnitude of discrete eigenvalues,we can obtain the number and properties of solitons, which are closely related to the “soliton resolution conjecture”.[7]The numerical implementation of the inverse scattering transform attracted special attention when the NLS equation soliton solutions were proposed as potential candidates for fiber optical transmission.At present, increasing the accuracy and efficiency of computational methods for solving the direct ZS system remains an urgent problem in nonlinear optics.

    Several numerical methods have been proposed to calculate the eigenvalues of the ZS system.Boffetta and Osborne developed a numerical algorithm for computing the direct scattering transform for the NLS equation.[8]Bronski considered the semi-classical limit of the ZS eigenvalue problem.[9]The finite difference method was used to compute the ZS eigenvalue problem numerically.[10,12]Hill’s method can be used to calculate the eigenvalues of the ZS system.[11]The Fourier collocation method (FCM) is an effective method to calculate the eigenvalues of the ZS system.[19]Vasylchenkovaet al.summarized several nonlinear Fourier transform(NFT)methods, and compared their quality and performance.[13]These methods can be divided into two types: the first is the iterative method for the zero point of Jost function,and the second is to solve the matrix eigenvalue problem.[14]

    In this paper,we proposed an efficient numerical method for calculating the eigenvalues for the ZS system.We use Chebyshev polynomials and tanh(ax) mapping to extract the key information of the potential function, and then transform the ZS eigenvalue problem into a matrix eigenvalue problem.By solving the matrix eigenvalue problem, we can get the eigenvalues for the ZS system.This method not only has good convergence for the Satsuma–Yajima potential but also converges quickly for complex Y-shape potential.In addition,this method can be further extended to other linear systems.

    This paper is structured as follows.In Section 2,the theoretical knowledge of Chebyshev polynomials is presented and our numerical method is presented in detail.In Section 3,our method is used to calculate the eigenvalues of the ZS system with the Satsuma–Yajima potential,the sech(2∈x)eisech(2∈x)/∈potential, and the exp(?ix)sech(x) potential.The convergence of our method is analyzed.Our method has spectral accuracy and its convergence rate is fast.Finally, some discussions are given in Section 4.

    2.Methodology

    The details of our method will be introduced in this section.Our method is summarized in the following steps.For the ZS system(2),Chebyshev polynomials are used to approximate the eigenfunctionψand the potential functionqwith the help of mappingH(x)=tanh(ax)(a >0).Using Chebyshev nodes,we turn the ZS eigenvalue problem into a matrix eigenvalue problem.We can then obtain the eigenvalues of the ZS system by calculating the matrix eigenvalue problem.

    We define thenChebyshev nodes by

    For the given functionf(x)defined in unit interval I,we can approximatef(x)by

    where

    Fis obtained by an appropriately scaled discrete cosine transform off(χ),F=[T(χ)]?1.

    Tk(x)(k=0,1,...,n?1)is the Chebyshev polynomial of the first kind,

    Chebyshev polynomials and their derivatives satisfy the relationship[15]

    where

    Using Eqs.(4) and (5), the function?f/?xcan be approximated by Chebyshev polynomials

    For a given functiong(x)defined in real field R, we can approximateg(x) by Chebyshev polynomials and mappingH(x)=tanh(ax)

    whereTR(x)=T(H(x))=[T0(H(x)),...,Tn?1(H(x))],H?1represent the inverse mapping ofH(x).H(x) is a one-to-one mapping, which maps the real field R to the unit interval I.The results of mappingH(x)are shown in Fig.1.

    Fig.1.Results of mapping H(x)about different a.

    By using Eqs.(5)and(7),and the chain rule,?g/?xcan be approximated by Chebyshev polynomials

    In this way, the functiong(x) and its derivatives?g/?xare approximated by Chebyshev polynomials.

    If a given function changes rapidly in a certain region,then we call this interval its‘rapid-changed interval.’H(x)=tanh(ax)changes near 0 rapidly,and its rapid-changed interval is expressed as[?L1,L1].L1is obtained by solving

    wherea1is a real number close to 1.Takinga1=0.9951 as an example, the rapid-changed interval ofH(x)=tanh(0.3x) is[?10,10], the rapid-changed interval ofH(x)=tanh(0.2x)is[?15,15],and the rapid-changed interval ofH(x)=tanh(0.1x)is[?30,30].

    The mappingH(x)distributes more Chebyshev nodes in the rapid-changed interval and distributes fewer Chebyshev nodes outside the rapid-changed interval.So in the rapidchanged interval,we can effectively identify the key information of the given function with the help of tanh(ax)mapping.

    It is worth noting that the value ofawill influence the calculated result.Choosing an appropriateais important in our numerical method.For the selection of parametera(0<a <1), we give the following recommendation.The value ofaaffects the range of rapid-changed interval and the range of rapid-changed interval will increase asadecreases.For the potential function defined in Schwartz space, it also has the rapid-changed interval.The rapid-changed interval of the potential function must be included in the rapid-changed interval of tanh(ax)mapping.If not,then we will be unable to completely extract the information of the potential function.

    Rewriting the ZS system(λ=1)into a linear eigenvalue problem gives

    Using Eqs.(7)and(8),we appropriate the eigenfunctionψ,ψxand the potential functionqby Chebyshev polynomials withnnodes,

    wherej=1,2.

    By substituting Eq.(10)into Eq.(9),we get

    Settingx=H?1(χ),equation(11)is rewritten into

    where

    Equation(12)is recorded asAψ=ikψ,where

    matrix for?xin our method andBis a diagonal matrix that is composed of Chebyshev series forq(x).

    The eigenvalue problem(12)can be solved by the quadrature right-triangle(QR)algorithm.[16]In the QR algorithm,the matrixAis decomposed intoA=QR,whereQis an orthogonal matrix andRis an upper triangular matrix.

    The steps of theQRalgorithm are as follows:

    diagonal elements ofAnare the eigenvalues ofAasn →∞.

    Regarding the accuracy of this method, it does not need to truncate the interval and has spectral accuracy[19]for the smooth potential function.Because we do not truncate the calculated interval, our method will not produce a truncation error for the analytic potential.

    3.Numerical results

    Our method is used to calculate the eigenvalues of ZS system(λ=1)(2)with three potentials and the convergency of the method is analyzed.All of the numerical examples that are reported here are run on an Asustek computer with Intel(R)Core(TM)i7-11800H processor and 16 GB memory.

    3.1.The Satsuma–Yajima potential

    Our numerical method is used to calculate the eigenvalues of the ZS system(λ=1)with Satsuma–Yajima potential.Numerical results are compared with the analytical results and the performance of our numerical method is compared with the performance of the FCM.[19]

    Whenq=Asech(x), Satsuma and Yajima exactly calculated the discrete eigenvalues of the ZS system.[17]Satsuma and Yajima found that the discrete eigenvalue in the upper-half complex plane C+is

    wherenis a positive number satisfying.Due to the symmetry of the discrete eigenvalues,[17]the ZS system withAsech(x)potential has the discrete eigenvalues ˉκnin C?.

    In the specific calculation, we calculate the eigenvalues ofq(x)=1.8sech(x).Whenq(x)=1.8sech(x),the ZS system has four discrete eigenvaluesκ1=1.3i,κ2=0.3i, ˉκ1=?1.3i and ˉκ2=?0.3i.The number of Chebyshev nodesnis set to 200 and the value ofais set to 0.15.The calculation results are shown in Fig.2.Figure 2(a) shows the calculated eigenvalues of the ZS system with the Satsuma–Yajima potential.There are four discrete eigenvalues in Fig.2(a),which is consistent with the theoretical result.Figure 2(b) shows the calculated eigenfunction in pointκ1and figure 2(c) gives the calculated eigenfunction in pointκ2.The absolute error between the calculatedκ1and the exactκ1is 1.85×10?15,and the absolute error between the calculatedκ2and the exactκ2is 1.61×10?16.The method takes about 0.2 s to finish.These results show that our method is efficient.

    Fig.2.The calculated results of ZS system with 1.8sech(x) potential.(a) The calculated eigenvalues (red) and exact eigenvalues (blue) of 1.8sech(x)potential.(b)Numerical results of ψ1 (red line)and ψ2 (green line)at k=κ1.(c)Numerical results of ψ1 (red line)and ψ2 (green line)at k=κ2.

    The stability and convergency of our method need to be analyzed.In area [a,n]∈[0.1,0.33]×[21,251], we calculate the eigenvalues of the ZS system withq(x)=1.8sech(x), the absolute error ink=κ1is shown in Fig.3(a).There are three routes in Fig.3(a)(blue route 1,black route 2,and green route 3),the convergency of our method is analyzed along the three routes.In the Fourier collocation method, the calculated interval is truncated to[?25,25].The relationship between the error andnis shown in Fig.3(b),the red line is the error curve calculated by the Fourier collocation method(FCM),the blue line is the error curve calculated by our method along Fig.3(a)“route 1”, the black line is the error bar calculated by our method along Fig.3(a) “route 2”, and the green line is the error bar calculated by our method along Fig.3(a) “route 3”.Figure 3(b) shows that our method is more accurate than the FCM and the convergence rate of our method is faster than FCM,so our method is more efficient.Because the error calculated by the FCM decays exponentially with the number of nodes,[19]the error of our method also decays exponentially with the number of nodes and its error decays faster than any power ofn?1.Thus the spectral accuracy of the method is confirmed.

    Fig.3.The absolute error in area[a,n]∈[0.1,0.33]×[21,251].(a)The absolute error picture(k=κ1).(b)The error diagram along route 1(blue line),the error diagram along route 2(black line),the error diagram along route 3 (green line), and the error diagram of the Fourier collocation method(red line).

    We also explored the computational efficiency of our method and compared it with the FCM.We calculated the discrete eigenvalues of the 1.8sech(x)potential at different numbers of nodes and the time is shown in Table 1.

    Table 1.The time required to complete the program at different nodes n.

    The minimum error generated by our method is about 10?15level.This method can achieve machine accuracy.Since the calculated accuracy of the mathematical software is 16 significant figures, there will be an error of about 10?15level in the calculation process.Our method can greatly improve the calculated accuracy, especially when the number of Chebyshev nodes is small.

    3.2.The Y-shape potential

    Bronski computed the eigenvalues of the sech(2∈x)eisech(2∈x)/∈potential and found that the shape of the discrete eigenvalues is “Y”.[9]Settingn= 400 anda=0.02, our method is used to compute the eigenvalues of the sech(2∈x)eisech(2∈x)/∈potential with ∈=0.2,∈=0.1 and∈=0.05, and the calculated results are shown in Fig.4.The calculations are finished within 0.6 s.

    When ∈= 0.2, there are three discrete eigenvalues in C+; when ∈=0.1, there are six discrete eigenvalues in C+;and when ∈=0.05, there are 12 discrete eigenvalues in C+.The calculated results are consistent with Bronski’s results(Ref.[9],p.385,Table 1).The calculated discrete eigenvalues become Y-shaped with the decrease of ∈,which are consistent with the theoretical results.

    There are six discrete eigenvalues in C+in Fig.4(b),and their values are shown in Table 2.

    Fig.4.The calculated eigenvalues of ZS system with sech(2∈x)eisech(2∈x)/∈potential(a=0.02).

    From Table 2, we learn that the sech(0.2x)e10isech(0.2x)potential has two pure imaginary eigenvalues and four complex discrete eigenvalues in C+.Thus, theq(x,0) =sech(0.2x)e10isech(0.2x)initial profile will evolve into a secondorder breather and four solitons for the NLS equation.The Fourier spectral method[18]is used to calculate the evolution of the NLS equation withq(x,0)=sech(0.2x)e10isech(0.2x).The density of the calculated result is shown in Fig.5.In Figs.5(a)and 5(b), the initial profileq(x,0) = sech(0.2x)e10isech(0.2x)evolves into four solitons and a second-order breather, which is consist with Fig.4(b).

    The correctness of the calculated result is verified by analyzing the convergence of the method.Whenn=400 anda=0.02, we obtain the eigenvalueκ1=?1.78524894765016×10?15+0.116148026898534i of the sech(0.2x)e10isech(0.2x)potential.Under differentnChebyshev nodes, we calculate the Cauchy error for theq(x,0)=sech(0.2x)e10isech(0.2x)potential atκ1.The calculated result is shown in Fig.6.The Cauchy error in Fig.6 is defined by

    whereκ1(n)is the calculatedκ1undernChebyshev nodes andκ1=?1.78524894765016×10?15+0.116148026898534i.

    Table 2.The values for the calculated discrete eigenvalues of the ZS system with sech(0.2x)e10isech(0.2x) potential.

    Fig.5.The evolution of the initial profile q(x,0)=sech(0.2x)e10isech(0.2x)for the NLS equation.

    Fig.6.The Cauchy error for the sech(2∈x)eisech(2∈x)/∈in κ1.

    In Fig.6,the method gradually converges asnincreases,and generates an error of 10?15level.

    3.3.The solitonic potential

    Optical solitons have very important applications in all optical networks,optical communication,and optical logic devices.The soliton solution of the NLS equation is considered to be a potential solution for fiber optic transmission, so it is important to calculate its discrete eigenvalues.In this subsection, our method is used to calculate the eigenvalues ofqso=exp(?ix)sech(x).The initial value of the optical solitons can describe the propagation of signals in optical fibers.

    As we all know,qsohas a discrete eigenvalueκ1=0.5+0.5i in C+.[10]Settingn=200 anda=0.1, our method is used to compute the spectrum ofqso=exp(?ix)sech(x), the calculated result is shown in Fig.7.The absolute error between the calculatedκ1and the exactκ1is 7.77×10?16,and the absolute error between the calculatedκ2and the actualκ2is 6.31×10?15.The calculation is finished within 0.3 s.Our method is more accurate and faster than the NFT method.[13]

    Fig.7.The calculated eigenvalues of the qso=exp(?ix)sech(x)potential.

    4.Conclusion

    A numerical method is proposed to calculate the discrete eigenvalues for the ZS system.The tools that are used are Chebyshev polynomials and tanh(ax)mapping.We can effectively identify the key information of the given function with the help of tanh(ax) mapping and realize the high-efficiency calculation.

    Our method has following advantages.First, we do not need to truncate the calculated region for analytical potentials,so our method will not produce truncation error when using Chebyshev polynomials to appropriate the given function.Second,the method can calculate the discrete eigenvalues for the ZS system with spectral accuracy.This method is highprecision and efficient.We calculate the discrete eigenvalues of the Satsuma–Yajima potential and compare the method with the Fourier collocation method,and find that the convergence rate of our method is faster than the Fourier collocation method.For the complex sech(2∈x)eisech(2∈x)/∈potential,our method still converges quickly.It is worth mentioning that our method can be further extended to solve other linear eigenvalue problems.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos.52171251, U2106225, and 52231011) and Dalian Science and Technology Innovation Fund(Grant No.2022JJ12GX036).

    猜你喜歡
    王振
    Analytical three-periodic solutions of Korteweg–de Vries-type equations
    CrAlGe: An itinerant ferromagnet with strong tunability by heat treatment
    Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
    電池?zé)峁芾硐到y(tǒng)散/加熱特性研究及保溫安全設(shè)計(jì)
    包裝工程(2022年11期)2022-06-20 09:37:36
    3種葉面肥在小麥上的應(yīng)用效果
    怕馬蹄與拍馬屁
    雜文月刊(2022年4期)2022-04-22 20:28:21
    EXISTENCE AND UNIQUENESS OF THE GLOBAL L1 SOLUTION OF THE EULER EQUATIONS FOR CHAPLYGIN GAS?
    THE EXISTENCE OF A BOUNDED INVARIANT REGION FOR COMPRESSIBLE EULER EQUATIONS IN DIFFERENT GAS STATES*
    博物館安防系統(tǒng)改造工程淺析
    明英宗幼年教育管窺
    99视频精品全部免费 在线| 久久精品国产清高在天天线| 在线观看美女被高潮喷水网站| 精品一区二区三区视频在线| 亚洲丝袜综合中文字幕| 精品一区二区三区人妻视频| 美女国产视频在线观看| 亚洲高清免费不卡视频| 又爽又黄a免费视频| 九草在线视频观看| 一区福利在线观看| 卡戴珊不雅视频在线播放| 久久99热6这里只有精品| 国产精品野战在线观看| 亚洲欧美精品自产自拍| 中文精品一卡2卡3卡4更新| 一本久久精品| 国产日韩欧美在线精品| 1000部很黄的大片| 国产精品日韩av在线免费观看| 一级毛片我不卡| 亚洲美女搞黄在线观看| 色综合色国产| 色噜噜av男人的天堂激情| 亚洲av一区综合| 欧美色欧美亚洲另类二区| 久久这里有精品视频免费| 国产极品精品免费视频能看的| 亚洲av男天堂| 久久久久九九精品影院| 午夜精品一区二区三区免费看| 插逼视频在线观看| 国产成人精品婷婷| 午夜激情欧美在线| 亚洲性久久影院| 日产精品乱码卡一卡2卡三| 色综合站精品国产| 啦啦啦啦在线视频资源| 大香蕉久久网| 亚洲av男天堂| 99久国产av精品国产电影| 欧美成人免费av一区二区三区| 亚洲欧美日韩东京热| 日韩欧美精品v在线| 欧美一区二区亚洲| 精品99又大又爽又粗少妇毛片| 久久鲁丝午夜福利片| 久久国产乱子免费精品| 六月丁香七月| 99热这里只有是精品50| 亚洲激情五月婷婷啪啪| 天美传媒精品一区二区| 婷婷色av中文字幕| 国语自产精品视频在线第100页| 色噜噜av男人的天堂激情| 丝袜美腿在线中文| 老师上课跳d突然被开到最大视频| 人人妻人人澡人人爽人人夜夜 | 国产精品一二三区在线看| 欧美变态另类bdsm刘玥| 久久国产乱子免费精品| 在线观看午夜福利视频| 大又大粗又爽又黄少妇毛片口| 亚洲中文字幕一区二区三区有码在线看| 亚洲av.av天堂| videossex国产| 国产av一区在线观看免费| .国产精品久久| 搡女人真爽免费视频火全软件| 日韩av在线大香蕉| 国产精品麻豆人妻色哟哟久久 | 少妇高潮的动态图| 国产精品,欧美在线| 一本久久精品| 赤兔流量卡办理| 波多野结衣高清无吗| 久久久精品欧美日韩精品| 久久精品国产亚洲网站| 日韩大尺度精品在线看网址| 久久久久国产网址| 国产一级毛片七仙女欲春2| 国产精品一区二区三区四区免费观看| 少妇高潮的动态图| 变态另类成人亚洲欧美熟女| 人人妻人人澡欧美一区二区| 色综合亚洲欧美另类图片| 久久久精品欧美日韩精品| 国产成人影院久久av| 麻豆精品久久久久久蜜桃| 久久人人爽人人爽人人片va| 一个人免费在线观看电影| 午夜精品在线福利| 成熟少妇高潮喷水视频| 精品久久久久久久久久久久久| 国产午夜精品一二区理论片| 悠悠久久av| 亚洲欧美成人综合另类久久久 | 欧美一区二区国产精品久久精品| 欧美3d第一页| 欧美最新免费一区二区三区| 国产成人福利小说| 国产中年淑女户外野战色| 久久久久免费精品人妻一区二区| 日本色播在线视频| 亚洲精品国产av成人精品| 99热这里只有是精品50| 2022亚洲国产成人精品| 亚洲国产精品成人综合色| 亚洲第一电影网av| 欧美+亚洲+日韩+国产| 青春草亚洲视频在线观看| 干丝袜人妻中文字幕| 久久久久国产网址| 哪里可以看免费的av片| 一级av片app| 99久久九九国产精品国产免费| 婷婷六月久久综合丁香| 久99久视频精品免费| 中文资源天堂在线| 美女国产视频在线观看| 最近的中文字幕免费完整| 久久亚洲国产成人精品v| 精品久久久久久久久亚洲| 少妇猛男粗大的猛烈进出视频 | 嫩草影院精品99| 欧美3d第一页| 亚洲国产日韩欧美精品在线观看| 久久婷婷人人爽人人干人人爱| 久久久久九九精品影院| 国产伦一二天堂av在线观看| 美女国产视频在线观看| 国产美女午夜福利| 亚洲欧美日韩东京热| 色综合亚洲欧美另类图片| 国产片特级美女逼逼视频| 久久久欧美国产精品| 亚洲国产精品sss在线观看| 嫩草影院入口| 少妇的逼水好多| 国产 一区精品| 国产精品久久久久久av不卡| 欧美最黄视频在线播放免费| 伦理电影大哥的女人| 只有这里有精品99| 欧美性猛交╳xxx乱大交人| 秋霞在线观看毛片| 久久久久九九精品影院| 亚洲欧美日韩高清在线视频| 国产探花极品一区二区| 亚洲第一区二区三区不卡| 两个人的视频大全免费| 99热网站在线观看| 久久久久九九精品影院| 99热这里只有精品一区| 中国美白少妇内射xxxbb| 天天躁夜夜躁狠狠久久av| 国产黄a三级三级三级人| 丝袜美腿在线中文| 男人狂女人下面高潮的视频| 欧美变态另类bdsm刘玥| 亚洲欧美精品专区久久| 一夜夜www| 女的被弄到高潮叫床怎么办| 日本一本二区三区精品| 寂寞人妻少妇视频99o| 日日撸夜夜添| 亚洲欧美日韩高清专用| 国产激情偷乱视频一区二区| 欧美日韩一区二区视频在线观看视频在线 | 又粗又硬又长又爽又黄的视频 | 国产精品伦人一区二区| 如何舔出高潮| 中国美白少妇内射xxxbb| 亚洲真实伦在线观看| 亚州av有码| 国产淫片久久久久久久久| 亚洲人成网站高清观看| 欧美精品一区二区大全| 淫秽高清视频在线观看| 日本撒尿小便嘘嘘汇集6| 特级一级黄色大片| 深夜a级毛片| 亚洲av熟女| 观看免费一级毛片| 日韩欧美 国产精品| 欧美一区二区国产精品久久精品| 精品一区二区三区视频在线| 最近最新中文字幕大全电影3| 老熟妇乱子伦视频在线观看| 久久人人精品亚洲av| 亚洲欧洲日产国产| 成人漫画全彩无遮挡| 一级av片app| 女同久久另类99精品国产91| 欧美日韩在线观看h| 99久久无色码亚洲精品果冻| 内地一区二区视频在线| 老熟妇乱子伦视频在线观看| 丰满人妻一区二区三区视频av| 亚洲国产精品成人久久小说 | 天堂av国产一区二区熟女人妻| 免费av不卡在线播放| 2021天堂中文幕一二区在线观| 超碰av人人做人人爽久久| 麻豆国产av国片精品| 国产午夜精品一二区理论片| eeuss影院久久| 久久韩国三级中文字幕| 国内精品久久久久精免费| 成人特级黄色片久久久久久久| АⅤ资源中文在线天堂| 观看美女的网站| 色播亚洲综合网| 性欧美人与动物交配| 国产精品不卡视频一区二区| 久久欧美精品欧美久久欧美| 成人漫画全彩无遮挡| 亚洲婷婷狠狠爱综合网| 女的被弄到高潮叫床怎么办| 欧美变态另类bdsm刘玥| 精品少妇黑人巨大在线播放 | 国产高清视频在线观看网站| 久久久久久久久久黄片| 久久人人爽人人爽人人片va| 欧美一区二区亚洲| 免费看日本二区| 日本熟妇午夜| 99久久精品热视频| 国产成人a∨麻豆精品| 禁无遮挡网站| 久久久久久久久久久丰满| 日本熟妇午夜| 国产精品久久久久久亚洲av鲁大| 久久人人爽人人爽人人片va| 久久久久九九精品影院| 国产又黄又爽又无遮挡在线| 婷婷亚洲欧美| 日韩精品有码人妻一区| 女人十人毛片免费观看3o分钟| 国产v大片淫在线免费观看| 成人高潮视频无遮挡免费网站| 亚洲精品日韩av片在线观看| 亚洲av一区综合| 国产一级毛片在线| 18+在线观看网站| 久久欧美精品欧美久久欧美| 99在线人妻在线中文字幕| 99在线视频只有这里精品首页| 99热精品在线国产| 在线观看av片永久免费下载| 我要搜黄色片| 99久久人妻综合| 全区人妻精品视频| 国产亚洲91精品色在线| 男女视频在线观看网站免费| 久久精品久久久久久久性| 成人高潮视频无遮挡免费网站| 成年免费大片在线观看| 亚洲欧美日韩无卡精品| 久久久久久伊人网av| 久久午夜福利片| 亚洲一区高清亚洲精品| 久久久久久久久久成人| 久久人人精品亚洲av| 成人漫画全彩无遮挡| 婷婷色av中文字幕| 中文亚洲av片在线观看爽| 国产黄a三级三级三级人| 色视频www国产| 免费看光身美女| 亚洲国产精品sss在线观看| 嫩草影院新地址| videossex国产| 欧美成人免费av一区二区三区| 国产精品电影一区二区三区| 一个人看的www免费观看视频| 亚洲激情五月婷婷啪啪| 校园人妻丝袜中文字幕| 十八禁国产超污无遮挡网站| 亚洲一区二区三区色噜噜| 深夜精品福利| 日韩 亚洲 欧美在线| 可以在线观看毛片的网站| 亚洲成人久久性| 一级毛片电影观看 | 亚洲av中文字字幕乱码综合| 欧美日韩国产亚洲二区| 久久久成人免费电影| 国产淫片久久久久久久久| 国产综合懂色| 亚洲色图av天堂| 久久精品国产自在天天线| 秋霞在线观看毛片| 久久久久久久久久久免费av| 黄片wwwwww| 能在线免费看毛片的网站| 精品久久久久久久人妻蜜臀av| 此物有八面人人有两片| 久久久久久久久久黄片| 亚洲成a人片在线一区二区| 久久久久久久久久久免费av| 中文欧美无线码| 美女xxoo啪啪120秒动态图| 好男人视频免费观看在线| 女的被弄到高潮叫床怎么办| 三级经典国产精品| 人人妻人人澡欧美一区二区| 97超视频在线观看视频| 麻豆国产av国片精品| 久久这里有精品视频免费| 看非洲黑人一级黄片| 天天躁日日操中文字幕| 国产av麻豆久久久久久久| 少妇人妻一区二区三区视频| 国模一区二区三区四区视频| 国产激情偷乱视频一区二区| av国产免费在线观看| 欧美成人一区二区免费高清观看| 欧美高清性xxxxhd video| 日本-黄色视频高清免费观看| 九九热线精品视视频播放| 女的被弄到高潮叫床怎么办| 亚洲第一区二区三区不卡| 一级二级三级毛片免费看| 99久久成人亚洲精品观看| 国产乱人视频| 少妇猛男粗大的猛烈进出视频 | 不卡一级毛片| 深爱激情五月婷婷| 女的被弄到高潮叫床怎么办| 成人毛片60女人毛片免费| 99九九线精品视频在线观看视频| 日本三级黄在线观看| 国产爱豆传媒在线观看| 嫩草影院新地址| 日韩大尺度精品在线看网址| 免费观看a级毛片全部| 禁无遮挡网站| 午夜福利视频1000在线观看| 99在线人妻在线中文字幕| 免费av毛片视频| 好男人视频免费观看在线| 久久亚洲国产成人精品v| 国产 一区精品| 性色avwww在线观看| 91精品一卡2卡3卡4卡| 日韩欧美三级三区| 久久久久九九精品影院| 欧美激情国产日韩精品一区| 久久久久久久久久黄片| 一级二级三级毛片免费看| 亚洲一区高清亚洲精品| 国产高清不卡午夜福利| 一级毛片电影观看 | a级毛色黄片| 日本-黄色视频高清免费观看| 国产高清有码在线观看视频| 国产乱人偷精品视频| 91aial.com中文字幕在线观看| 日韩高清综合在线| 看免费成人av毛片| 丰满乱子伦码专区| 免费观看的影片在线观看| 日韩视频在线欧美| 久久国产乱子免费精品| 国产精品久久久久久av不卡| 波多野结衣巨乳人妻| 久久人人精品亚洲av| 午夜福利在线观看吧| 可以在线观看毛片的网站| 日韩精品有码人妻一区| 久久精品夜色国产| 国产亚洲精品久久久久久毛片| 亚洲人成网站在线播| 如何舔出高潮| 身体一侧抽搐| 18禁在线无遮挡免费观看视频| 亚洲欧美成人精品一区二区| 美女国产视频在线观看| 欧美3d第一页| 边亲边吃奶的免费视频| 亚洲精品久久国产高清桃花| 国产精品国产高清国产av| 成人漫画全彩无遮挡| 日韩大尺度精品在线看网址| 亚洲欧洲国产日韩| 非洲黑人性xxxx精品又粗又长| 人妻制服诱惑在线中文字幕| 变态另类丝袜制服| 直男gayav资源| 人人妻人人澡欧美一区二区| 久久九九热精品免费| www.av在线官网国产| a级毛片免费高清观看在线播放| 色尼玛亚洲综合影院| 亚洲自拍偷在线| 久久久国产成人免费| 三级经典国产精品| 一级毛片电影观看 | 91麻豆精品激情在线观看国产| 狂野欧美白嫩少妇大欣赏| 欧美区成人在线视频| 日本爱情动作片www.在线观看| 真实男女啪啪啪动态图| 国产男人的电影天堂91| 赤兔流量卡办理| 黄色视频,在线免费观看| 精品少妇黑人巨大在线播放 | 欧洲精品卡2卡3卡4卡5卡区| 久久精品国产亚洲av香蕉五月| av黄色大香蕉| 亚洲av成人av| 亚洲成av人片在线播放无| 18禁在线播放成人免费| 久久久久久久久久久免费av| 毛片女人毛片| 91久久精品电影网| 桃色一区二区三区在线观看| 3wmmmm亚洲av在线观看| 午夜久久久久精精品| 波多野结衣高清作品| 欧美潮喷喷水| 综合色丁香网| 亚洲av二区三区四区| 最后的刺客免费高清国语| 久久精品91蜜桃| 乱系列少妇在线播放| 久久欧美精品欧美久久欧美| 中文字幕制服av| 精品一区二区免费观看| 精品国内亚洲2022精品成人| 国产一区二区激情短视频| 在线国产一区二区在线| 欧美激情在线99| 99视频精品全部免费 在线| 在现免费观看毛片| 国产极品天堂在线| 欧美极品一区二区三区四区| 美女黄网站色视频| 久久久欧美国产精品| 搡老妇女老女人老熟妇| 在线观看66精品国产| 久久国内精品自在自线图片| 日日啪夜夜撸| 女的被弄到高潮叫床怎么办| 99热只有精品国产| 赤兔流量卡办理| 精品免费久久久久久久清纯| 插逼视频在线观看| 人妻少妇偷人精品九色| 哪个播放器可以免费观看大片| 九九爱精品视频在线观看| 亚洲精品色激情综合| 日韩一区二区视频免费看| 一级毛片久久久久久久久女| 亚洲成人av在线免费| av女优亚洲男人天堂| 亚洲色图av天堂| 一区二区三区免费毛片| 亚洲成人久久性| 成年免费大片在线观看| 色综合亚洲欧美另类图片| 啦啦啦观看免费观看视频高清| 舔av片在线| 成年版毛片免费区| 男人和女人高潮做爰伦理| 女同久久另类99精品国产91| 亚洲精品久久国产高清桃花| 日韩欧美 国产精品| 桃色一区二区三区在线观看| 最好的美女福利视频网| 麻豆乱淫一区二区| av国产免费在线观看| 国产亚洲av片在线观看秒播厂 | 亚洲av中文av极速乱| 国产精品一二三区在线看| 在线观看一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 哪里可以看免费的av片| 天天一区二区日本电影三级| 久久九九热精品免费| 日产精品乱码卡一卡2卡三| 成年av动漫网址| 波多野结衣高清作品| 色5月婷婷丁香| 性插视频无遮挡在线免费观看| 色哟哟哟哟哟哟| 国产亚洲欧美98| 婷婷六月久久综合丁香| 国产精品野战在线观看| 国产黄片视频在线免费观看| av.在线天堂| 麻豆精品久久久久久蜜桃| 国产伦精品一区二区三区视频9| 免费观看精品视频网站| 91在线精品国自产拍蜜月| 久久精品91蜜桃| 久久99热6这里只有精品| www.色视频.com| 国产精品野战在线观看| 亚洲国产精品成人综合色| 人妻夜夜爽99麻豆av| 国产单亲对白刺激| 国产一区亚洲一区在线观看| 久久久久久久久久成人| 插阴视频在线观看视频| 国产精品久久久久久亚洲av鲁大| 色尼玛亚洲综合影院| 国产精品日韩av在线免费观看| 伊人久久精品亚洲午夜| 好男人在线观看高清免费视频| 日韩欧美精品v在线| 久久人妻av系列| 乱人视频在线观看| 在线天堂最新版资源| 秋霞在线观看毛片| 久久久久久久久大av| 欧美高清成人免费视频www| 免费搜索国产男女视频| 国产爱豆传媒在线观看| 蜜桃久久精品国产亚洲av| 亚洲av成人av| 黄色一级大片看看| 国产淫片久久久久久久久| 婷婷色综合大香蕉| 亚洲丝袜综合中文字幕| 免费搜索国产男女视频| 91午夜精品亚洲一区二区三区| 欧美高清性xxxxhd video| 国产精品日韩av在线免费观看| 亚洲色图av天堂| 日韩 亚洲 欧美在线| 久久亚洲精品不卡| 久久久久久久久中文| 欧美成人一区二区免费高清观看| 2022亚洲国产成人精品| 老师上课跳d突然被开到最大视频| 中文字幕熟女人妻在线| 中文亚洲av片在线观看爽| 色视频www国产| 黑人高潮一二区| 成人永久免费在线观看视频| 男插女下体视频免费在线播放| 神马国产精品三级电影在线观看| 天堂影院成人在线观看| 一级毛片久久久久久久久女| 日本黄大片高清| 晚上一个人看的免费电影| 一边亲一边摸免费视频| h日本视频在线播放| 中文字幕精品亚洲无线码一区| 国产精品久久久久久精品电影| 18+在线观看网站| 亚洲va在线va天堂va国产| 国产精品福利在线免费观看| 国产色爽女视频免费观看| 观看美女的网站| 成人毛片60女人毛片免费| 精品99又大又爽又粗少妇毛片| 精品久久国产蜜桃| 一级黄色大片毛片| 夜夜夜夜夜久久久久| 免费电影在线观看免费观看| 熟妇人妻久久中文字幕3abv| 在现免费观看毛片| 一区福利在线观看| 亚洲精华国产精华液的使用体验 | 欧美又色又爽又黄视频| 最近最新中文字幕大全电影3| 日韩成人av中文字幕在线观看| 1000部很黄的大片| 九九爱精品视频在线观看| 亚洲最大成人av| 国产亚洲精品久久久久久毛片| 又爽又黄无遮挡网站| 少妇的逼好多水| 三级经典国产精品| a级毛色黄片| 亚洲熟妇中文字幕五十中出| 老熟妇乱子伦视频在线观看| 免费在线观看成人毛片| 国产成年人精品一区二区| 天天一区二区日本电影三级| 国产黄色视频一区二区在线观看 | 春色校园在线视频观看| www日本黄色视频网| 国产精品野战在线观看| 在线观看午夜福利视频| 国产精品无大码| 成人一区二区视频在线观看| 男女视频在线观看网站免费| 欧美日本亚洲视频在线播放| 联通29元200g的流量卡| av卡一久久| 日本与韩国留学比较| 精品久久久噜噜| 搡老妇女老女人老熟妇| 又粗又爽又猛毛片免费看| 日韩欧美国产在线观看| 国产高清有码在线观看视频| 男人舔奶头视频| av在线老鸭窝| 69av精品久久久久久| 日韩精品青青久久久久久| 精品久久久久久久久久免费视频| 69av精品久久久久久| 久久99精品国语久久久| 国产在线精品亚洲第一网站| 日日摸夜夜添夜夜爱| 只有这里有精品99| 国产色婷婷99| 六月丁香七月| 亚洲精品日韩av片在线观看| 亚洲人成网站在线观看播放| 国产亚洲av嫩草精品影院|