• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EXISTENCE AND UNIQUENESS OF THE GLOBAL L1 SOLUTION OF THE EULER EQUATIONS FOR CHAPLYGIN GAS?

    2021-06-17 13:59:52陳停停
    關(guān)鍵詞:王振

    (陳停停)

    School of Mathematics and Physics,China University of Geosciences,Wuhan 430074,China

    E-mail:chenting0617@163.com;chentt@cug.edu.cn

    Aifang QU(屈愛芳)?

    Department of Mathematics,Shanghai Normal University,Shanghai 200234,China

    E-mail:afqu@shnu.edu.cn

    Zhen WANG(王振)

    School of Science,Wuhan University of Technology,Wuhan 430070,China

    E-mail:zwang@whut.edu.cn;zhenwang@wipm.ac.cn

    Abstract In this paper,we establish the global existence and uniqueness of the solution of the Cauchy problem of a one-dimensional compressible isentropic Euler system for a Chaplygin gas with large initial data in the space The hypotheses on the initial data may be the least requirement to ensure the existence of a weak solution in the Lebesgue measurable sense.The novelty and also the essence of the difficulty of the problem lie in the fact that we have neither the requirement on the local boundedness of the density nor that which is bounded away from vacuum.We develop the previous results on this degenerate system.The method used is Lagrangian representation,the essence of which is characteristic analysis.The key point is to prove the existence of the Lagrangian representation and the absolute continuity of the potentials constructed with respect to the space and the time variables.We achieve this by finding a property of the fundamental theorem of calculus for Lebesgue integration,which is a sufficient and necessary condition for judging whether a monotone continuous function is absolutely continuous.The assumptions on the initial data in this paper are believed to also be necessary for ruling out the formation of Dirac singularity of density.The ideas and techniques developed here may be useful for other nonlinear problems involving similar difficulties.

    Key words Compressible Euler equations;linearly degenerate fields;initial data in space without uniform bounds;global well-posedness;regularity

    1 Introduction

    We are concerned with the Cauchy problem of isentropic gas dynamics for large initial data in thespace.One-dimensional isentropic gas dynamics are governed by the compressible Euler equations

    where ρ,u and p represent the mass density,the velocity and the pressure of the flow.The sound speed c≥0 is given by c2=?p/?ρ.

    Chaplygin gas is not only a suitable mathematical approximation for calculating the lifting force on the wing of an airplane in aerodynamics,but is also being proposed as a cosmological model which may provide hints as to what could happen for real gases.It can be viewed as a one-dimensional version of the Born-Infeld system;that is,a nonlinear modification of the Maxwell equations for solving the electrostatic divergence generated by point particles in classical electrodynamics.One remarkable feature of this dynamics is that the characteristic fields are linearly degenerate.More about its physical backgrounds can be found in[1,13]and the references therein.

    The initial data are

    On the Cauchy problem with large initial data in thespace,the degenerate systems differ significantly with the genuinely nonlinear systems or linear systems.For example,the Riemann solution of Chaplygin gas dynamics has the property,shared with some non-strictly hyperbolic conservation laws[21],that for certain Riemann initial data Uland Ur,either of their small variations could result in extreme changes in the intermediate states.In other words,concentrations of mass(Dirac singularity of density)called δ-shocks may form for certain initial data,and this corresponds to the case of overlaps of the two families of characteristics[7,18].However,this will not happen to polytropic gases p=A0ργwith γ the adiabatic exponent,as the two characteristic fields are genuinely nonlinear.Neither will this happen for the linear equations.

    For polytropic gases,for when=1(that is,for an isothermal gas),Nishida[27]obtained the BV solutions excluding vacuum for(1.1)with large initial data in the BV space by the random choice method,Huang and Wang[20]obtained the L∞solutions that may include a vacuum by a compensated compactness and analytic extension theorem,while LeFloch and Shelukhin[22]achieved it by compensated compactness arguments and symmetry group analysis.For when γ>1,the existence of L∞solutions for different γ were obtained by DiPerna[16],Ding,Chen and Luo[14,15],Chen[12],Lions,Perthame,and Tadmor[25],Lions,Perthame,and Souganidis[24].Chen and LeFloch explored the L∞entropy solution for general pressure in[11].See[2,8,9]for more on the global uniqueness and the stability for general systems.

    For Chaplygin gas dynamics,the existence of a solution to the Cauchy problem with large initial data in the L∞space was obtained in[10],by the method of quasi-decoupling,provided that the initial density is bounded and bounded away from a vacuum;see also[28]for an explicit solution.For smooth or L∞initial data,the solutions are as regular as the initial data,due to the degeneracy of the system([28,30]);see also[17,29]for more studies on this kind of system.

    As far as we know,no research on the Cauchy problem of the Euler system(1.1)with large initial data in the L1space has been performed.

    For pressureless flow,another typical known degenerate and non-strictly hyperbolic 2×2 system and the well-posedness of its Cauchy problem has been obtained with general initial data being of Radon measure.Compared to that non-strict hyperbolicity,system(1.1)for a Chaplygin gas is strictly hyperbolic in the domain away from a vacuum.This difference means that one can hardly use the generalized variational principles as in[19].We prove the existence of a solution by Lagrangian representation,and a property about the Newton-Leibniz formula on monotone functions.The novelty,and also the essence of the difficulty of this paper,lies in that there is no assumption on the local boundedness of the initial density in the wellposedness of the Cauchy problem of the Euler system.Neither the method of compensated compactness nor that of quasi-decoupling can be applied without some changes,including some possible approximation to the local L1norm of the initial data.This in turn may require the establishment of another new compactness frame.The second contribution of this paper is that we make use of the method of Lagrangian representation to obtain not only the global existence and uniqueness of the Cauchy problem with large initial data in thespace,but also the regularity of the solution for the degenerate system.

    More on the method of Lagrangian representation in research on the regularity of scalar conservation laws and systems with bounded and continuous initial data can be found in[3,4,6,26]and the references therein.In these works,the existence of Lagrangian representation was obtained essentially by a wave-front tracking approximation scheme.

    We prove the existence of the Lagrangian representation by using the Radon-Nikodym Theorem,as well as the property on monotonic functions mentioned above.More precisely,we first establish the relationship between a time-space point and the Lagrangian representation through conservation laws(1.1).Then,by Radon-Nikodym Theorem and detailed analysis,we obtain the unique existence of Lagrangian representation.

    The weak solution is defined as follows:

    and(ρ(x,t),u(x,t))|t=0=(ρ0(x),u0(x))a.e..

    Our main result is stated as follows:

    Theorem 1.2Assume the initial data(ρ0,u0)are measurable and satisfy that

    Then the Cauchy problem of the Chaplygin gas(1.1)(1.2)admits a unique global weak solution(ρ,u)satisfying that

    The remainder of the paper is organized as follows:in Section 2,under the assumptions in Theorem 1.2 on the initial data,we get the existence of the dependent interval at t=0 for any given point(x,t)in the upper half plane through two crucial integral equations,so that we can get the Lagrangian representation of a weak solution.Some regularity properties of these are given.In Section 3,we define two functions via the result obtained in Section 2 and focus on proving that they are the derivatives of two absolutely continuous potential functions,so that are the solution in search.The regularity of the solution is then studied,and some analysis is performed on its characteristics and streamlines.In Section 4,by construction,we show that the characteristics of the solution should satisfy the integral equations.Then,by the uniqueness of the solution to the integral equations,we conclude that the solution of system(1.1)is unique.Combining the lemmas in Sections 2 and 3,we get the conclusion stated in Theorem 1.2,and thus complete the proof.We give some discussion in Section 5.During the proofs of the existence of Lagrangian representation and the absolutely continuity of the potential functions,we use a fact about monotonic function that gives a sufficient and necessary condition for distinguishing those monotonic functions satisfying the fundamental theorem of calculus for Lebesgue integration.The proof of the lemma is given in the appendix.

    2 Determination of the Lagrangian Representation

    The classical characteristic analysis of mass and momentum potentials gives the relationship between a space-time point(x,t)and its dependent interval with endpoints(ξ,0)and(η,0)as follows:

    and(ξ,η)|t=0=(x,x).

    Hereafter,ρ0,u0are supposed to satisfy the assumptions proposed in Theorem 1.2,and hence system(2.1)is well-defined.This is crucial to our search for a low regular solution.The pair ξ=ξ(x,t)and η=η(x,t)satisfying(2.1)are called a Lagrangian representation of an entropy solution(ρ,u)if they are the generalized characteristics via(x,t)and Lipschitz with respect to t,increasing with respect to x.One can refer to[4–6,26]and the references therein for more versions.We have the following existence result regarding(ξ,η):

    Lemma 2.1Under the assumptions(i)–(iii)in Theorem 1.2,system(2.1)admits a unique solution(ξ,η)for any given(x,t).

    ProofLet m0(x):=It follows that m0(x)is strictly increasing and absolutely continuous with respect to x in view of the Radon-Nikodym Theorem,and m0is a measure on R satisfying

    Then(2.1)1can be reduced to

    Obviously,η<ξ for any t>0.In view of the strict monotonicity of m0and the assumption(i)in Theorem 1.2,one can solve,from(2.2),the value of η as a function of(ξ,t)as follows:

    Moreover,η is strictly increasing with respect to ξ for fixed t.

    Now,to get the existence of(ξ,η),it is enough to establish a homeomorphism between ξ and x for each fixed t>0.

    First of all,(2.1)2gives an injection from x to ξ.In fact,from(2.2),we have that

    Then,by(2.3),we have that

    Since

    (2.1)2can be written as

    In view of(2.4),one can reduce(2.5)to

    Noting that the second integral on the left hand side of(2.6)is independent of x,we just need to consider the first integral on the left.Since η<ξ,it follows by(2.3)and the assumption(iii)in Theorem 1.2 that w0(s)>Then(2.6)implies that ξ is strictly increasing with respect to x.

    Next,we discuss the mapping defined by(2.1)2from x to ξ.Indeed,making use of(2.5)we can rewrite(2.1)2as follows:

    Consider the two terms on the left side of(2.7).For the first term,it holds that

    For the second one,we have,for fixed ξ0and ξ<ξ0,the following:

    Thanks to(2.2),we have

    Thus,(2.9)is reduced to

    Then,(2.7),together with(2.8)and(2.10),implies that x goes to?∞as ξ goes to?∞.

    On the other hand,one could also rewrite(2.1)2in the following form:

    Similarly to(2.8),and from(2.3),we have

    while for η>ξ0,it holds that

    Then it follows from(2.11),(2.13)and(2.12)that x goes to+∞as ξ goes to+∞.

    The proof of this lemma is complete. □

    To characterize the regularity property of ξ(x,t)and η(x,t),and for the later use of proving the existence of a weak solution,we need the next lemma.This gives a sufficient and necessary condition to distinguish those monotonic functions satisfying the fundamental theorem of calculus for Lebesgue integration;in other words,those that are absolutely continuous are given in the Appendix.

    Lemma 2.2Assume that g(x)is a strictly monotonic continuous function defined on[a,b]and that the functiondefined on g([a,b])satisfies g((y))=y for any y∈g([a,b]).Then g is absolutely continuous if and only if the Lebesgue measure of the set on which the derivative ofvanishes is zero.

    We proceed this lemma to prove the following result:

    Lemma 2.3Both ξ and η are continuous functions of(x,t).They are strictly increasing and absolutely continuous with respect to x for any fixed positive t.For fixed x,ξ(x,t)(resp.η(x,t))is a strictly monotonic and absolutely continuous function of t on any interval[a,b]with a0 a.e.or z0(η(x,t))<0 a.e.(resp.w0(ξ(x,t))>0 a.e.or w0(ξ(x,t))<0 a.e.)for t∈[a,b].

    ProofConsider the continuity of ξ and η.Suppose,to the contrary,that(ξ,η)is discontinuous at some point(x0,t0).Then there is a sequence(xn,tn)converging to(x0,t0)as n→∞and a corresponding sequence(ξn,ηn)such that either any subsequence of{(ξn,ηn)}does not converge,or there is a subsequence of it denoted still by them such that limn→+∞(ξn,ηn)/=(ξ0,η0).

    Now(2.1)2,or,equivalently we have(2.11);that is

    so we have

    Let ξ0be a Lebesgue point of z0.We claim ηn≤ξ0or ηn≤xn?z0(ξ0)tn.Then,from the uniform boundedness of xnand tn,we conclude that ηnand so ξnis upper bounded.In fact,if ηn≥ξ0,then

    we have

    Letting ξ1be a Lebesgue of z0,we have either ξn>ξ1or ξn≥xn?w0(ξ1)tn.This gives the lower boundedness of ξn,and then that of ηn.

    Therefore,{(ξn,ηn)}are uniformly bounded,and thus there should exist a subsequence denoted still by(ξn,ηn)that converges to a pointHowever,by(2.15)and(2.17)we know thatshould coincide with(ξ,η)(x0,t0),due to the uniqueness of(2.1)obtained by Lemma 2.1.

    The assertions on the monotonic property of ξ and η with respect to x follow from the fact that ξ(x,t)(resp.η(ξ))is strictly increasing with respect to x(resp.ξ)as indicated in(2.6)in Lemma 2.1.

    The part of t can be obtained by contradiction.If there is some x0∈R such that ξ(x0,t)is not strictly monotonic with respect to t on[a,b],then there exist ti∈R×[a,b](i=1,2,t1>t2)and a corresponding(ξi,ηi)satisfying(2.1)with ξ1=ξ2.The subtraction of these two pairs in(2.1)2gives Now the left part of(2.18)is zero,since ξ1=ξ2,while z0is sign-preserved on η(x0,[a,b]).Then we have η1=η2,which is impossible in view of t1/=t2and(2.1).Thus,ξ(x,t)is strictly monotonic with respect to t on[a,b].Conversely,t is also a strictly monotonic function of ξ,and is differentiable almost everywhere.Thus,we have

    Similar arguments also can be applied to the case,w0(ξ(x,t))<0 or w0(ξ(x,t))>0 a.e.on[a,b],to get the conclusion on η(x,t).

    The proof of this lemma is complete. □

    Remark 2.4We can see from(2.2)that for fixed η,the solvability of ξ requires the infinity of m0(ξ)as t goes to±∞.This indicates that the assumption “for any constants a and b∈R”is essential to the solvability of(ξ,η)of(2.1).

    3 Existence of Weak Solution

    We will prove the existence of a solution by the notion of Lagrangian representation.By Lemma 2.1,system(2.1)determines two functions:ξ=ξ(x,t),η=η(x,t).

    Define the density and velocity as follows:

    Naturally,by the assumption(iii)of Theorem 1.2,we have that ρ(x,t)>0 a.e..In view of(ξ(x,t),η(x,t))|t=0=(x,x),we have

    In addition,we have

    Define

    Obviously,

    By direct calculations,we formally have that

    as well as

    To prove that(3.1)is exactly the weak solution of(1.1)and(1.2),it is enough to show thatandare absolutely continuous functions of x and t.

    By Lemma 2.3 we know that ξ(x,t)and η(x,t)are absolutely continuous with respect to x for fixed t.Then,by(3.4)and(3.5),we know that both(x,t)and(x,t)are absolutely continuous functions of x for fixed t.

    Next,we focus on the absolute continuation ofandwith respect to t for fixed x.In fact,as mentioned in Section 3,it is easy to get the result if w0(ξ)<0 or z0(η)>0.While based on the assumptions on initial data,we will divide the discussion on w0(x)into the following two cases:

    Case(1) there is a sequence xn→+∞which are Lebesgue points of w0such that w0(xn)≤0;

    Case(2) there is a Lebesgue point x0of w0such that w0(x)>0 a.e.for x>x0.

    We analyze the absolute continuation ofandwith respect to t for each case in the sequel.

    Case(2)There is a Lebesgue point x0of w0such that w0(x)>0 a.e.for x>x0.We divide this case into two subcases.

    Subcase a):w0(x)>0 a.e..In this case,by Lemma 2.3,η is an absolutely continuous function of t.Thus,by Lemma 2.3,(3.4),(3.5)and(2.1),we know that both(x,t)and(x,t)are absolutely continuous functions of t.

    Subcase b):There is a Lebesgue point x0of w0such that w0(x0)≤0,while w0(x)>0 a.e.for x>x0.This subcase is divided into four cases:

    Case(i):z0(η(x,t))<0 a.e.for t>0;

    Case(ii):there is a t1>0 such that z0(η(x,t))<0 a.e.for t

    Case(iii):z0(η(x,t))≥0 a.e.for t>0;

    Case(iv):there is a t1>0 such that z0(η(x,t))≥0 a.e.for t

    We analyze these one by one.

    Case(i):If z0(η(x,t))<0 a.e.for t>0,then by the argument in Case(1)we know that both(x,t)and(x,t)are absolutely continuous functions of t.

    Case(ii):If there is a t1>0 such that z0(η(x,t))<0 a.e.for t

    Now we focus on the part where t>t1.In view of z0(y)x0and then ξ(x,t1)>x0.By the continuity of ξ with respect to t,we have ξ(x,t)>x0for all t∈(t1,t2)for some t2>t1and then w0(ξ(x,t))>0.By Lemma 2.3,we know that η is a decreasing and absolutely continuous function of t if t∈[t1,t2].By(3.4)and(3.5),we know that both(x,t)and(x,t)are absolutely continuous functions of t on[t1,t2].Suppose,without loss of generality,that η(x,t2)<ξ(x,t2)≤x0.Otherwise,t2can be extended to a larger value to infinity because it holds that w0(ξ(x,t2))>0 for ξ(x,t2)>x0,and we can repeat the argument at the beginning of Subcase b).Therefore,it holds that z0(η(x,t2))<0.Repeating the above process,we conclude that both(x,t)and(x,t)are absolutely continuous functions of t for all t>0.

    Case(iii):If z0(η(x,t))≥0 a.e.for t>0,the absolute continuation of(x,t)and(x,t)with respect to t follows from Subcase a),since w0(ξ(x,t))>z0(η(x,t))a.e.implies that w0(ξ(x,t))>0 a.e..

    Case(iv):There is a t1>0 such that z0(η(x,t))≥0 if tt1in Case(ii)gives the absolute continuation of(x,t)and(x,t)with respect to t.

    Therefore,we arrive at the following conclusion:

    Lemma 3.1Both(x,t)and(x,t)are respectively absolutely continuous functions of x and t for all t>0,and(3.7)–(3.10)holds.

    Now we proceed to prove that(ρ,u)satisfies system(1.1)in the sense of distribution.

    Lemma 3.2The pair(ρ,u)given by(3.1)satisfy(1.3).

    ProofIn view of Lemma 3.1,it(3.7)–(3.10)holds.For anywe have

    Thus,(ρ,u)satisfies the first equation of(1.3).

    The same argument gives the second equation of(1.3).Thus the proof of this lemma is complete. □

    In the following,we will prove that the solution ρ,u defined in(3.1)has the regularity properties(1)–(3)of Theorem 1.2:

    Lemma 3.3The quantities ρ,u defined in(3.1)satisfy the following:

    due to the assumption(ii)in Theorem 1.2.

    Similarly to(3.15)and(3.16)regarding v1,we get

    The addition of(3.16)and(3.17)gives the local L1integral of ρ(x,t)u2(x,t),1ρ(x,t).While the subtraction of(3.16)and(3.17)gives the local L1integral of u(x,t).

    Due to assumption(i)in Theorem 1.2,we have

    The proof of this lemma is complete. □

    Next,we depict the characteristics of system(1.1).As above,(ξ,η)=(ξ,η)(x,t)is determined by(2.1).We have

    Lemma 3.4For any given ξ0∈R,ξ(x,t)=ξ0determines a backward characteristic

    satisfying

    Meanwhile,η(x,t)=η0with η0a constant determines a forward characteristic

    satisfying

    Both characteristics are absolutely continuous functions of t.

    ProofFor ξ=ξ0,(2.3)determines a function η=η(t;ξ0).Then,by(2.1)2,we have that

    which determines a mapping from t to x,denoted by x(t;ξ0).Since

    it follows from(3.22)that

    In view of(2.2),we have that

    For η=η0,similarly to ξ=ξ0,there exists ξ(t;η0)and then x(t,η0)such that(2.1)holds,that is,

    Thus,

    Equipped with the information on characteristics,we can determine the streamline via each point in the upper half(x,t)plane.

    4 Uniqueness

    Suppose that(ρ,u)are weak solutions of(1.1)satisfying(1)-(4)of Theorem 1.2.Then,for any Lebesgue point(x,t),we still denote the endpoints of its dependent interval by(ξ,0)and(η,0).We claim that(x,t)and(ξ,η)should satisfy(2.1).

    This implies that x=x1(t)is indeed the first family of characteristics. □

    Lemma 4.2Suppose ρ,u are weak solutions of the Cauchy problem(1.1)(1.2).Then for any given point(x,t)in the upper half plane,the two abscissae of the two families of characteristics via(x,t)that intersect with the x-axis should satisfy(2.1).

    ProofFor any x∈R,in the domain bounded by x=x,x=x0(t),t=t1and t=t2,by the conservation law of momentum,we have for t2>t1>0 that

    Then,by(4.5),we have that

    Noting that

    with(ξ,η)|t=0=(x,x). □

    Proof of Theorem 1.2The existence of a solution to the Cauchy problem(1.1)(1.2)follows from Lemma 3.2 and(3.2).

    Remark 4.3The assumption(iii)in Theorem 1.2 is necessary to rule out the Dirac measure singularity.In fact,writing system(1.1)in Lagrangian coordinates,we have

    Remark 4.4The unique solution(ρ,u)is given by(3.1),up to a set of zero measure with Hausdorffdimension 1.

    5 Some Discussion

    By Theorem 1.2,Definition 1.1,Remarks 2.4,4.3 and 4.4,we know that the conditions proposed on the initial data in Theorem 1.2 are sufficient and also necessary for the equivalence of Chaplygin gas dynamics in Eulerian and Lagrangian coordinates[32].This result generalizes and develops the previous ones on a weak solution to a typical system of conservation laws whose characteristics are linearly degenerate.This should be helpful for further study on more general linearly degenerate systems.For initial data that are of Radon measure as in[19],the well-posedness of this system is still open.

    Appendix

    Proof of Lemma 2.2Without loss of generality,we assume that g is an increasing function.

    1.Necessity.If g is absolutely continuous,we show that the Lebesque measure of keris zero.To achieve this,we need a known result[33,p274 Theorem 5.25],as follows:

    Assume that g(x)is differential almost everywhere on[a,b],that f(x)is integral on[c,d],and that g([a,b])?[c,d].Denote

    Then the following two propositions are equivalent:

    (1)F(g(t))is absolutely continuous on[a,b];

    (2)f(g(t))g′(t)is integral on[a,b]and

    Therefore,we have that

    Thus g is absolutely continuous.The proof of this lemma is complete. □

    猜你喜歡
    王振
    Efficient method to calculate the eigenvalues of the Zakharov–Shabat system
    Analytical three-periodic solutions of Korteweg–de Vries-type equations
    CrAlGe: An itinerant ferromagnet with strong tunability by heat treatment
    Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
    電池?zé)峁芾硐到y(tǒng)散/加熱特性研究及保溫安全設(shè)計
    包裝工程(2022年11期)2022-06-20 09:37:36
    3種葉面肥在小麥上的應(yīng)用效果
    怕馬蹄與拍馬屁
    雜文月刊(2022年4期)2022-04-22 20:28:21
    THE EXISTENCE OF A BOUNDED INVARIANT REGION FOR COMPRESSIBLE EULER EQUATIONS IN DIFFERENT GAS STATES*
    博物館安防系統(tǒng)改造工程淺析
    明英宗幼年教育管窺
    亚洲av电影不卡..在线观看| 午夜日韩欧美国产| 国产精品亚洲一级av第二区| av国产免费在线观看| 亚洲内射少妇av| 毛片女人毛片| 乱码一卡2卡4卡精品| 欧美日本视频| 日产精品乱码卡一卡2卡三| 国产精品一及| 国内精品宾馆在线| 日韩欧美国产在线观看| 国产精品乱码一区二三区的特点| eeuss影院久久| 丰满乱子伦码专区| 精品无人区乱码1区二区| 免费观看精品视频网站| 国产爱豆传媒在线观看| 亚洲精品国产成人久久av| 精品一区二区三区视频在线| av专区在线播放| 亚洲第一区二区三区不卡| 久久精品国产亚洲av香蕉五月| 岛国在线免费视频观看| 高清毛片免费看| 人妻制服诱惑在线中文字幕| eeuss影院久久| 一夜夜www| 日本黄色片子视频| 丝袜喷水一区| 国产av麻豆久久久久久久| 国产欧美日韩精品一区二区| 国产高清三级在线| 中文字幕人妻熟人妻熟丝袜美| 淫妇啪啪啪对白视频| 一级毛片aaaaaa免费看小| 欧美高清成人免费视频www| 不卡视频在线观看欧美| .国产精品久久| 91久久精品国产一区二区三区| 亚洲精品一区av在线观看| 亚洲精品色激情综合| 日日干狠狠操夜夜爽| 午夜激情欧美在线| 国产久久久一区二区三区| 中文字幕av在线有码专区| 熟女电影av网| 最新中文字幕久久久久| 综合色av麻豆| 春色校园在线视频观看| 国产精品久久久久久久久免| 天堂影院成人在线观看| 人妻丰满熟妇av一区二区三区| 久久精品国产亚洲av涩爱 | 久久99热6这里只有精品| 免费看av在线观看网站| 欧美极品一区二区三区四区| 真实男女啪啪啪动态图| 国产探花极品一区二区| 一级黄色大片毛片| 成年女人毛片免费观看观看9| 内地一区二区视频在线| 日本在线视频免费播放| 免费人成在线观看视频色| 国产精品人妻久久久久久| 国产精品乱码一区二三区的特点| 精品不卡国产一区二区三区| 久久久久久九九精品二区国产| 国产精品无大码| 国产成人福利小说| 免费观看的影片在线观看| 最近最新中文字幕大全电影3| 高清午夜精品一区二区三区 | 国模一区二区三区四区视频| 久久久精品大字幕| 日本黄大片高清| 十八禁网站免费在线| 久久久国产成人免费| 青春草视频在线免费观看| 麻豆久久精品国产亚洲av| 久久精品影院6| 欧美色视频一区免费| 亚洲三级黄色毛片| 人人妻人人澡欧美一区二区| 免费人成视频x8x8入口观看| 亚洲在线自拍视频| av天堂在线播放| 舔av片在线| 夜夜夜夜夜久久久久| 国产探花极品一区二区| 色吧在线观看| 狂野欧美白嫩少妇大欣赏| 丝袜喷水一区| 日韩欧美在线乱码| 全区人妻精品视频| 色在线成人网| 国产成年人精品一区二区| 成人漫画全彩无遮挡| 性色avwww在线观看| 中出人妻视频一区二区| 国产在线精品亚洲第一网站| 久久鲁丝午夜福利片| 22中文网久久字幕| 97超视频在线观看视频| 亚洲国产欧美人成| 狠狠狠狠99中文字幕| 1024手机看黄色片| 午夜福利成人在线免费观看| 国内精品久久久久精免费| 婷婷亚洲欧美| 亚洲精品日韩在线中文字幕 | 亚洲av.av天堂| 我要搜黄色片| 精品人妻熟女av久视频| 精品人妻一区二区三区麻豆 | 国内揄拍国产精品人妻在线| 综合色av麻豆| 别揉我奶头~嗯~啊~动态视频| 九九爱精品视频在线观看| 天堂网av新在线| 中文亚洲av片在线观看爽| 亚洲综合色惰| 免费观看的影片在线观看| 日韩一区二区视频免费看| 亚洲av中文av极速乱| 久久综合国产亚洲精品| 亚洲久久久久久中文字幕| 国产熟女欧美一区二区| 听说在线观看完整版免费高清| 国产69精品久久久久777片| 亚洲无线观看免费| 寂寞人妻少妇视频99o| 免费观看在线日韩| 亚洲精品一区av在线观看| 99在线人妻在线中文字幕| av视频在线观看入口| 99热6这里只有精品| 联通29元200g的流量卡| 欧美区成人在线视频| 3wmmmm亚洲av在线观看| 日韩强制内射视频| 亚洲欧美中文字幕日韩二区| 亚洲国产精品国产精品| 免费看光身美女| 国产 一区精品| 国产 一区精品| 少妇高潮的动态图| 日韩一本色道免费dvd| 亚洲精品国产成人久久av| 亚洲精品国产av成人精品 | 日韩成人伦理影院| 中文字幕av成人在线电影| av免费在线看不卡| 国产精品精品国产色婷婷| 别揉我奶头~嗯~啊~动态视频| 老女人水多毛片| 波野结衣二区三区在线| 国产精品一及| 亚洲av免费高清在线观看| 国产久久久一区二区三区| 黄色一级大片看看| 午夜影院日韩av| 亚洲精品国产成人久久av| 能在线免费观看的黄片| 又黄又爽又刺激的免费视频.| 三级男女做爰猛烈吃奶摸视频| 国产 一区精品| 亚洲最大成人av| 乱系列少妇在线播放| 日韩国内少妇激情av| 国产私拍福利视频在线观看| 一进一出抽搐动态| h日本视频在线播放| 国产男人的电影天堂91| 久久草成人影院| 欧美日韩一区二区视频在线观看视频在线 | 久久鲁丝午夜福利片| 国产精品国产三级国产av玫瑰| 国产中年淑女户外野战色| 日本在线视频免费播放| 波多野结衣高清无吗| 日本爱情动作片www.在线观看 | 男女边吃奶边做爰视频| 国产精品永久免费网站| 免费看a级黄色片| 97热精品久久久久久| 看片在线看免费视频| 看非洲黑人一级黄片| 国产亚洲精品久久久com| 91狼人影院| av免费在线看不卡| 女的被弄到高潮叫床怎么办| 国产三级中文精品| 亚洲高清免费不卡视频| 亚洲,欧美,日韩| 99久久中文字幕三级久久日本| 非洲黑人性xxxx精品又粗又长| 亚洲色图av天堂| 哪里可以看免费的av片| 日韩欧美国产在线观看| av国产免费在线观看| 亚洲欧美日韩高清专用| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久久午夜电影| 99久久成人亚洲精品观看| 日韩一本色道免费dvd| 男女视频在线观看网站免费| 亚洲人成网站在线观看播放| 国产成年人精品一区二区| 性欧美人与动物交配| 亚洲人成网站在线播放欧美日韩| 嫩草影院新地址| 久久久久久久亚洲中文字幕| 日韩欧美精品v在线| 男人的好看免费观看在线视频| 91狼人影院| 亚洲精品色激情综合| 成人二区视频| 男女啪啪激烈高潮av片| 99久国产av精品国产电影| 色5月婷婷丁香| 深夜精品福利| 日本三级黄在线观看| 大型黄色视频在线免费观看| 亚洲精品影视一区二区三区av| 亚洲人成网站在线观看播放| 国产亚洲91精品色在线| 乱码一卡2卡4卡精品| 国产精品无大码| 日韩亚洲欧美综合| 亚洲人成网站在线播放欧美日韩| 亚洲国产精品成人综合色| 国产精品野战在线观看| 美女黄网站色视频| 日本三级黄在线观看| 亚洲精品在线观看二区| 简卡轻食公司| 永久网站在线| 久久久久国内视频| 久久久久国产网址| 国产精品女同一区二区软件| 真人做人爱边吃奶动态| 国产男人的电影天堂91| 欧洲精品卡2卡3卡4卡5卡区| 深夜a级毛片| 久久久国产成人免费| 亚洲经典国产精华液单| 天美传媒精品一区二区| 亚洲中文日韩欧美视频| 久久人人爽人人爽人人片va| 午夜久久久久精精品| 国产午夜精品久久久久久一区二区三区 | 一本精品99久久精品77| 亚洲成人中文字幕在线播放| 在线看三级毛片| 亚洲欧美精品自产自拍| 亚洲va在线va天堂va国产| 成人永久免费在线观看视频| 日韩强制内射视频| a级一级毛片免费在线观看| 香蕉av资源在线| 干丝袜人妻中文字幕| ponron亚洲| 午夜福利在线观看吧| 亚洲无线观看免费| 成人特级av手机在线观看| 久久人妻av系列| 97人妻精品一区二区三区麻豆| 乱系列少妇在线播放| 欧美区成人在线视频| 狠狠狠狠99中文字幕| 亚洲人成网站在线观看播放| 色哟哟·www| 又爽又黄a免费视频| 一级a爱片免费观看的视频| 简卡轻食公司| 变态另类成人亚洲欧美熟女| 99在线人妻在线中文字幕| 国产精品久久视频播放| 一a级毛片在线观看| 激情 狠狠 欧美| 一进一出抽搐动态| 91在线观看av| 97人妻精品一区二区三区麻豆| 18禁在线无遮挡免费观看视频 | 久久国产乱子免费精品| 亚洲婷婷狠狠爱综合网| 国内精品久久久久精免费| 婷婷精品国产亚洲av在线| 69av精品久久久久久| 天堂影院成人在线观看| 国产高清视频在线播放一区| 免费大片18禁| 亚洲第一电影网av| 日本免费一区二区三区高清不卡| 免费大片18禁| av黄色大香蕉| 久久精品人妻少妇| 99国产精品一区二区蜜桃av| 久久久久久久亚洲中文字幕| 色在线成人网| 春色校园在线视频观看| 国产亚洲精品av在线| 国产精品久久久久久精品电影| 国产v大片淫在线免费观看| 久久热精品热| 最近2019中文字幕mv第一页| 在线观看av片永久免费下载| 人妻少妇偷人精品九色| 成人av一区二区三区在线看| 国产精品嫩草影院av在线观看| 黄色日韩在线| 天天躁日日操中文字幕| 波野结衣二区三区在线| 午夜福利在线观看吧| 国产精品一区二区三区四区免费观看 | 99久久成人亚洲精品观看| 日韩中字成人| 亚洲人成网站在线播| 蜜臀久久99精品久久宅男| 午夜老司机福利剧场| 美女被艹到高潮喷水动态| 欧美+亚洲+日韩+国产| 男人的好看免费观看在线视频| 搡老熟女国产l中国老女人| 国产精品久久久久久精品电影| 韩国av在线不卡| 免费观看在线日韩| 两个人视频免费观看高清| 黄色欧美视频在线观看| eeuss影院久久| 国产视频内射| 人人妻人人澡人人爽人人夜夜 | 久久综合国产亚洲精品| 亚洲在线观看片| 久久精品久久久久久噜噜老黄 | 成人无遮挡网站| 精品国内亚洲2022精品成人| 色噜噜av男人的天堂激情| 欧美色视频一区免费| 伦理电影大哥的女人| 女生性感内裤真人,穿戴方法视频| 99热这里只有精品一区| 国产三级中文精品| 给我免费播放毛片高清在线观看| 中国美白少妇内射xxxbb| 国产成年人精品一区二区| 晚上一个人看的免费电影| 国产乱人视频| 免费观看的影片在线观看| 免费无遮挡裸体视频| 淫秽高清视频在线观看| 中文字幕免费在线视频6| 亚洲av五月六月丁香网| 久久久久久大精品| 久久精品国产亚洲av天美| 99国产极品粉嫩在线观看| 亚洲av免费高清在线观看| 国产精品乱码一区二三区的特点| 久久久久久国产a免费观看| 老女人水多毛片| 国产高清激情床上av| 夜夜夜夜夜久久久久| 国产女主播在线喷水免费视频网站 | 亚洲精品粉嫩美女一区| 99热这里只有精品一区| 国产老妇女一区| 97在线视频观看| 日韩欧美国产在线观看| 亚洲精品日韩在线中文字幕 | 成人午夜高清在线视频| 美女被艹到高潮喷水动态| 日韩精品有码人妻一区| 99热6这里只有精品| 九九在线视频观看精品| 欧美性感艳星| 亚洲欧美日韩高清在线视频| 97人妻精品一区二区三区麻豆| 1024手机看黄色片| 网址你懂的国产日韩在线| 成人特级av手机在线观看| 精品人妻一区二区三区麻豆 | 欧美成人a在线观看| 日韩成人伦理影院| 国产成年人精品一区二区| 亚洲av不卡在线观看| 亚洲av中文av极速乱| 国产亚洲精品久久久com| 欧美激情久久久久久爽电影| 久久久精品94久久精品| 天堂网av新在线| 国产精品人妻久久久影院| 亚洲三级黄色毛片| 亚洲最大成人av| 久久久久免费精品人妻一区二区| 国产黄色小视频在线观看| 国产探花极品一区二区| av卡一久久| 欧美区成人在线视频| 国产亚洲av嫩草精品影院| 日本黄大片高清| 国产精品一区www在线观看| ponron亚洲| 非洲黑人性xxxx精品又粗又长| 亚洲真实伦在线观看| 女人被狂操c到高潮| 亚洲精品日韩av片在线观看| 日本三级黄在线观看| 91麻豆精品激情在线观看国产| 99热这里只有是精品50| 成人特级av手机在线观看| 中国美白少妇内射xxxbb| 校园人妻丝袜中文字幕| av福利片在线观看| 亚洲欧美日韩高清专用| 日日啪夜夜撸| 99久国产av精品| 久久精品久久久久久噜噜老黄 | 99久国产av精品| 久久亚洲精品不卡| 亚洲在线自拍视频| 亚洲最大成人av| 两性午夜刺激爽爽歪歪视频在线观看| 美女内射精品一级片tv| 身体一侧抽搐| 非洲黑人性xxxx精品又粗又长| 日本与韩国留学比较| 成年女人毛片免费观看观看9| 日韩精品有码人妻一区| 久久久久久久亚洲中文字幕| 久久久久久大精品| 久久鲁丝午夜福利片| 亚洲精品影视一区二区三区av| 亚洲中文字幕日韩| 俺也久久电影网| 国产黄片美女视频| 欧美日韩乱码在线| 亚洲人成网站在线观看播放| 99热网站在线观看| 性欧美人与动物交配| 大型黄色视频在线免费观看| 一边摸一边抽搐一进一小说| 日韩成人伦理影院| 国产黄a三级三级三级人| 久久久久久久久久久丰满| 深夜a级毛片| 日本撒尿小便嘘嘘汇集6| 国产女主播在线喷水免费视频网站 | 美女内射精品一级片tv| 亚洲最大成人中文| 俄罗斯特黄特色一大片| 精品久久久久久久人妻蜜臀av| 日日撸夜夜添| 国产精品久久电影中文字幕| 亚洲精品日韩av片在线观看| 欧美丝袜亚洲另类| 国产视频一区二区在线看| 夜夜爽天天搞| 亚洲欧美日韩东京热| 最近视频中文字幕2019在线8| 国产精品野战在线观看| 亚洲内射少妇av| 人妻丰满熟妇av一区二区三区| 亚洲精品国产成人久久av| 少妇熟女aⅴ在线视频| 午夜老司机福利剧场| 成人av一区二区三区在线看| 成人二区视频| 国产精品免费一区二区三区在线| 99热精品在线国产| 国产一区二区激情短视频| 久久久久久久久久成人| 99riav亚洲国产免费| 日韩欧美 国产精品| 麻豆av噜噜一区二区三区| 久久精品久久久久久噜噜老黄 | 日本在线视频免费播放| 国产一区二区在线av高清观看| 亚洲无线观看免费| 在线观看午夜福利视频| 91午夜精品亚洲一区二区三区| 国产v大片淫在线免费观看| 丰满的人妻完整版| 成人一区二区视频在线观看| 日本爱情动作片www.在线观看 | 少妇熟女欧美另类| avwww免费| 麻豆国产97在线/欧美| 日韩成人伦理影院| 亚洲精品久久国产高清桃花| 亚洲欧美精品自产自拍| 一本一本综合久久| av在线蜜桃| 久久天躁狠狠躁夜夜2o2o| 亚洲人与动物交配视频| 人人妻人人澡人人爽人人夜夜 | 天美传媒精品一区二区| 欧美激情国产日韩精品一区| 综合色丁香网| 特级一级黄色大片| 午夜亚洲福利在线播放| 成人高潮视频无遮挡免费网站| 男女之事视频高清在线观看| 老熟妇乱子伦视频在线观看| 国产精品久久视频播放| 99久久九九国产精品国产免费| 女人十人毛片免费观看3o分钟| 国产精品乱码一区二三区的特点| 69人妻影院| 国产成人一区二区在线| 中文字幕熟女人妻在线| 亚洲欧美成人精品一区二区| a级毛片a级免费在线| 国产精品人妻久久久久久| 激情 狠狠 欧美| 欧美+日韩+精品| 男女之事视频高清在线观看| 日本熟妇午夜| 两个人视频免费观看高清| 国内精品一区二区在线观看| 免费人成视频x8x8入口观看| 亚洲av五月六月丁香网| 亚洲婷婷狠狠爱综合网| 在线观看免费视频日本深夜| 美女cb高潮喷水在线观看| 亚洲第一区二区三区不卡| 久久久色成人| 老熟妇仑乱视频hdxx| 久99久视频精品免费| 亚洲av中文av极速乱| 夜夜夜夜夜久久久久| 一级a爱片免费观看的视频| 欧美另类亚洲清纯唯美| 99久久精品热视频| 直男gayav资源| 亚洲综合色惰| 精品一区二区三区av网在线观看| 国产亚洲91精品色在线| 真人做人爱边吃奶动态| 观看美女的网站| 人妻制服诱惑在线中文字幕| 欧美zozozo另类| 黄色日韩在线| 最近手机中文字幕大全| 一区二区三区高清视频在线| 最近2019中文字幕mv第一页| 亚洲中文字幕一区二区三区有码在线看| 国产精华一区二区三区| 男女啪啪激烈高潮av片| 别揉我奶头~嗯~啊~动态视频| 男人舔奶头视频| 人妻久久中文字幕网| 久久久久久久久大av| 免费人成在线观看视频色| 免费在线观看影片大全网站| 国产黄色视频一区二区在线观看 | 国产黄色小视频在线观看| 久久鲁丝午夜福利片| 成人特级av手机在线观看| 中文在线观看免费www的网站| 一区福利在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲av免费在线观看| 99热精品在线国产| a级毛片免费高清观看在线播放| 亚洲无线观看免费| 69av精品久久久久久| 欧美日韩综合久久久久久| 好男人在线观看高清免费视频| 亚洲av中文av极速乱| 成年女人毛片免费观看观看9| 日本 av在线| 久久久久久久亚洲中文字幕| 男女边吃奶边做爰视频| 91狼人影院| 免费搜索国产男女视频| 女同久久另类99精品国产91| 国产亚洲精品久久久com| 又粗又爽又猛毛片免费看| 久久草成人影院| www.色视频.com| 大又大粗又爽又黄少妇毛片口| 中国国产av一级| 亚洲av五月六月丁香网| 国产精华一区二区三区| 大型黄色视频在线免费观看| 麻豆av噜噜一区二区三区| 日韩精品有码人妻一区| 精品人妻一区二区三区麻豆 | 十八禁国产超污无遮挡网站| 天美传媒精品一区二区| 久久热精品热| 真实男女啪啪啪动态图| 岛国在线免费视频观看| 国产精品久久久久久亚洲av鲁大| 老师上课跳d突然被开到最大视频| 一夜夜www| 又粗又爽又猛毛片免费看| 真实男女啪啪啪动态图| 亚洲aⅴ乱码一区二区在线播放| 久久久午夜欧美精品| 国产色爽女视频免费观看| 欧美激情在线99| 国产av在哪里看| 亚洲av成人精品一区久久| 少妇猛男粗大的猛烈进出视频 | 狠狠狠狠99中文字幕| 97碰自拍视频| 国产aⅴ精品一区二区三区波| 国产高清有码在线观看视频| 91午夜精品亚洲一区二区三区| 国产高清三级在线| 91久久精品国产一区二区成人| av中文乱码字幕在线| 欧美一级a爱片免费观看看|