• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2

    2022-10-26 09:47:10ZhenWang王振HengcanZhao趙恒燦MengLyu呂孟JunsenXiang項俊森QingxinDong董慶新GenfuChen陳根富ShuaiZhang張帥andPeijieSun孫培杰
    Chinese Physics B 2022年10期
    關(guān)鍵詞:王振張帥

    Zhen Wang(王振) Hengcan Zhao(趙恒燦) Meng Lyu(呂孟) Junsen Xiang(項俊森)Qingxin Dong(董慶新) Genfu Chen(陳根富) Shuai Zhang(張帥) and Peijie Sun(孫培杰)

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Science,University of Chinese Academy of Sciences,Beijing 100049,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: Dirac semimetal,low-energy phonon,thermal conductivity,lattice instability

    1. Introduction

    In addition to their electrical and optical properties that have been subjected to intensive investigation, topological semimetals also show intriguing lattice dynamics and thermal properties that remain largely unexplored. Most of these properties concern the interplay between topological electronic bands and low-energy phonons, as highlighted in the following cases: chiral magnetic effect can alter optical phonons via intrinsic plasmon modes in an external magnetic field;[1]topological singularity in electronic bands is able to induce chiral Kohn anomaly in the phonon dispersions;[2]topological phononic and electronic bands in a class of triplepoint metals are expected to offer a strategy for enhanced thermoelectricity,[3]etc.

    The titled compound Cd3As2is a prototypical Dirac semimetal.[4]It has, on one hand, very high electron mobility derived from symmetry protected Dirac nodes and,on the other hand, surprisingly low lattice thermal conductivity that is indicative of strong phonon scatterings (Refs. [5–8]). The latter phenomenon becomes interesting because of the topological Dirac bands that appear to be highly relevant to lattice dynamics. Thus far, low thermal conductivity has been intensively investigated in thermoelectric materials, most of which host weak chemical bonds that are crucial for reducing phonon velocity and increasing scattering.[9]For Cd3As2,a group of soft optical phonons showing Kohn anomaly associated with the Dirac nodes have been identified byab initiocalculations.[10]These soft optical modes were ascribed to be the leading reason of the low thermal conductivity by increasing the scattering rate of heat-carrying acoustic phonons.In fact, significant softening of low-energy phonons is generically expected in semimetals near topological phase transition, where Kohn anomalies due to intranode or internode electron–phonon scattering may occur near the Brillouinzone center.[11]Accordingly,Raman scattering of Cd3As2has shown significant deviations of selected optical-phonon frequencies from the expectation based on lattice anharmonicity belowT ≈100 K (Ref. [12]). This has been ascribed to the strong fluctuations of lattice degrees of freedom interacting with Dirac electrons.

    From a crystallographic point of view,Cd3As2at ambient conditions crystalizing in the tetragonally distorted antifluorite structure (space groupI41/acd) that hosts topological Dirac bands is located close to a lattice instability. Upon heating to only about 220°C, it transforms to a Zn3As2-type structure with space group(P42/nbc),with at least two more structural phase transitions taking place at higher temperatures,[13,14]Alternatively, application of pressure causes a couple of structural phase transitions as well,starting from the one at a relatively low pressure of~2.3 GPa.[14–16]Given the complex lattice instability as introduced above, an in-depth investigation on this compound by a comprehensive set of thermodynamic probes appears to be essential in characterizing the lattice dynamics and, more importantly, its potential interaction with Dirac electrons.

    2. Experimental methods

    Single crystals of Cd3As2were prepared by self-transport technique;see Ref.[5]for the details of structural characterization and crystal orientation. The specific heat was measured by thermal relaxation method in a commercial physical properties measurement system (PPMS, Quantum Design), and the thermal conductivity by conventional steady-state method with two thermometers and one heater.[5]The measurements of thermal expansion were performed by using a miniaturized capacitance dilatometer and an Andeen-Hagerling 2500A capacitance bridge.[17]We have also measured the transverse and longitudinal ultrasound velocitiesυTandυLof a large polycrystalline sample(2.67×1.97×0.96 mm3). Here,the sound velocities were measured by a phase comparison technique,[18]where the frequency of the input acoustic wave was continuously adjusted during the temperature scan in order to maintain a constant phase of a given output echo. The elastic moduli were calculated from the ultrasound velocities asCi=dυ2i(i=L or T),withdbeing the sample density.

    3. Results and discussion

    The thermal conductivityκ(T) measured within the asgrown(112)plane of a single crystal is shown in Fig.1. Thermal measurements in the(100)plane have revealed very similar data,[8]indicating weak anisotropy of the thermal conductivity in Cd3As2. The electronic contributionκe(T)calculated based on the Wiedemann–Franz law and the measured electrical resistivity (Fig. 1 inset) are also shown. In estimating the electronic part, we assume that the Sommerfeld value of the Lorenz number applies to this material in the temperature window of interest. We note, however, that to what extent the Wiedemann–Franz law holds in Dirac materials remains an issue of debate. For example,the Sommerfeld value of the Lorenz number may change significantly when a magnetic field is applied[19]or the Fermi level crosses the Dirac point;[20]the two situations that do not apply to the current work and Cd3As2. In spite of a moderate sample dependence of theκ(T)profiles reported in the literature,[7,8,21]they are qualitatively similar with two marked features: a nearly temperature-independent, small value ofκ(T) atT >100 K and a markedκ(T)maximum atT≈10 K.The lattice thermal conductivity (κL≈κ-κe) atT >100 K falls into the range of the uncertainties(±0.6 W/mK at room temperature)in our measurements,whereas the averageκLreported in Ref.[8]is only 0.7 W/mK in the wide temperature range of 100-300 K.The small value ofκL(T) and its weak temperature dependence atT >100 K indicate that the phonon mean free path is probably reduced to about its lower limit in this temperature

    Fig. 1. The thermal conductivity κ(T) measured within the as-grown(112)plane of Cd3As2. Error bars denote standard deviations estimated from the average of measurements under multiple temperature gradients. The electronic contribution κe(T) (red solid line) is estimated fromtheWiedemann–Franzlaw,κeρ/T=L0,withthe Sommerfeld valueoftheLorenznumberL0≡=2.44×10-8 W·Ω·K-2.

    Considering a reasonable value ofκL≈0.7 W/mK forT >100 K(Ref.[8]),the phonon mean free pathlis estimated to be 6.96 ?A,which is even shorter than the lattice parameters of Cd3As2,i.e.,a=b=12.67 ?A andc=25.35 ?A.Note that,this is only a naive and rough estimate because on one hand the kinetic description of thermal conductivity is likely on the brink of failure for Cd3As2with a large primitive cell,[22]and on the other hand the real phonon mean free path is actually mode dependent. Nevertheless, such estimate is meaningful because it confirms that the lattice thermal conductivity is already at or not far from its lower limit. The pronounced increase ofκ(T)below 50 K is a typical feature originated from phonon–phonon Umklapp processes,and the drastic decrease below about 10 K can be attributed to boundary scatterings of heat-carrying phonons in semimetals and semiconductors.[23]Here, the temperature-dependent specific heat determines the temperature profile ofκ(T) because the phonon mean free path is a constant. Though how the Dirac electrons impact onκLcannot be straightforwardly observed, it can be reliably inferred fromκLas a function of the field: whileκLis vanishingly small in zero and small fields (B <2 T) where Dirac electrons are highly mobile, it increases gradually and becomes dominant in higher fields where Dirac electrons are spatially constrained by the magnetic fields; seeκ(B) shown in Fig.2(e)of Ref.[5].

    Before proceeding with other experimental results, we stress that a simple inspection into the crystal structure of Cd3As2can already yield important insight into the unusually lowκLvalues. Cd3As2crystallizes in a large primitive cell with the number of formula unitZ= 16, i.e., totallyN=80 atoms in one primitive cell. A large primitive cell means that the reciprocal space is predominantly occupied by a large number(3N-3)of optical modes. As a result,the thermodynamically-weighted heat capacity and the Debye temperature for heat-carrying acoustic phonons are greatly suppressed. This causes a reducedκLfrom purely crystallographic reasons, as can be inferred from the aforementioned kinetic description for thermal conductivity. Such a strong reduction trend ofκLwith increasing primitive cell volume has been already reported previously.[24]

    Fig. 2. (a) The low-temperature specific heat of Cd3As2 depicted as C/T3 vs T. The data is fitted by considering a Debye term and two Einstein modes (blue solid line). Dotted and dashed lines are individual contributions from the Debye term and the leading Einstein mode,respectively(see text). (b)The low-temperature C(T)deviates strongly from Debye’s T-cube law that is commonly described by a linear dependence of C/T versus T2. By contrast, the description based on the combined Debye and Einstein terms(blue solid line)can reasonably reproduce the curved C/T(T2)line. Inset: T-dependent specific heat of Cd3As2.

    With the unusual thermal conductivity in mind,below we examine the specific heat carefully. Figure 2(a) displays the low-temperature specific heat asC/T3versusT. While the specific heat within Debye’s description will obey aT-cube law and appear constant in this representation, an enhanced and broad peak is observed for Cd3As2atT ≈10 K. This is a thermodynamic signature of dominant low-energy optical modes, and has been intensively studied for cage compounds with“rattling”guest ion.[25]According to a rule of thumb obtained previously, the Einstein temperatureθEcharacterizing these modes is five times the temperature position of theC/T3vs.Tmaximum,which meansθE≈50 K in this case.

    The specific heat shown asC/TversusT2forT <8 K in Fig. 2(b) further demonstrates the importance of low-energy Einstein modes. Different to the expectation from Debye’s description,theC/T(T2)variation deviates significantly from a straight line. A linear dependence ofC/T(T2),if any,appears only atT2<5,namely,below about 2 K,where the contribution of low-energy optical models freezes out.Considering the significant contribution from soft optical phonons in the temperature window of interest,we combine Debye’s description and a couple of local Einstein modes to fitC(T),

    HereRis the gas constant,andAnis the number of Einstein oscillations andN0is the number of atoms per formula unit. The result of fitting is shown by the blue solid line in Figs.2(a)and 2(b), from which we obtainθD=111 K andθE1=42 K. A second Einstein mode withθE2=101 K,which is less important compared to the first one, was also included for a better fitting. Markedly, the fit can capture the prominent features in specific heat including the broad peak inC/T3versusT(Fig.2(a))and the curvedC/TversusT2at low temperatures(Fig.2(b)).

    Fig. 3. Longitudinal (CL) and transverse (CT) elastic moduli and the calculated bulk modulus K =CL-CT as a function of temperature for Cd3As2. The corresponding longitudinal (υL) and transverse (υT)sound velocities are also shown(right axis).

    From the longitudinal and transverse sound velocities of Cd3As2,the average sound velocity ˉυcan be calculated as follows:

    From Eq.(2),one readily obtains ˉυ=1943 m/s for 200 K and 2005 m/s for 10 K. The moderately small sound velocities,which measure the phonon dispersions at the Brillouin zone center,are not the leading reason of the extremely low thermal conductivity. For comparison, FeSb2, which has an average sound velocity of 3110 m/s (less than double ˉυof Cd3As2)reveals a lattice thermal conductivity of several tens of W/mK at 100 K(Ref.[26]). Furthermore,the Debye temperatureθDcan also be estimated from the average phonon velocity

    HereVis the primitive cell volume andhthe Planck’s constant. The estimated Debye temperature,θD=187 K,is considerably larger than that evaluated from the specific heat,θD=111 K.Unlike the specific heat which measures the thermodynamics of all low-energy phonons via the phonon density of states,sound velocities probe the group velocities of acoustic phonons at the low frequency limit and are less influenced by low-energy optical modes. The strong disagreement between the two values ofθDhints at a strong deviation of the low-energy phonons from Debye’s description,again pointing to the importance of low-energy optical modes in the description of the thermodynamic properties.

    Figure 4 shows the linear thermal expansion coefficient estimated from the measured length change dL,α=1/L(dL/dT), as a function of temperature. Here,αis measured alongcaxis of single-crystalline Cd3As2, which is the direction where Dirac cones are located.[10]In general,α(T)behaves similar toC(T)(Fig.2 inset);it reveals,however,negative values below about 10 K.Given the experimental resultsK(T),C(T)andα(T),one can easily estimate the Gr¨uneisen ratioγ=3VmKα/Cas an experimental indicator of lattice anharmonicity,whereVmis the molar volume.

    Fig. 4. Thermal expansion coefficient α measured along c axis (left)and the estimated thermodynamic Gr¨uneisen ratio γ (right). Drastic drop of γ is observed at T <100 K,ending up with negative values at T <10 K.

    As shown in Fig.4(right axis),γ(T)remains 1.1(±0.1)in a wide temperature range above 100 K.This is a Gr¨uneisen ratio within the range of common expectation for simple solids.AtT <100 K,γ(T)reveals a drastic drop and becomes negative atT <10 K, corresponding to the low-temperature negative thermal expansion. The temperature window whereγ(T) drops significantly matches well to that where Einstein modes are observed in specific heat(Fig.2). Phenomenologically, the unusual behavior ofγ(T) originates from the temperature dependence ofα(T)that shows stronger decrease below 100 K relative to that ofC(T)towards negative values at low temperatures. Likewise, atT~100 K, strong frequency reduction of several optical phonons has been observed by Raman scattering,[12]and this temperature has been regarded as a characteristic energy scale of interband scattering in the Dirac states coupling to low-energy optical phonons. In line with the negative values ofγ(T) that indicate lattice instability at low temperatures, the tetragonal metallic phase of Cd3As2is indeed rather unstable and changes to a semiconducting monoclinic phase at a critical pressurepc≈2.3 GPa,[14,16]as has been mentioned above. Different from the general expectation that pressure drives an insulator or a semiconductor to a metallic phase due to band broadening,the opposite trend observed in Cd3As2indicates that the Dirac bands might play an important role in the structural instability,as inferred from our thermal expansion measurements. Because apparent anomaly is not observed in the elastic moduli,we speculate the unusualγ(T)behavior at low temperatures to be related to thermodynamics of low-energy optical modes.

    4. Summary

    To summarize, we have studied the low-energy phonons of Cd3As2by a comprehensive set of thermodynamic probes.As far as the extremely low lattice thermal conductivity is concerned, Cd3As2appears to be unusual in the following aspects: 1) A large unit cell sets a strong constraint on the thermodynamics of low-energy phonons, leading to reduced specific heat and enhanced phonon scattering rate of acoustic phonons; 2) Soft optical phonons, which are partially related to the Kohn anomaly caused by Dirac bands, can be clearly captured by low-temperature specific heat revealing significant Einstein terms; 3) A drastic decrease of the thermodynamic Gr¨uneisen ratio is observed below 100 K, where enhanced coupling between lattice and electronic degrees of freedom has been previously confirmed. The decrease ends up with a negative thermal expansion at low temperatures that is indicative of lattice instability. At last, we note that while it is safe to conclude that the Dirac electrons are relevant to the phonon softening and the lattice instability in Cd3As2,to what extent the interplay between lattice dynamics and Dirac electrons plays its role therein remains an interesting issue. Because very low thermal conductivities have been observed in a number of topological semimetals such as ZrTe5(Ref.[27]),further investigation and comparison between different compounds along this line appear to be an interesting project.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974389, 12141002 and 52088101), the National Key R&D Program of China (Grant No. 2017YFA0303100), the Chinese Academy of Sciences through the Scientific Instrument Developing Project (Grant No.ZDKYYQ20210003),and the Strategic Priority Research Program(Grant No.XDB33000000).

    猜你喜歡
    王振張帥
    Efficient method to calculate the eigenvalues of the Zakharov–Shabat system
    Analytical three-periodic solutions of Korteweg–de Vries-type equations
    CrAlGe: An itinerant ferromagnet with strong tunability by heat treatment
    Special issue on selected papers from HVDP 2020
    Charge transfer in plasma assisted dry reforming of methane using a nanosecond pulsed packed-bed reactor discharge
    EXISTENCE AND UNIQUENESS OF THE GLOBAL L1 SOLUTION OF THE EULER EQUATIONS FOR CHAPLYGIN GAS?
    青年演員張帥
    歌海(2021年6期)2021-02-01 11:27:18
    THE EXISTENCE OF A BOUNDED INVARIANT REGION FOR COMPRESSIBLE EULER EQUATIONS IN DIFFERENT GAS STATES*
    博物館安防系統(tǒng)改造工程淺析
    Talking about the Design Concept of "People-oriented" in Visual Communication Desig
    青年生活(2019年3期)2019-09-10 16:57:14
    男女无遮挡免费网站观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品av麻豆狂野| 亚洲国产精品成人久久小说| 欧美av亚洲av综合av国产av | 大香蕉久久成人网| 久久久久视频综合| 王馨瑶露胸无遮挡在线观看| 韩国av在线不卡| 美女午夜性视频免费| 人人妻人人澡人人爽人人夜夜| 亚洲色图 男人天堂 中文字幕| 亚洲欧洲精品一区二区精品久久久 | 精品人妻在线不人妻| 精品国产乱码久久久久久男人| 午夜日本视频在线| 欧美国产精品一级二级三级| 美女国产高潮福利片在线看| 久热这里只有精品99| 午夜福利在线观看免费完整高清在| 国产麻豆69| 久久 成人 亚洲| 婷婷成人精品国产| 九草在线视频观看| 亚洲伊人久久精品综合| 一本大道久久a久久精品| 亚洲精品一区蜜桃| 国产有黄有色有爽视频| 久久久久久伊人网av| av卡一久久| 午夜精品国产一区二区电影| 99精国产麻豆久久婷婷| 在线观看三级黄色| 夜夜骑夜夜射夜夜干| 国产在线一区二区三区精| 成年人免费黄色播放视频| 香蕉国产在线看| 制服人妻中文乱码| 久久久精品区二区三区| 欧美老熟妇乱子伦牲交| 波多野结衣一区麻豆| 久久人人爽av亚洲精品天堂| 婷婷色av中文字幕| 日韩在线高清观看一区二区三区| 亚洲激情五月婷婷啪啪| 日本猛色少妇xxxxx猛交久久| a级毛片黄视频| 在线观看一区二区三区激情| 男女免费视频国产| www.熟女人妻精品国产| 久久精品久久久久久久性| 18禁国产床啪视频网站| 亚洲精品,欧美精品| 国产人伦9x9x在线观看 | 亚洲熟女精品中文字幕| 男男h啪啪无遮挡| 自线自在国产av| 女人久久www免费人成看片| 26uuu在线亚洲综合色| 亚洲色图综合在线观看| 高清在线视频一区二区三区| 寂寞人妻少妇视频99o| 久久久国产一区二区| 老司机影院成人| 免费少妇av软件| 寂寞人妻少妇视频99o| 在线观看三级黄色| 青春草国产在线视频| 亚洲国产精品999| 91国产中文字幕| 两个人看的免费小视频| 伊人久久大香线蕉亚洲五| 国产精品.久久久| 精品国产乱码久久久久久小说| 最近中文字幕高清免费大全6| 国产一级毛片在线| 久久国产精品大桥未久av| 极品人妻少妇av视频| 99九九在线精品视频| 高清在线视频一区二区三区| 亚洲欧美精品自产自拍| 丝瓜视频免费看黄片| 在线天堂中文资源库| 日韩精品有码人妻一区| 精品卡一卡二卡四卡免费| 久久精品国产a三级三级三级| 人人妻人人澡人人爽人人夜夜| 精品一区二区三区四区五区乱码 | 一级毛片 在线播放| 一本大道久久a久久精品| av线在线观看网站| 欧美黄色片欧美黄色片| videos熟女内射| videosex国产| 久久久久视频综合| 日韩中文字幕欧美一区二区 | 久久精品国产亚洲av天美| 亚洲成色77777| 成人国产麻豆网| 好男人视频免费观看在线| 亚洲精品一区蜜桃| 男女啪啪激烈高潮av片| 久久午夜综合久久蜜桃| 伊人久久大香线蕉亚洲五| 黑丝袜美女国产一区| 亚洲一级一片aⅴ在线观看| 一本大道久久a久久精品| 精品视频人人做人人爽| 国产精品一国产av| 亚洲精品国产av成人精品| 一级爰片在线观看| 欧美精品一区二区免费开放| 日日爽夜夜爽网站| 精品亚洲成a人片在线观看| 久久人妻熟女aⅴ| 午夜激情久久久久久久| 在线观看www视频免费| 91精品三级在线观看| 美女主播在线视频| 热99国产精品久久久久久7| 亚洲精品久久成人aⅴ小说| 亚洲精品自拍成人| 国产精品久久久久久av不卡| 久久久精品免费免费高清| 免费高清在线观看视频在线观看| 久久精品国产综合久久久| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看免费日韩欧美大片| 人妻人人澡人人爽人人| 亚洲国产精品999| 欧美日韩一级在线毛片| 亚洲av免费高清在线观看| 久久精品aⅴ一区二区三区四区 | 国产日韩欧美视频二区| 国产成人精品福利久久| 国产亚洲欧美精品永久| 欧美日韩亚洲高清精品| 午夜福利网站1000一区二区三区| 成人18禁高潮啪啪吃奶动态图| 欧美 日韩 精品 国产| 亚洲av电影在线进入| 18禁裸乳无遮挡动漫免费视频| av女优亚洲男人天堂| 国产不卡av网站在线观看| 欧美日韩视频精品一区| 欧美国产精品va在线观看不卡| av视频免费观看在线观看| 国产精品无大码| 毛片一级片免费看久久久久| 少妇的逼水好多| 五月伊人婷婷丁香| 一区二区三区乱码不卡18| 一区二区日韩欧美中文字幕| 人人妻人人澡人人看| 夜夜骑夜夜射夜夜干| 国产av一区二区精品久久| 午夜av观看不卡| 99九九在线精品视频| 精品一品国产午夜福利视频| 精品国产乱码久久久久久小说| 夜夜骑夜夜射夜夜干| 国产午夜精品一二区理论片| 一级毛片 在线播放| 最近的中文字幕免费完整| 亚洲,欧美,日韩| 亚洲av成人精品一二三区| 免费在线观看视频国产中文字幕亚洲 | 99香蕉大伊视频| 天天躁日日躁夜夜躁夜夜| 成年女人在线观看亚洲视频| 最新中文字幕久久久久| 亚洲欧美一区二区三区国产| 捣出白浆h1v1| √禁漫天堂资源中文www| 超碰97精品在线观看| 亚洲av电影在线进入| 有码 亚洲区| 另类精品久久| 国产福利在线免费观看视频| 一二三四中文在线观看免费高清| 日本欧美视频一区| 久久精品国产自在天天线| 又黄又粗又硬又大视频| 九草在线视频观看| 国产片内射在线| 国产欧美日韩一区二区三区在线| 在线看a的网站| 美女xxoo啪啪120秒动态图| 十八禁高潮呻吟视频| 天天操日日干夜夜撸| 日本爱情动作片www.在线观看| 国产野战对白在线观看| 大香蕉久久成人网| 国产精品久久久久久精品电影小说| 国产成人一区二区在线| 又粗又硬又长又爽又黄的视频| 久久精品久久久久久久性| 叶爱在线成人免费视频播放| 成人漫画全彩无遮挡| 亚洲国产精品国产精品| 91国产中文字幕| 亚洲精品国产av成人精品| 熟女av电影| 国产一区二区在线观看av| 狂野欧美激情性bbbbbb| 丝袜美腿诱惑在线| 日日摸夜夜添夜夜爱| 国产日韩欧美亚洲二区| av福利片在线| 一级黄片播放器| 国产男女超爽视频在线观看| 久久久久久久久免费视频了| 午夜福利乱码中文字幕| 亚洲av男天堂| 亚洲av综合色区一区| 欧美日韩一区二区视频在线观看视频在线| 最近中文字幕高清免费大全6| 国产免费又黄又爽又色| 免费观看a级毛片全部| 日本欧美国产在线视频| 国产男女超爽视频在线观看| 亚洲色图综合在线观看| 蜜桃在线观看..| 亚洲综合色惰| 中文字幕制服av| 国产亚洲精品第一综合不卡| 日本av免费视频播放| 2021少妇久久久久久久久久久| 人妻一区二区av| 十分钟在线观看高清视频www| 啦啦啦啦在线视频资源| 交换朋友夫妻互换小说| 春色校园在线视频观看| 久久鲁丝午夜福利片| xxx大片免费视频| 999精品在线视频| 亚洲精品aⅴ在线观看| 少妇猛男粗大的猛烈进出视频| 久久这里有精品视频免费| 日本wwww免费看| 一级黄片播放器| 欧美激情高清一区二区三区 | 国产一级毛片在线| 国产有黄有色有爽视频| 国产精品久久久久久av不卡| 国产一区二区三区综合在线观看| 制服人妻中文乱码| 午夜福利乱码中文字幕| 久久久久国产一级毛片高清牌| 蜜桃国产av成人99| 麻豆av在线久日| videossex国产| 欧美老熟妇乱子伦牲交| 97在线视频观看| 久久精品国产鲁丝片午夜精品| 久久精品亚洲av国产电影网| 777久久人妻少妇嫩草av网站| 日韩熟女老妇一区二区性免费视频| av网站在线播放免费| www.自偷自拍.com| 男人操女人黄网站| 日韩中文字幕欧美一区二区 | 亚洲成人av在线免费| 两个人看的免费小视频| 热99久久久久精品小说推荐| 欧美日韩亚洲国产一区二区在线观看 | 久久久久视频综合| 十八禁高潮呻吟视频| 亚洲天堂av无毛| 国产 精品1| 亚洲人成77777在线视频| 欧美日韩视频高清一区二区三区二| 国产精品麻豆人妻色哟哟久久| 最黄视频免费看| 一二三四在线观看免费中文在| 在线天堂最新版资源| 亚洲色图综合在线观看| 久久精品国产亚洲av涩爱| 黑人猛操日本美女一级片| 97在线人人人人妻| 成人国产麻豆网| 妹子高潮喷水视频| 这个男人来自地球电影免费观看 | 国产又爽黄色视频| 日日撸夜夜添| 亚洲少妇的诱惑av| 人人妻人人澡人人看| 另类精品久久| 成人手机av| 欧美精品亚洲一区二区| 满18在线观看网站| 中文字幕精品免费在线观看视频| 国产精品av久久久久免费| 日日摸夜夜添夜夜爱| 国产毛片在线视频| 搡老乐熟女国产| 久久国产精品男人的天堂亚洲| 成人国产麻豆网| 999精品在线视频| 丝袜人妻中文字幕| 少妇熟女欧美另类| 视频在线观看一区二区三区| 97人妻天天添夜夜摸| 精品国产露脸久久av麻豆| 亚洲,一卡二卡三卡| 免费看不卡的av| 国产男女内射视频| 久久精品熟女亚洲av麻豆精品| 成人国语在线视频| 久久久a久久爽久久v久久| 精品国产一区二区久久| 自线自在国产av| 波多野结衣一区麻豆| 麻豆乱淫一区二区| 日产精品乱码卡一卡2卡三| 亚洲一区中文字幕在线| 寂寞人妻少妇视频99o| 亚洲国产最新在线播放| 波野结衣二区三区在线| 国产精品久久久久久av不卡| 色94色欧美一区二区| 亚洲色图综合在线观看| 精品酒店卫生间| 两个人看的免费小视频| 伦精品一区二区三区| 欧美少妇被猛烈插入视频| 一级爰片在线观看| 欧美精品国产亚洲| 精品一区二区三卡| 午夜久久久在线观看| 波多野结衣av一区二区av| 亚洲国产av新网站| 精品亚洲成a人片在线观看| 搡女人真爽免费视频火全软件| 国产一级毛片在线| av福利片在线| 自线自在国产av| 最黄视频免费看| 飞空精品影院首页| 又大又黄又爽视频免费| 天天躁夜夜躁狠狠躁躁| 亚洲av成人精品一二三区| 纯流量卡能插随身wifi吗| 国产精品一国产av| 欧美日韩亚洲高清精品| 成人国产麻豆网| 久久久久久久国产电影| 亚洲欧美成人综合另类久久久| 国产精品久久久久久精品古装| 汤姆久久久久久久影院中文字幕| 激情视频va一区二区三区| 麻豆av在线久日| 最近2019中文字幕mv第一页| 亚洲精品自拍成人| 建设人人有责人人尽责人人享有的| a级毛片在线看网站| av女优亚洲男人天堂| 高清黄色对白视频在线免费看| 99久国产av精品国产电影| 免费观看av网站的网址| 亚洲精品日本国产第一区| 国产成人精品久久久久久| 最近手机中文字幕大全| 成年美女黄网站色视频大全免费| 免费日韩欧美在线观看| 国产精品 国内视频| 中文乱码字字幕精品一区二区三区| 肉色欧美久久久久久久蜜桃| av不卡在线播放| 天堂中文最新版在线下载| 欧美 亚洲 国产 日韩一| 中文字幕另类日韩欧美亚洲嫩草| 美国免费a级毛片| 国产av码专区亚洲av| 午夜老司机福利剧场| 亚洲人成77777在线视频| 中文字幕另类日韩欧美亚洲嫩草| 国产免费一区二区三区四区乱码| 国产av精品麻豆| 日韩欧美精品免费久久| 在线看a的网站| 亚洲国产精品成人久久小说| freevideosex欧美| 久久精品久久久久久久性| 中文欧美无线码| 免费看av在线观看网站| 免费播放大片免费观看视频在线观看| 女人高潮潮喷娇喘18禁视频| 桃花免费在线播放| 国产日韩欧美在线精品| 一级毛片电影观看| 国产精品二区激情视频| 国产成人a∨麻豆精品| 亚洲经典国产精华液单| 美国免费a级毛片| 亚洲第一区二区三区不卡| 久久国内精品自在自线图片| 亚洲欧美精品自产自拍| 久久精品夜色国产| 制服诱惑二区| 亚洲图色成人| 大码成人一级视频| 国产精品国产av在线观看| 搡老乐熟女国产| 高清视频免费观看一区二区| 少妇猛男粗大的猛烈进出视频| 日日啪夜夜爽| 亚洲国产欧美在线一区| 日韩一区二区视频免费看| 一级毛片电影观看| 91精品三级在线观看| 黄色毛片三级朝国网站| 国产熟女欧美一区二区| 男人爽女人下面视频在线观看| 欧美精品一区二区大全| 人妻系列 视频| 成人手机av| 中文字幕制服av| 极品人妻少妇av视频| 一个人免费看片子| 国产精品欧美亚洲77777| 亚洲欧美成人精品一区二区| 亚洲人成电影观看| 99热全是精品| 美女主播在线视频| 精品亚洲成国产av| 国产精品三级大全| 欧美人与善性xxx| 黄色毛片三级朝国网站| 肉色欧美久久久久久久蜜桃| 亚洲欧美一区二区三区国产| 亚洲色图 男人天堂 中文字幕| 天天躁夜夜躁狠狠躁躁| 日韩三级伦理在线观看| 久久久欧美国产精品| 黄片播放在线免费| 久久久国产精品麻豆| 亚洲国产最新在线播放| 男的添女的下面高潮视频| 秋霞在线观看毛片| 美女主播在线视频| 一个人免费看片子| 欧美中文综合在线视频| 热99久久久久精品小说推荐| 日日爽夜夜爽网站| 免费观看在线日韩| 一二三四在线观看免费中文在| 街头女战士在线观看网站| 狠狠精品人妻久久久久久综合| 日本vs欧美在线观看视频| 国产色婷婷99| 亚洲情色 制服丝袜| 性高湖久久久久久久久免费观看| 国产极品粉嫩免费观看在线| 国产一区有黄有色的免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 另类亚洲欧美激情| 国产av国产精品国产| 久久国产精品大桥未久av| 老司机影院成人| 国产精品国产三级专区第一集| 中文字幕亚洲精品专区| 天天影视国产精品| 国产精品国产三级专区第一集| 欧美 日韩 精品 国产| 亚洲综合色惰| 国产av一区二区精品久久| 黄色怎么调成土黄色| 亚洲成色77777| 老司机影院成人| 只有这里有精品99| 亚洲美女搞黄在线观看| 一级毛片 在线播放| 精品人妻在线不人妻| 亚洲精品久久午夜乱码| 日本免费在线观看一区| 国产乱来视频区| 最新中文字幕久久久久| 亚洲国产看品久久| 国产综合精华液| 午夜福利在线免费观看网站| 欧美日韩精品网址| 日韩中字成人| tube8黄色片| 搡老乐熟女国产| 久久久国产精品麻豆| 国产片特级美女逼逼视频| 91国产中文字幕| 日日啪夜夜爽| 亚洲精品国产色婷婷电影| 亚洲中文av在线| 久久国内精品自在自线图片| 久久精品亚洲av国产电影网| 极品少妇高潮喷水抽搐| 97在线视频观看| 久久久久国产网址| 成年人午夜在线观看视频| 两性夫妻黄色片| 亚洲少妇的诱惑av| 成人影院久久| 色网站视频免费| 日韩 亚洲 欧美在线| 看非洲黑人一级黄片| 欧美在线黄色| 天堂8中文在线网| 美女脱内裤让男人舔精品视频| 最近的中文字幕免费完整| 精品国产乱码久久久久久小说| 巨乳人妻的诱惑在线观看| 97在线视频观看| 侵犯人妻中文字幕一二三四区| 久久久久久久国产电影| 99香蕉大伊视频| 国产高清国产精品国产三级| 国产黄色视频一区二区在线观看| 亚洲,欧美,日韩| 18禁裸乳无遮挡动漫免费视频| 一边摸一边做爽爽视频免费| 国产高清不卡午夜福利| 久久影院123| 亚洲第一av免费看| 成人毛片a级毛片在线播放| 欧美日韩视频高清一区二区三区二| 欧美97在线视频| 中文欧美无线码| 国产片特级美女逼逼视频| 中文字幕人妻丝袜一区二区 | 国产成人91sexporn| 99热全是精品| 午夜福利在线观看免费完整高清在| 免费观看性生交大片5| 久久这里有精品视频免费| 国产成人91sexporn| 亚洲国产欧美日韩在线播放| 母亲3免费完整高清在线观看 | 激情视频va一区二区三区| 国产av码专区亚洲av| 91在线精品国自产拍蜜月| 国产精品国产av在线观看| 18禁裸乳无遮挡动漫免费视频| 男人舔女人的私密视频| av在线观看视频网站免费| 久久久久网色| 大陆偷拍与自拍| 久久97久久精品| 毛片一级片免费看久久久久| 久热这里只有精品99| 18禁裸乳无遮挡动漫免费视频| 男人舔女人的私密视频| 日本av免费视频播放| 国产精品免费视频内射| 国产熟女欧美一区二区| xxxhd国产人妻xxx| 少妇被粗大的猛进出69影院| 亚洲精品乱久久久久久| www.自偷自拍.com| 亚洲熟女精品中文字幕| 侵犯人妻中文字幕一二三四区| 纵有疾风起免费观看全集完整版| 99九九在线精品视频| 精品酒店卫生间| 国产精品女同一区二区软件| 亚洲三级黄色毛片| 十分钟在线观看高清视频www| 久久人人97超碰香蕉20202| 欧美日韩成人在线一区二区| 水蜜桃什么品种好| 国产成人精品久久久久久| av国产久精品久网站免费入址| 久久久久国产网址| 久久久久久久久免费视频了| 国产伦理片在线播放av一区| 熟女少妇亚洲综合色aaa.| 一个人免费看片子| 国产成人91sexporn| 国产在线一区二区三区精| av福利片在线| 国产一级毛片在线| 欧美亚洲 丝袜 人妻 在线| 日韩 亚洲 欧美在线| 最近最新中文字幕大全免费视频 | 成人免费观看视频高清| 国产日韩一区二区三区精品不卡| 欧美变态另类bdsm刘玥| 午夜激情久久久久久久| 美女中出高潮动态图| 大码成人一级视频| 久久久久久久亚洲中文字幕| 亚洲av.av天堂| 亚洲图色成人| 久久久精品国产亚洲av高清涩受| 亚洲精品国产av蜜桃| 日韩中字成人| 欧美 日韩 精品 国产| 免费人妻精品一区二区三区视频| 侵犯人妻中文字幕一二三四区| 视频在线观看一区二区三区| 国产成人aa在线观看| 伊人亚洲综合成人网| 亚洲一区中文字幕在线| 人成视频在线观看免费观看| a级毛片黄视频| 亚洲精品aⅴ在线观看| 国产 精品1| 日韩一本色道免费dvd| 九色亚洲精品在线播放| 18在线观看网站| 精品国产超薄肉色丝袜足j| 国产精品偷伦视频观看了| 国产精品一二三区在线看| 欧美亚洲 丝袜 人妻 在线| 久久精品久久久久久久性| 香蕉国产在线看| 熟妇人妻不卡中文字幕| 女人精品久久久久毛片|