• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Charge transfer in plasma assisted dry reforming of methane using a nanosecond pulsed packed-bed reactor discharge

    2021-06-21 02:00:18ShuaiZHANG張帥YuanGAO高遠(yuǎn)HaoSUN孫昊ZheFAN范喆andTaoSHAO邵濤
    Plasma Science and Technology 2021年6期
    關(guān)鍵詞:張帥

    Shuai ZHANG(張帥),Yuan GAO(高遠(yuǎn)),Hao SUN(孫昊),Zhe FAN(范喆) and Tao SHAO(邵濤),?

    1 Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion,Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing 100190,People’s Republic of China

    2 University of Chinese Academy of Sciences,Beijing 100049,People’s Republic of China

    Abstract This paper is aimed to investigate the effect of packing material on plasma characteristic from the viewpoint of charge transfer process.Both the charge accumulation and release processes in the dielectric barrier discharge reactor and packed-bed reactor were investigated by measuring voltage and current waveforms and taking ICCD images.The packing material was ZrO2 pellets and the reactors were driven by a parameterized nanosecond pulse source.The quantity of transferred charges in the dielectric barrier discharge reactor was enhanced when decreasing pulse rise time or increasing pulse width(within 150 ns),but reduced when the gas gap was packed with pellets.The quantity of accumulated charges in the primary discharge was larger than the quantity of released charges in the secondary discharges in the dielectric barrier discharge reactor,but they were almost equal in the packed-bed reactor.It indicates that the discharge behavior has been changed from the view of charge transfer process once the gas gap was packed with pellets,and the ICCD images confirmed it.

    Keywords:non-thermal plasma,packed-bed reactor,dry reforming,plasma catalysis,charge transfer

    1.Introduction

    Plasma assisted CO2dry reforming CH4(DRM)is a promising approach to convert these two greenhouse gases into syngas by equation(1)[1].Many non-thermal plasma technologies have been used for this process,but to-date,the majority of researches has been carried out using the dielectric barrier discharge(DBD)reactor[2].In particular,it will lead to better conversion and energy efficiency when a DBD reactor works with packing materials(which is called packedbed reactor)for DRM[3–7],hydrogenation of CO2[8,9],CO2decomposion[10–12],contaminant removal[13–15]and so on.Most of these results show that the packing material enhances electron density,mean electron energy,as well as conversion and energy efficiency,although the residence time is shortened

    However,the interaction between plasma and packing materials is a complicated process and far to understand.On one hand,the packing material will lead to the changes in discharge behavior and plasma chemical process.The physicochemical,surface and structure properties might exert impressive effects on the energy density,electrical field distribution,and breakdown mechanism.On the other hand,energetic particles in plasma could affect the properties of packing material,such as its morphology or catalytic activity.Some researches regarding the packed-bed reactor have been conducted by scholars to investigate the synergic effect on plasma processing performance[16].Tu et al[17]reported the typical filamentary discharge was converted to a combination of surface discharge and filamentary discharge when BaTiO3pellets were filled into the gas gap.Mei et al[18]and Xu et al[19]found that the presence of packing dielectric material would significantly enhance the mean electron energy.Van Laer et al[20,21]and Wang et al[22]found that packing enhances the electric field strength and electron temperature from modelling research.Recently,nanosecond repetitively pulsed discharge has presented outstanding performance on the CO2dry reforming CH4process[23].The nanosecond repetitive pulse can provide high density and energetic electrons,and also help for restraining the formation of thermal contraction in micro-discharge channels,which means that the interaction between plasma and packing materials in this type of discharge may be much different with the others[24–28].Meanwhile,the wide adjustable ranges of pulse parameters can control the discharge process,making the intensive study of charge transferring characterization possible.

    It has been reported that the packing materials have some influence on the plasma assisted conversion process under AC driven DBD plasma[17–22].However,the conversion process may be not be exactly the same as that in the unipolar nanosecond pulsed DBD plasma,because the continuous charge accumulation during the previous pulse may restrain the discharge process of the next pulse.In this paper,an experimental research of plasma assisted CO2dry reforming CH4by a parameterized nanosecond pulse power gives an insight to the interaction between plasma and packing materials.The effect of packing materials on the charge transfer characterization is investigated by recording voltage and current waveforms and time-resolved luminescent images.

    2.Experimental procedure

    2.1.Experimental setup

    Figure 1 shows the schematic of experimental setup.The reactors used a quartz tube as dielectric with outer diameter of 25.1 mm and wall thickness of 1.5 mm,a stainless steel rod as high voltage electrode with outer diameter of 17.6 mm and a 40 mm long indium-tin oxides film as ground electrode.The discharge volume of the DBD reactor was 5.6 ml with a gas gap of 2.25 mm,while the discharge volume was about 3.5 ml when filling with 1.2 mm diameter ZrO2pellets(45 wt.%ZrO2,40 wt.% Al2O3and 15 wt.% SiO2).The reactors was driven by a positive nanosecond pulse power source(Smart Maple HV-2015,China),which provides a maximum pulse voltage of 25 kV and a variable pulse repetition frequency up to 15 kHz.The pulse rise/fall time can be adjusted from 50 ns to 500 ns and the pulse width up to 1 ms.The voltage on the reactors was measured by a high voltage probe(Tektronix P6015,1000:1,defined as U1)and the current was detected with a Rogowski coil(Pearson 6595,2:1),respectively.The voltage on the capacitor(1000 pF)was measured by another high voltage probe(Pin-tech P6010A,100:1,defined as U2).All the electrical signals were recorded by an oscilloscope(Tektronix DPO 2024).CH4and CO2were controlled through mass flow controllers(Sevenstar D07-19),respectively.It is worth noting that H2and CO are the major products.In addition,a small amount of light hydrocarbons were detected with gas chromatograph,such as C2H6,C3H8and C4H10,as presented in our previous article[25].The default electrical parameters include a pulse rise time of 200 ns,a pulse fall time of 200 ns,a pulse width of 200 ns,and the settled CO2/CH4molar ratio of 1:1 was selected in our experiments.

    Figure 1.The schematic of experimental apparatus and packed-bed reactor.

    2.2.Equivalent circuit model

    Usually,an equivalent circuit of DBD in unipolar pulse excitation was introduced to estimate the electrical parameters[29].As for the packed-bed reactor,the packing pellets could also be regarded as a dielectric and assumed to a circular tube that connected to the quartz tube[18,19],as shown in figure 2.Here,the equivalent thicknesses of gas gap(dgas)and dielectric(ddiel)of the packed-bed reactor could be estimated from the volume of packing pellets.

    Figure 2.Equivalent electrical circuit model for the packed-bed reactor.

    The capacitance of dielectric(Cdiel)and the gas gap(Cgas)can be calculated by equation(2):

    where ε0and ε are relative permittivity of vacuum and packing pellets.Rxand rxrepresent an equivalent external diameter and inner diameters of the capacitor(dielectric or the gas),respectively.For example,Rxand rxfor calculation of Cdielof the packed-bed reactor are as follows:

    where r is the radius of the center electrode.The results are shown in table 1,where Cdiel,Cgas,Ccellrepresent the capacitances of dielectric,gas gap and the entire reactor,respectively.

    Table 1.Estimated equivalent capacitances of the DBD and packedbed reactors.

    3.Result and discussion

    3.1.Electrical characteristic

    Figure 3.Typical discharge characteristics of(a)DBD reactor and(b)packed-bed reactor under nanosecond repetitive pulses.

    The typical discharge voltage and current waveforms were investigated,as shown in figure 3,with an illustration of discharge images.It is common that there were two main discharge processes for both DBD and packed-bed reactors,i.e.primary discharge at pulse rise time because of external electric field and secondary discharge at pulse fall time on account of reverse electric field resulting from the accumulated charge on the dielectric surface,respectively.The current peaks of the discharge current(Icell)in DBD reactor can reach to about 6.8 A at pulse rise time and-8.4 A at pulse fall time,while the current peaks of Icellwere smaller and appeared a dozen of nanoseconds later when packing ZrO2pellets.

    The voltage over gas gap(Ugas)and dielectric(Udiel),along with the conduction current(Icon)and displacement current(Idis)were calculated according to equations(5)–(9),as shown in figure 3

    One characteristic of the results is that the Ugaspeak was about 4.5 kV,but Udielpeak was almost equal to applied voltage(Ucell)peak in the DBD reactor.As for packing ZrO2pellets,Ugaspeak increased and Udielpeak decreased a bit.Iconwas almost equal to Icellwhile Idiswas very small.Iconreduced and Idiswas enhanced because of the presence of ZrO2pellets.It indicates that mostly power energy would be deposited on the dielectric,with slight improvement when packing ZrO2pellets.Another one is that,there were multicurrent peaks at the pulse rise time for the DBD reactor,which means that the discharge may be a uniform one.A similar phenomenon has been reported by Mangolini et al[30]and Yang et al[31].On the contrary,there was only one current peak at the pulse rise time for the packed-bed reactor.

    Figure 4 shows the effects of pulse fall time on Udieland Ugasin the DBD and packed-bed reactors,respectively.Here,we tested the pulse fall time from 100 ns to 500 ns with pulse rise time of 200 ns and pulse width of 200 ns.From figure 4(a),it is found that Ugasand Udielchanged slightly at the period of pulse rise time and pulse width.However,due to the introduction of packing pellets,Udieldecreased dramatically at the period of pulse width as increasing the pulse fall time,as shown in figure 4(b).Charge transfer process might contribute a lot to the above difference.The descending of Udielmeans the enhancement of Cdielor the reduction of Cgasaccording to equation(6).

    3.2.Charge characteristic

    As mentioned above,the secondary discharge is a result of charge accumulation on the gas gap.In this section,we check the charge accumulation process under different pulse rise times and pulse widths,in which the quantity of transferred charges through the reactor(Qcell),the gas(Qgas)and the dielectric(Qdiel)were calculated according to equations(10)–(12),respectively

    Figure 4.Effect of pulse fall time on Ugas and Udiel of(a)DBD reactor and(b)packed-bed reactor.

    Figure 5 presents the influences of pulse rise time and pulse width on the charge transition behavior in the DBD reactor.Commonly,the growing pulse width could enhance the charge accumulation on dielectric surface,but a saturation point of charge accumulation can be obtained with a long enough pulse width.It is found that the accumulated Qgasand Qcellreach their saturation points at a pulse width of about 150 ns under different pulse rise times in figures 5(a)and(b).On the other hand,the saturated Qgasand Qcellclearly decrease with the increase of pulse rise time.

    However,figure 5(c)shows that Qdielwas observed to continuously increase with ascending pulse width under different pulse rise times.The continuous growth of Qdielwith a longer pulse width may increase the energy loss on dielectric,an appropriate pulse width and rising time are crucial to improve the energy efficiency.To study the secondary discharge,it is reasonable to choose the pulse rise time of 200 ns and pulse width of 200 ns for studying the charge accumulation and release processes in the next section.

    Figure 5.The variation of charge(a)Qgas,(b)Qcell and(c)Qdiel in the DBD reactor.

    3.2.1.Accumulation process.The charge accumulation process and release process happen during the whole discharge period.However,it is reasonable to regard that the main charge accumulation process happens in the primary discharge while the main charge release process happens at the secondary discharge.Here,we defined the beginning of pulse rise time as t0,the medial point of pulse width as t1,and the end of pulse fall time as t2.The quantity of accumulated charges in the primary discharge(Qprimary)can be calculated by equation(13)

    Figure 6 shows the variation ofQprimaryof the DBD and packed-bed reactors under different pulse rise times and pulse widths.It is shown that theQprimaryalso increased almost linearly when increasing the pulse width from 0 ns to ~100 ns and then changed a little when the pulse width further grew.Moreover,theQprimarydecreased distinctly when increasing the pulse rise time whether the DBD reactor or packed-bed reactor.The variation was the same as Qgasand Qcellin figures 5(a)and(b)since that the charge accumulation process was the dominant factor in the whole transfer process.However,theQprimaryin the packed-bed reactor was always smaller than that in the no packing cases at all the pulse rise times and pulse widths,compared the figures 6(a)and(b).

    Figure 6.The variation ofQprimary of the(a)DBD reactor and(b)packed-bed reactor.

    3.2.2.Release process.The pulse fall time has little impact at the period of pulse rise time,but a non-ignorable impact at the period of pulse width on the charge accumulation process.Next,the charge accumulation and release processes under different pulse fall times have been investigated,as shown in figure 7.The quantity of released charges in the secondary discharge(Qsecondary)can be calculated by equation(14)

    Figure 7.The variation ofQprimary(solid symbol)andQsecondary(hollow symbol)in the DBD reactor(solid line)and the packed-bed reactor that packing with ZrO2(dash line).

    Firstly,it is striking that the quantities of accumulated and released charges(QprimaryandQsecondary)in the DBD reactor were clearly larger than those in the packed-bed reactor.Then,theQprimaryandQsecondaryin the packed-bed reactor declined faster than those in the DBD reactor as the pulse fall time increased.

    Here,if we defined ΔQ as the difference betweenQprimaryandQsecondary:

    Usually,in a fast pulsed DBD reactor,residual charges(Qres)before the application of pulse voltage cannot be ignored[32],as shown in equation(16)

    Of course,ΔQis notQresbecause there may be dissipated charges(ΔQ-Qres)during the long time interval of two pulses.In fact,the dissipation rate is closely related to ΔQ[33].If a dissipation rate(η)was defined,the relationship between ΔQ andQresis:

    Hence,it is reasonable to draw a conclusion that the variation tendency ofQresis consistent withΔQwhen changing the pulse parameters.

    Finally,it is meaningful thatQprimarykept approximately equal toQsecondaryin the packed-bed reactor while the difference betweenQsecondaryandQprimarybecame larger in the DBD reactor when increasing the pulse fall time.The reason may be that the gas gap reduces significantly and becomes easy to breakdown,hence the charges were easy to release in the packed-bed reactor.The result indicates that there is noQresfrom the previous discharge period to participate into the next discharge period in the packed-bed reactor,but abundant residual charges will participate in the next discharge period in the DBD reactor as increasing the pulse fall time.Thus it can be seen that it is beneficial to reduce residual charges and the breakdown voltage in the discharge period under unipolar pulse voltage by packing ZrO2pellets.On the other hand,the charge decrease rate is also different between the DBD reactor and the packed-bed reactor when the pulse fall time increases.BothQprimaryandQsecondaryof the DBD reactor are always higher and decrease more slowly than those of the packed-bed reactor.The reason may be attributed to the memory effect of residual charges is more remarkable in the DBD reactor,compared with the packed-bed reactor.

    3.3.Discharge evolution

    Here,an ICCD camera can be used to record the time-resolved discharge evolution process.Figure 8 shows the successive discharge behavior of the DBD reactor and packed-bed reactor,with the pulse voltage of 13 kV and pulse repetition frequency of 3 kHz.The ICCD setting is a gain of 2500,gate delay step of 50 ns,gate width of 25 ns and gate width step of 0 ns.It found that the discharge appeared in the whole reactor both in the primary and secondary discharges for the DBD reactor,but it turned to a volume and surface combined discharge when packing ZrO2pellets.In addition,the discharge duration in the fall time become very short when packing ZrO2pellets.It is a good evidence for the phenomenon in section 3.2.2.

    Figure 8.The time-resolved discharge evolution of the(a)DBD reactor and(b)packed-bed reactor.

    There is no doubt that the discharge with packing dielectric materials should be more uniform than that without packing in an alternating current(AC)DBD plasma[34].At atmospheric pressure,it is the fact that the AC DBD plasma is usually non-uniform(i.e.brightly filamentous)if feeding gas is not a noble gas.When the gas gap is packed by dielectric pellets,the residual charges nearby the surface of the dielectric pellets will form surface discharge.Hence,it looks more uniform in the case of packing dielectric materials.In contrast,the discharge morphology will be different when the high voltage power source is a nanosecond pulse power source.The discharge usually seems uniform in a nanosecond pulsed DBD reactor.When the gas gap is packed by dielectric pellets,the discharge area is separated and surface discharge is enhanced,which will lead to the diversification of discharge intensity.

    4.Conclusion

    The electrical and charge transfer characteristics of CO2reforming of CH4were studied in the dielectric barrier discharge and packed-bed reactors.Typical voltage and current waveforms and ICCD images were recorded under different pulse parameters.It is shown that the discharge current peaks became smaller and appeared a dozen of nanoseconds later,and the voltage over dielectric decreased dramatically at the period of pulse width for the packed-bed reactor as increasing the pulse fall time.The quantity of transferred charges reaches a saturation point when pulse width is increased to 150 ns,and reduces with the increase of pulse rise time or packing ZrO2pellets.Moreover,the accumulated charges in the primary discharge were more than the released charges in the secondary discharge,but they were always equal in the packed-bed reactor as increasing the pulse fall time,which would be a result of the decrease in gas gap and the reduction of breakdown voltage.The ICCD images indicate that it is a relatively uniform volume discharge in the DBD reactor,but turns to a volume and surface combined discharge when packing ZrO2pellets.

    Acknowledgments

    This work was supported by the National Science Fund for Distinguished Young Scholars(No.51925703),National Natural Science Foundation of China(Nos.51637010,51707186 and 51807190).

    猜你喜歡
    張帥
    《錢學(xué)森》 張建設(shè) 張帥 張秋麗
    火花(2022年6期)2022-06-16 09:02:52
    納米流體強(qiáng)化吸收CO2的研究進(jìn)展
    河南科技(2022年8期)2022-05-31 22:28:08
    Correlation mechanism between force chains and friction mechanism during powder compaction
    Special issue on selected papers from HVDP 2020
    青年演員張帥
    歌海(2021年6期)2021-02-01 11:27:18
    給“調(diào)皮鬼”換座位
    給“調(diào)皮鬼”換座位
    遼寧教育(2020年8期)2020-03-03 23:27:33
    Talking about the Design Concept of "People-oriented" in Visual Communication Desig
    青年生活(2019年3期)2019-09-10 16:57:14
    張帥作品
    張帥手繪效果圖
    欧美 亚洲 国产 日韩一| 99久久精品国产亚洲精品| 国产有黄有色有爽视频| 国产精品久久久久久人妻精品电影| 热99久久久久精品小说推荐| 在线观看午夜福利视频| 国产一区二区三区视频了| 中文字幕最新亚洲高清| 欧美乱妇无乱码| 一a级毛片在线观看| 欧美精品啪啪一区二区三区| 久久性视频一级片| 日韩免费av在线播放| 啦啦啦在线免费观看视频4| 18在线观看网站| 久久精品aⅴ一区二区三区四区| 亚洲熟女毛片儿| 亚洲三区欧美一区| 少妇粗大呻吟视频| 国产在线观看jvid| 一区福利在线观看| www.自偷自拍.com| 午夜影院日韩av| 国产主播在线观看一区二区| 国产精品.久久久| 黄频高清免费视频| cao死你这个sao货| 男人操女人黄网站| 精品午夜福利视频在线观看一区| 黄色a级毛片大全视频| av国产精品久久久久影院| 欧美大码av| 免费观看精品视频网站| 9热在线视频观看99| 欧美激情久久久久久爽电影 | 亚洲七黄色美女视频| 亚洲一区二区三区不卡视频| 国产亚洲精品久久久久久毛片 | 日韩人妻精品一区2区三区| 热99国产精品久久久久久7| 99国产综合亚洲精品| 激情在线观看视频在线高清 | 精品久久久久久久毛片微露脸| 国产一区在线观看成人免费| 美女福利国产在线| a级毛片在线看网站| 久久香蕉国产精品| 新久久久久国产一级毛片| 亚洲精品久久午夜乱码| 中文字幕人妻丝袜制服| 久久久久久人人人人人| 午夜老司机福利片| 一a级毛片在线观看| 亚洲三区欧美一区| 国产精品美女特级片免费视频播放器 | 国产一区有黄有色的免费视频| 国产亚洲精品一区二区www | 久久久久久久久久久久大奶| 成年人免费黄色播放视频| 国内毛片毛片毛片毛片毛片| 国产黄色免费在线视频| 最新的欧美精品一区二区| 国产伦人伦偷精品视频| 午夜免费观看网址| 亚洲第一av免费看| 国产高清激情床上av| 午夜两性在线视频| av网站在线播放免费| 99精品欧美一区二区三区四区| 精品亚洲成a人片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲第一青青草原| 免费在线观看影片大全网站| 99精品在免费线老司机午夜| aaaaa片日本免费| 久久久久国内视频| 午夜亚洲福利在线播放| 久久久国产精品麻豆| 免费高清在线观看日韩| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美成狂野欧美在线观看| 高清av免费在线| 亚洲精品av麻豆狂野| 亚洲一区中文字幕在线| 嫩草影视91久久| 精品久久久久久,| 国产精品国产av在线观看| 久久国产精品大桥未久av| 国产精品一区二区在线观看99| 亚洲欧美一区二区三区黑人| 国产精品秋霞免费鲁丝片| 国产精品 欧美亚洲| 热re99久久国产66热| 超碰97精品在线观看| 亚洲片人在线观看| 天堂中文最新版在线下载| 成人黄色视频免费在线看| 久久久久国产一级毛片高清牌| 黄色a级毛片大全视频| 91九色精品人成在线观看| 黄色成人免费大全| 久久久久精品人妻al黑| 亚洲人成伊人成综合网2020| 不卡av一区二区三区| 久久精品熟女亚洲av麻豆精品| a级毛片在线看网站| 国产日韩一区二区三区精品不卡| 男人舔女人的私密视频| 男女之事视频高清在线观看| 欧美大码av| 久久婷婷成人综合色麻豆| 亚洲精品国产精品久久久不卡| 免费在线观看亚洲国产| 欧美日韩瑟瑟在线播放| 在线免费观看的www视频| 亚洲一码二码三码区别大吗| 制服诱惑二区| 在线观看免费视频网站a站| 91成年电影在线观看| 美女视频免费永久观看网站| 国产精品国产高清国产av | 搡老乐熟女国产| 黄片大片在线免费观看| 人成视频在线观看免费观看| 久久久国产精品麻豆| 午夜福利,免费看| 久久精品熟女亚洲av麻豆精品| 757午夜福利合集在线观看| 淫妇啪啪啪对白视频| 黑人操中国人逼视频| 激情视频va一区二区三区| 国产一区有黄有色的免费视频| 天天操日日干夜夜撸| 日本撒尿小便嘘嘘汇集6| 国产区一区二久久| 看片在线看免费视频| 在线观看免费视频日本深夜| 黄色女人牲交| cao死你这个sao货| 国产精品欧美亚洲77777| 成人影院久久| 777久久人妻少妇嫩草av网站| 91成人精品电影| av视频免费观看在线观看| 国产伦人伦偷精品视频| 日本vs欧美在线观看视频| 人妻丰满熟妇av一区二区三区 | 欧美在线黄色| 国产伦人伦偷精品视频| 日韩一卡2卡3卡4卡2021年| 人人澡人人妻人| 97人妻天天添夜夜摸| 好男人电影高清在线观看| 宅男免费午夜| 久久久久久久午夜电影 | 俄罗斯特黄特色一大片| 中国美女看黄片| 熟女少妇亚洲综合色aaa.| 香蕉久久夜色| 亚洲成人免费av在线播放| 成人免费观看视频高清| 无人区码免费观看不卡| 久久九九热精品免费| 性少妇av在线| 欧美乱色亚洲激情| 99re在线观看精品视频| 久久久久久久精品吃奶| 久久久久国产一级毛片高清牌| 久久午夜综合久久蜜桃| 97人妻天天添夜夜摸| 日韩 欧美 亚洲 中文字幕| 19禁男女啪啪无遮挡网站| 一进一出好大好爽视频| 国产精品九九99| 999久久久国产精品视频| 身体一侧抽搐| 精品国产亚洲在线| 国产欧美日韩精品亚洲av| 国产精品 国内视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成人手机| 精品人妻1区二区| 亚洲熟妇中文字幕五十中出 | www.自偷自拍.com| 精品一品国产午夜福利视频| 中文字幕人妻丝袜制服| 欧美精品一区二区免费开放| 国产成人av激情在线播放| 麻豆成人av在线观看| 黄色女人牲交| 亚洲色图 男人天堂 中文字幕| 91大片在线观看| 变态另类成人亚洲欧美熟女 | 狂野欧美激情性xxxx| 99久久99久久久精品蜜桃| 99久久人妻综合| 捣出白浆h1v1| 精品国产一区二区久久| 亚洲欧美一区二区三区久久| 婷婷精品国产亚洲av在线 | 两个人看的免费小视频| 不卡一级毛片| 天堂√8在线中文| 午夜精品在线福利| 亚洲成人手机| 亚洲av成人不卡在线观看播放网| 男女之事视频高清在线观看| 免费av中文字幕在线| 国产精品乱码一区二三区的特点 | 啦啦啦免费观看视频1| 亚洲精品中文字幕一二三四区| 国产精品亚洲av一区麻豆| 亚洲一区二区三区不卡视频| 丁香欧美五月| 少妇裸体淫交视频免费看高清 | 国产又色又爽无遮挡免费看| 亚洲aⅴ乱码一区二区在线播放 | 欧美 日韩 精品 国产| 中文字幕制服av| 免费在线观看黄色视频的| 夜夜爽天天搞| 十八禁人妻一区二区| 亚洲aⅴ乱码一区二区在线播放 | 黄色怎么调成土黄色| 丰满迷人的少妇在线观看| 一级毛片女人18水好多| 久久人妻av系列| 50天的宝宝边吃奶边哭怎么回事| 黄片播放在线免费| 精品国产国语对白av| 乱人伦中国视频| 亚洲av日韩精品久久久久久密| 精品国产一区二区久久| 欧美 亚洲 国产 日韩一| 午夜福利欧美成人| 久久婷婷成人综合色麻豆| 两人在一起打扑克的视频| 欧美精品人与动牲交sv欧美| 亚洲精品在线观看二区| 欧美黑人精品巨大| 黑人巨大精品欧美一区二区mp4| 亚洲精品在线美女| 三上悠亚av全集在线观看| 在线视频色国产色| 国产91精品成人一区二区三区| 人人妻人人澡人人爽人人夜夜| 国产精品av久久久久免费| 露出奶头的视频| 亚洲精品中文字幕一二三四区| 亚洲欧美色中文字幕在线| 免费在线观看影片大全网站| 一进一出抽搐gif免费好疼 | 欧美 日韩 精品 国产| 热re99久久精品国产66热6| ponron亚洲| 婷婷成人精品国产| 亚洲专区中文字幕在线| 十八禁高潮呻吟视频| 在线观看一区二区三区激情| 80岁老熟妇乱子伦牲交| 国产一卡二卡三卡精品| 亚洲成av片中文字幕在线观看| 美女高潮到喷水免费观看| 欧美日韩乱码在线| 亚洲五月天丁香| 久久九九热精品免费| 人人妻人人澡人人看| 婷婷丁香在线五月| 成人18禁高潮啪啪吃奶动态图| netflix在线观看网站| www日本在线高清视频| 亚洲五月色婷婷综合| 久久人人97超碰香蕉20202| 亚洲欧美色中文字幕在线| 国产又爽黄色视频| 在线免费观看的www视频| 久久久国产精品麻豆| 亚洲国产精品一区二区三区在线| 久久精品91无色码中文字幕| av福利片在线| 两人在一起打扑克的视频| 亚洲欧洲精品一区二区精品久久久| 亚洲精品av麻豆狂野| 亚洲va日本ⅴa欧美va伊人久久| 在线观看66精品国产| 午夜精品国产一区二区电影| 日韩欧美国产一区二区入口| 在线观看一区二区三区激情| 宅男免费午夜| 天天添夜夜摸| 久久精品91无色码中文字幕| 18禁黄网站禁片午夜丰满| 校园春色视频在线观看| 色尼玛亚洲综合影院| 99精品在免费线老司机午夜| 成人精品一区二区免费| 在线十欧美十亚洲十日本专区| 国产99白浆流出| 欧美精品高潮呻吟av久久| 国产深夜福利视频在线观看| 精品国产一区二区三区四区第35| 热99久久久久精品小说推荐| 日韩欧美三级三区| 99国产综合亚洲精品| 又大又爽又粗| 女人精品久久久久毛片| 欧洲精品卡2卡3卡4卡5卡区| 看黄色毛片网站| 久久国产精品影院| 日本五十路高清| 久久中文看片网| 欧美激情高清一区二区三区| 亚洲人成电影观看| 可以免费在线观看a视频的电影网站| 黑人欧美特级aaaaaa片| 欧美乱码精品一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 丝袜在线中文字幕| 人人妻,人人澡人人爽秒播| 丰满的人妻完整版| 香蕉丝袜av| 69精品国产乱码久久久| 亚洲精品乱久久久久久| 欧美久久黑人一区二区| 久久精品亚洲熟妇少妇任你| 亚洲精品国产区一区二| 国产一区有黄有色的免费视频| 国产欧美亚洲国产| 天天操日日干夜夜撸| 操美女的视频在线观看| 久久热在线av| 欧美日韩瑟瑟在线播放| 18禁观看日本| 午夜福利欧美成人| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人手机| 老汉色∧v一级毛片| av中文乱码字幕在线| 深夜精品福利| 一级,二级,三级黄色视频| 欧美丝袜亚洲另类 | 精品亚洲成a人片在线观看| 日韩欧美一区二区三区在线观看 | 桃红色精品国产亚洲av| 久久久国产成人精品二区 | 人妻久久中文字幕网| 高潮久久久久久久久久久不卡| 亚洲专区字幕在线| 精品国产亚洲在线| 久久久国产欧美日韩av| 天堂动漫精品| 中亚洲国语对白在线视频| 美女 人体艺术 gogo| 中文字幕最新亚洲高清| 好看av亚洲va欧美ⅴa在| 欧美日韩亚洲高清精品| 亚洲第一av免费看| 19禁男女啪啪无遮挡网站| 欧美日韩乱码在线| 欧美日韩福利视频一区二区| 久久热在线av| 亚洲午夜精品一区,二区,三区| 999久久久国产精品视频| 久久青草综合色| 色播在线永久视频| 九色亚洲精品在线播放| 天天躁夜夜躁狠狠躁躁| 在线免费观看的www视频| 母亲3免费完整高清在线观看| 国产成人欧美在线观看 | 亚洲视频免费观看视频| 最近最新中文字幕大全免费视频| 日韩有码中文字幕| 人人澡人人妻人| 中文亚洲av片在线观看爽 | a在线观看视频网站| 欧美日韩亚洲国产一区二区在线观看 | 一二三四社区在线视频社区8| 午夜福利在线观看吧| 欧洲精品卡2卡3卡4卡5卡区| 欧美性长视频在线观看| 国产精品综合久久久久久久免费 | 国产91精品成人一区二区三区| 国产精品av久久久久免费| 免费不卡黄色视频| 国产在线精品亚洲第一网站| 又紧又爽又黄一区二区| 精品一区二区三卡| 日韩欧美免费精品| 热99re8久久精品国产| 国产日韩一区二区三区精品不卡| 美女国产高潮福利片在线看| videos熟女内射| 亚洲av欧美aⅴ国产| 亚洲成国产人片在线观看| 啦啦啦在线免费观看视频4| 精品国产超薄肉色丝袜足j| 精品视频人人做人人爽| 香蕉丝袜av| x7x7x7水蜜桃| 热re99久久国产66热| 国产一区二区三区视频了| www.999成人在线观看| 女警被强在线播放| 99国产精品99久久久久| 韩国精品一区二区三区| 黑丝袜美女国产一区| www.精华液| 少妇粗大呻吟视频| 色94色欧美一区二区| 色婷婷av一区二区三区视频| 欧美乱色亚洲激情| 午夜福利欧美成人| 免费看十八禁软件| 午夜福利影视在线免费观看| 99精品欧美一区二区三区四区| 久久精品亚洲av国产电影网| 91大片在线观看| 不卡一级毛片| 成年人免费黄色播放视频| 麻豆国产av国片精品| 亚洲精品av麻豆狂野| 韩国精品一区二区三区| 天天添夜夜摸| 色婷婷av一区二区三区视频| 亚洲专区字幕在线| 精品国产一区二区三区四区第35| 亚洲黑人精品在线| 国产精品久久电影中文字幕 | 婷婷精品国产亚洲av在线 | 黄色a级毛片大全视频| 国产精品久久久久久精品古装| 欧美日本中文国产一区发布| 18禁黄网站禁片午夜丰满| 韩国av一区二区三区四区| 日韩成人在线观看一区二区三区| 天堂中文最新版在线下载| 国产成人影院久久av| 精品国产一区二区久久| 韩国av一区二区三区四区| 亚洲欧美色中文字幕在线| 午夜亚洲福利在线播放| 两人在一起打扑克的视频| 一本大道久久a久久精品| 欧美精品高潮呻吟av久久| 69av精品久久久久久| 欧美国产精品一级二级三级| 欧美日韩av久久| 宅男免费午夜| 国产欧美日韩一区二区精品| 男男h啪啪无遮挡| 精品亚洲成国产av| 国产有黄有色有爽视频| 狂野欧美激情性xxxx| 国产精品99久久99久久久不卡| 在线免费观看的www视频| 操出白浆在线播放| 欧美乱码精品一区二区三区| 国产真人三级小视频在线观看| 国产精品 国内视频| 精品久久久久久久久久免费视频 | 久久ye,这里只有精品| 欧美亚洲日本最大视频资源| 女人久久www免费人成看片| 色婷婷av一区二区三区视频| 成年人午夜在线观看视频| 久久狼人影院| 成年人黄色毛片网站| 9191精品国产免费久久| 亚洲熟妇中文字幕五十中出 | 免费看十八禁软件| 一级毛片女人18水好多| 新久久久久国产一级毛片| 精品福利永久在线观看| 波多野结衣av一区二区av| 亚洲五月天丁香| 免费在线观看日本一区| 男女午夜视频在线观看| 国产精品 国内视频| 午夜免费鲁丝| 国产亚洲精品第一综合不卡| av超薄肉色丝袜交足视频| 国产日韩一区二区三区精品不卡| 好男人电影高清在线观看| 18禁美女被吸乳视频| 在线播放国产精品三级| 日韩免费av在线播放| 久久99一区二区三区| 夜夜躁狠狠躁天天躁| 男女午夜视频在线观看| 中国美女看黄片| 在线国产一区二区在线| 亚洲精品久久成人aⅴ小说| 成年人黄色毛片网站| 国产成+人综合+亚洲专区| av视频免费观看在线观看| 男人操女人黄网站| 高清欧美精品videossex| 欧美老熟妇乱子伦牲交| 免费在线观看亚洲国产| 国产精品98久久久久久宅男小说| 19禁男女啪啪无遮挡网站| 91麻豆av在线| 精品国产亚洲在线| 少妇裸体淫交视频免费看高清 | 国产亚洲精品一区二区www | 亚洲精品乱久久久久久| 亚洲成人免费电影在线观看| 国内毛片毛片毛片毛片毛片| 最新美女视频免费是黄的| av线在线观看网站| 电影成人av| 在线观看免费高清a一片| 国产不卡一卡二| 99热国产这里只有精品6| 成年版毛片免费区| 国产成人精品在线电影| 黑人猛操日本美女一级片| 亚洲 国产 在线| 视频在线观看一区二区三区| 在线国产一区二区在线| 18禁国产床啪视频网站| 成人国语在线视频| 身体一侧抽搐| 国产精品久久久久久人妻精品电影| 高潮久久久久久久久久久不卡| 免费黄频网站在线观看国产| 一级片免费观看大全| 久久青草综合色| 午夜福利乱码中文字幕| 国产精品秋霞免费鲁丝片| 国产精品一区二区精品视频观看| 男人的好看免费观看在线视频 | 久热这里只有精品99| 色婷婷av一区二区三区视频| 女同久久另类99精品国产91| 欧美日韩亚洲综合一区二区三区_| xxx96com| 美女午夜性视频免费| 欧美色视频一区免费| 欧美日韩精品网址| 亚洲人成77777在线视频| 成人18禁高潮啪啪吃奶动态图| 一a级毛片在线观看| 99久久精品国产亚洲精品| 身体一侧抽搐| 亚洲一区二区三区欧美精品| 欧美乱色亚洲激情| av有码第一页| 国产精品一区二区免费欧美| 久久狼人影院| 免费在线观看亚洲国产| 亚洲精品在线美女| 久久亚洲真实| 中文字幕精品免费在线观看视频| www.999成人在线观看| 法律面前人人平等表现在哪些方面| 日本五十路高清| 这个男人来自地球电影免费观看| 中文字幕高清在线视频| 99精品欧美一区二区三区四区| 欧美中文综合在线视频| 久热这里只有精品99| av片东京热男人的天堂| 午夜激情av网站| 国产精品免费一区二区三区在线 | 亚洲欧美日韩高清在线视频| 亚洲成人免费av在线播放| 人成视频在线观看免费观看| 亚洲欧美一区二区三区久久| 捣出白浆h1v1| 成人18禁高潮啪啪吃奶动态图| 久久国产精品男人的天堂亚洲| 在线观看免费午夜福利视频| 天堂俺去俺来也www色官网| 母亲3免费完整高清在线观看| 一本大道久久a久久精品| 视频区欧美日本亚洲| 精品少妇久久久久久888优播| 啦啦啦免费观看视频1| 女人精品久久久久毛片| 日韩欧美国产一区二区入口| 午夜精品久久久久久毛片777| 国产精品久久久久成人av| 大陆偷拍与自拍| 国产片内射在线| av视频免费观看在线观看| 久久久国产一区二区| 村上凉子中文字幕在线| 99香蕉大伊视频| 国产亚洲av高清不卡| av网站免费在线观看视频| 怎么达到女性高潮| 午夜福利,免费看| 国产高清国产精品国产三级| av在线播放免费不卡| 日本一区二区免费在线视频| 国产乱人伦免费视频| 久久久久精品人妻al黑| 老司机午夜福利在线观看视频| 精品国产亚洲在线| 一二三四社区在线视频社区8| 国产激情久久老熟女| 欧美av亚洲av综合av国产av| 极品人妻少妇av视频| 日韩免费av在线播放| 99香蕉大伊视频| 身体一侧抽搐| 91国产中文字幕| 麻豆成人av在线观看| 午夜福利在线观看吧| 精品福利观看| 国产精品 国内视频| 国产精品99久久99久久久不卡| 大型av网站在线播放|