• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    UNIQUENESS OF THE INVERSE TRANSMISSION SCATTERING WITH A CONDUCTIVE BOUNDARY CONDITION?

    2021-06-17 13:59:50向建立嚴(yán)國政
    關(guān)鍵詞:國政

    (向建立) (嚴(yán)國政)

    School of Mathematics and Statistics,Central China Normal University,Wuhan 430079,China

    E-mail:xiangjl@mails.ccnu.edu.cn;yangz@mail.ccnu.edu.cn

    Abstract This paper considers the inverse acoustic wave scattering by a bounded penetrable obstacle with a conductive boundary condition.We will show that the penetrable scatterer can be uniquely determined by its far-field pattern of the scattered field for all incident plane waves at a fixed wave number.In the first part of this paper,adequate preparations for the main uniqueness result are made.We establish the mixed reciprocity relation between the far-field pattern corresponding to point sources and the scattered field corresponding to plane waves.Then the well-posedness of a modified interior transmission problem is deeply investigated by the variational method.Finally,the a priori estimates of solutions to the general transmission problem with boundary data in Lp(?Ω)(1

    Key words Acoustic wave;uniqueness;mixed reciprocity relation;modified interior transmission problem;a priori estimates

    1 Introduction

    The inverse scattering problem we are concerned with here is determining the shape of an obstacle by measurements of the far-field patterns of acoustic waves.We are interested in the scattering of a penetrable obstacle covered by a thin layer of high conductivity;that is,the so-called conductive boundary condition([1,2]),which is a generalization of the classical transmission problem.

    Let ? denote a penetrable bounded open domain in R3withconnected.Let n(x)be the refractive index,let k>0 be the wave number,and set a jump parameter λ∈C{0}and a complex-valued functionμon the smooth boundary??.Then the conductive scattering problem we consider is modeled as follows:

    where u=ui+usis the total field,which is a superposition of the incident wave ui=ui(x,d):=eikx·d(note that the incident wave will be a plane wave or a point source in our later proofs and that d denotes the incident direction)and the scattered wave us,and ν is the unit outward normal to the boundary??.Here,u±anddenote the limit of u andfrom the exterior(+)and interior(?),respectively.Furthermore,the scattered field ussatisfies the Sommerfeld radiation condition

    and the convergence holds uniformly with respect to=x/|x|∈S,where S denotes the unit sphere in R3.

    Referring to Section 2 of paper[4],we make following assumptions on n,λ andμto guarantee the well-posedness of the direct problem(1.1):

    Assumption 1.1(1)The refractive function n∈L∞(?)satisfies Re(n)>0 and Im(n)≥0 almost everywhere(a.e.)in ?.

    (2)λ is a non-zero complex constant,such that there exists>0,such that Re(λ)≥and Im(λ)≤0,Im(λn)≥0 a.e.in ?.

    (3)μ∈L∞(??)with Re(μ)≤0 and Im(μ)≥0 a.e.on??.

    It is well known that the radiating solution ushas the asymptotic expansion

    uniformly for all directions=x/|x|∈S.Here,u∞is called the far-field pattern of us,which is an analytic function defined on S.

    The problem of uniqueness in the inverse obstacle scattering theory is of central importance both for the theoretical study and the implementation of numerical algorithms in acoustic,electromagnetic,fluid-solid interaction and elastic waves,etc..The first uniqueness result was shown by Schiffer[20]in acoustic waves with a Dirichlet boundary condition whose argument cannot be transferred to other boundary conditions.In 1990,Isakov[17]gave a uniqueness proof for transmission problems(ui=ue,?ue/?ν=μ?ui/?ν,μ/=1)based on the variational method by constructing a sequence of singular solutions.In 1993,Kirsch and Kress[18]simplified Isakov’s proof and also transferred it to the Neumann boundary condition by proving a continuous dependence result in a weighted Banach space of continuous functions.In the same year,Ramm[31]used a new method to prove the uniqueness of the impenetrable obstacle with a Dirichlet or Neumann boundary condition.

    In 1994,Hettlich[16]achieved the uniqueness theorem for the general conductive boundary condition(u+?u?=0,?u+/?ν?μ?u?/?ν=λu,the interior wave number is a constant)based on the idea of Isakov.Furthermore,the uniqueness of coefficientsμ,λ and the constant interior wave number were also proven.Later,in 1996,Gerlach and Kress[12]simplified and shortened the analysis of Hettlich.In order to present a refinement in the case when the boundary of the scatterer is allowed to have irregularities,in 1998,Mitrea[24]studied its uniqueness dependent upon boundary integral techniques and the Calderón-Zygmund theory.In 2004,Valdivia[33]worked on the uniqueness again based on the original idea of Isakov.Since then,there have been many other uniqueness problems,such as impenetrable scatterers with an unknown type of boundary condition([10,19]),local uniqueness([13,32]),penetrable orthotropic[11]or anisotropic inhomogeneous obstacles([14,25]),a piecewise homogeneous medium([21–23]),etc..

    In this paper,we again consider the uniqueness of the inverse transmission scattering with a conductive boundary condition by an inhomogeneous medium.The idea is inspired by[29](an inhomogeneous acoustic cavity),[30](fluid-solid interaction with embedded obstacles)and[34](penetrable obstacles with embedded objects in acoustic and electromagnetic scattering).Hence,before showing the main uniqueness proof,we discuss some important preparations,which are also of interest in their own right.

    Firstly,we establish a mixed reciprocity relation between the far-field pattern corresponding to point sources and the scattered field corresponding to plane waves of this general transmission problem.The mixed reciprocity relation was shown in[26](Theorem1)for sound-soft and sound-hard obstacles,in[9](Theorem 3.24)for generalized impedance objects,in[28](Theorem 2.2.4)for inhomogeneous media,and in[23]for a piecewise homogeneous medium,etc..In the derivation of(2.1)and the above references,we can conclude that the relation for y∈R3? is valid for all possible boundary conditions of penetrable or impenetrable scatterers.Furthermore,for y∈?,relation(2.1)has a close connection with the jump parameter λ(Lemma 3.2 in[23]),but that disregards the complex-valued functionμ.

    Secondly,we study the well-posedness of a modified interior transmission problem by the variational method.Though the interior transmission problems have been deeply investigated in the book[6],there are few results about the conductive boundary([3,15]for λ=1).The well-posedness is achieved under some limitations on λ andμ,and the discreteness of interior transmission eigenvalues is a by-product.In the future,we want to conduct further research on the interior transmission eigenvalues problem.

    Thirdly,we prove the a priori estimates of solutions to the general transmission problem with boundary data in Lp(??)(1

    Finally,the novel and simple method for proving the uniqueness of the conductive boundary by its far field pattern is easy to implement for our inverse transmission problem.

    The remainder section of the paper is organized as follows:Section 2 is devoted to making preparations;we show a mixed reciprocity relation,investigate the well-posedness of a modified interior transmission problem,and construct the a priori estimates of solutions to the general transmission problem with boundary data in Lp(??)(1

    2 Preparations

    In this section,we make some necessary preparations before showing the uniqueness of the inverse problem(1.1).

    2.1 Mixed reciprocity relation

    where the last equality is obtained by adding formula(2.2).

    Using Green’s representation theorem again,for y∈

    Applying Green’s second integral theorem to ui(·,d)and Φk(·,y)in ? yields

    Adding up the previous two equalities,we arrive at

    Combining(2.3)with(2.4),we find that

    Use the conductive boundary condition and Green’s formula in ?,we conclude that

    This implies that 4πu∞(?d;y)=us(y,d)for all d∈S,y∈

    Secondly,we consider the case y∈?.Recalling equality(2.3),which holds also for y∈?,using the conductive boundary condition,we obtain

    The last equality is obtained completely similar to the proof of(3.13)to(3.14)in Lemma 3.2([23]).

    On the other hand,with the help of Green’s representation formula,we know that

    Combining(2.5)with(2.6)and using the conductive boundary condition,we have

    For y∈?,both Φk(·,y)and us(·,d)satisfy the Helmholtz equation inand the Sommerfeld radiation condition(1.2),hence

    Consequently,

    This implies that 4πu∞(?d;y)=λus(y,d)+(λ?1)ui(y,d)for all d∈S,y∈?.The proof is complete. □

    Remark 2.2If there is a buried object inside ?,Theorem 2.1 also holds.Lemma 3.2 in[23]is a special case when n is a constant andμ=0 a.e.on??.

    Remark 2.3Theorem 2.1 also holds in two dimensional space with some modifications of the coefficient.

    2.2 Modified interior transmission problem

    Given ?1,?2∈L2(?),f1∈H1/2(??),f2∈H?1/2(??),we consider the following modified interior transmission problem:

    In order to reformulate(2.7)as an equivalent variational problem,we define the Hilbert space

    Using the conductive boundary condition in(2.7),we see that

    wherev=?v,and thenv∈X.After arranging,we obtain that

    We multiply the first equation in(2.7)by a test function ψ∈X.Similarly,integrating in ?and using the boundary condition,we obtain

    that is

    Based on the above calculations,we introduce the sesquilinear form A1(U,V),defined on{H1(?)×X}2by

    whereU:=(w,v)andV:=(?,ψ)are in H1(?)×X.We denote by L1:H1(?)×X?→C the bounded antilinear functional given by

    Therefore,the variational formulation of problem(2.7)is to findU=(w,v)∈H1(?)×X such that

    Changing the roles of w and v,we can obtain another different variational formulation of problem(2.7);namely,we multiply the first equation in(2.7)by a test function ?∈H1(?)and the second equation by a test function ψ∈X,integrate in ?,and use the boundary condition to obtain

    wherew=?w,and thenw∈X.

    We introduce the sesquilinear form A2(U,V)defined on{H1(?)×X}2and the bounded antilinear functional L2:H1(?)×X?→C given by

    where U:=(v,w)and V:=(?,ψ)are in H1(?)×X.Then,the variational formulation of problem(2.7)is to find U=(v,w)∈H1(?)×X such that

    The following Theorem states the equivalence between problems(2.7)and(2.8)or(2.9)(the detailed proof is the same as that of Theorem 3.3 in the paper[7]and Theorem 6.5 in the book[5],so for brevity we omit it here):

    Theorem 2.4Problem(2.7)has a unique solution(w,v)∈H1(?)×H1(?)if and only if problem(2.8)has a unique solutionU=(w,v)∈H1(?)×X or problem(2.9)has a unique solution U=(v,w)∈H1(?)×X.

    Now,we investigate the modified interior transmission problem in the variational formulations(2.8)and(2.9).

    Theorem 2.5(1)If Re(λ)≥>1 and Re(μ)≤0,then the variational problem(2.8)has a unique solutionU=(w,v)∈H1(?)×X that satisfies

    where cj>0(j=1,2)is independent of ?1,?2,f1and f2.

    ProofThe trace theorems and Schwarz’s inequality ensure the continuity of the antilinear functional Lj(j=1,2)on H1(?)×X and the existence of a constant cjwhich is independent of ?1,?2,f1and f2such that

    For the first part,ifU=(w,v)∈H1(?)×X,the assumptions that Re(λ)≥>1 and Re(μ)≤0 imply that

    For the second part,if U=(v,w)∈H1(?)×X,the assumptions that 0<≤Re(λ)<1 and Re(μ)≡0 imply that

    Hence Aj(j=1,2)is coercive.The continuity of Ajfollows easily from Schwarz’s inequality and the classical trace theorems.Then Theorem 2.5 is a direct consequence of the Lax-Milgram Lemma applied to(2.8)and(2.9). □

    Combining the above two Theorems 2.4 and 2.5,we obtain the well-posedness of the modified interior transmission problem(2.7).

    Theorem 2.6Assume that Re(λ)≥>1,Re(μ)≤0 or 0<≤Re(λ)<1,Re(μ)≡0.Then the modified interior transmission problem(2.7)has a unique solution(w,v)∈H1(?)×H1(?)that satisfies

    Using the analytic Fredholm theory(see Section 8.5 in the book[9]),we get a by-product regarding the discreteness of the following interior transmission eigenvalues problem:

    Definition 2.7Values of k for which the above interior transmission problem(2.10)has a nontrivial solution pair(v,w)∈H1(?)×H1(?)are called transmission eigenvalues.

    Before we establish the discreteness result,we first study the case when there are no real transmission eigenvalues.

    Lemma 2.8Assume that n,λ andμsatisfy Assumption 1.1.If either Im(λ)<0 or Im(n)>0 almost everywhere in ?,then there are no real transmission eigenvalues of the problem(2.10).

    ProofLet v and w be a solution pair of the interior transmission problem(2.10).Applying Green’s identity to v and w,we have

    Since Im(μ)≥0,Im(λ)≤0,Im(λn)≥0,we have that

    If Im(λ)<0 a.e.in ?,then?w=0 in ?,from the equation w=0.From the boundary condition in(2.10)and the integral representation formula,v also vanishes in ?.

    If Im(λ)=0 and Im(n)>0 a.e.in ?,then λ≥>0 and Im(λn)=λIm(n)>0.Hence,w=0 and v=0 in ?.This completes the proof. □

    Remark 2.9From the proof of Lemma 2.8,we conclude that k may be an interior transmission eigenvalue of(2.10)if Im(λ)=0 and Im(n)=0.In this case,if Im(μ)>0 almost everywhere on??,we further obtain that v=0 on??,whence the eigenvalues of(2.10)form a subset of the classical Dirichlet eigenvalues of?Δ in ?.

    Theorem 2.10Assume that n,λ andμsatisfy Assumption 1.1 and that Im(λ)=0 and Im(n)=0.If either λ≥>1,Re(μ)≤0 or 0<≤λ<1,Re(μ)≡0,then the transmission eigenvalues of(2.10)form a discrete(possibly empty)set with+∞as the only possible accumulation point.

    ProofLet us set

    Since(Fi,1?Fk,n)(w,v)=(?(1+k2)v,?(1+k2n)w,0,0)is compact based on the compact embedding of H1(?)to L2(?),we conclude that the transmission eigenvalues form a discrete(possibly empty)set with+∞as the only possible accumulation point by the analytic Fredholm theory(Section 8.5 of the book[9]).The proof is complete. □

    Remark 2.11For the case λ=1,the discreteness and existence of the transmission eigenvalues have been proven clearly in[3].

    2.3 A priori estimates for the transmission problem with Lp data

    By employing the boundary integral equation method([8,27,34]),we establish the a priori estimates of the solution to the following general transmission problem(2.11)with boundary data in Lp(??)(1

    We introduce the single-and double-layer boundary integral operators

    and their normal derivative operators

    Theorem 2.12Assuming that n,λ andμsatisfy Assumption 1.1.For h1,h2∈Lp(??)with 4/3≤p<2,the transmission problem(2.11)has a unique solution pair(w1,w2)∈satisfying that

    where BRdenotes a large ball centered at the origin with radius R such thatand C is a positive constant depending on R.

    ProofIn order to apply the boundary integral equation method,we divide our proof into two steps(refer to Theorem 2.5 in[34]).

    Step OneAssume that k2n(x)≡>0 is a constant.We seek a solution pairof problem(2.11)in the following form:

    Here,I denotes the identity operator.Then the transmission problem(2.11)can be reduced to a system of the integral equations

    where the integral matrix operator A is given by

    Since all elements of A are compact operators in the corresponding Banach spaces,it is easy to see that A+I(I denotes the identity matrix)is a Fredholm operator with index zero.Together with the uniqueness of the direct transmission problem(2.11),there exists a unique solution(?,ψ)∈Lp(??)×Lp(??)of system(2.13)satisfying the estimate

    Referring to inequalities(2.22)and(2.23)in the paper[34](Theorem 2.5),that is,

    where 1/p+1/q=1 and

    we achieve estimate(2.12).

    Step TwoFor the general case n(x)∈L∞(?),we consider the following problem:

    3 Uniqueness of the Inverse Transmission Problem

    In this section,we consider the uniqueness of the inverse transmission problem(1.1).Under some restrictions on λ andμ,we use a simple and novel method to show that the penetrable obstacle can be uniquely determined by its far-field pattern associated with plane waves.

    Figure 1 Possible choice of x?

    uniformly for all j∈N,where C2>0 is independent of j.

    where

    Remark 3.2If there are impenetrable buried objects inside ?,the penetrable obstacle can also be uniquely determined by our method,with small modifications in subsections 2.1(Remark 2.2)and 2.3(Theorem 2.5 in[34]).Furthermore,the buried object will be determined by the mixed reciprocity relation(2.1),after discovering the penetrable surface(Theorem 3.7 in[23]).

    猜你喜歡
    國政
    孤島“魯濱遜”的38年
    新傳奇(2021年18期)2021-05-21 08:34:10
    韓國瑜競選“國政”團隊或已成型
    翻蓋房子起風(fēng)波
    我的家鄉(xiāng)最美之貴港
    排水溝引發(fā)的爭議
    “我很忙”
    新四軍中的日本勇士——國政憲郎
    黨史文匯(2013年2期)2013-02-20 06:45:10
    成熟少妇高潮喷水视频| 亚洲欧美精品综合久久99| 电影成人av| 黄色视频,在线免费观看| 88av欧美| av在线播放免费不卡| 99国产极品粉嫩在线观看| 韩国精品一区二区三区| 午夜视频精品福利| 亚洲成人久久性| 亚洲成人久久性| 国产高清视频在线播放一区| 丝袜在线中文字幕| 久久人人97超碰香蕉20202| 1024香蕉在线观看| 人人妻人人爽人人添夜夜欢视频| 久久精品影院6| 99riav亚洲国产免费| 国产成人欧美在线观看| 老司机亚洲免费影院| 神马国产精品三级电影在线观看 | 我的亚洲天堂| 色哟哟哟哟哟哟| 18禁国产床啪视频网站| 男女下面插进去视频免费观看| 97超级碰碰碰精品色视频在线观看| 高清在线国产一区| 亚洲精品国产区一区二| 五月开心婷婷网| 国产精华一区二区三区| 人妻丰满熟妇av一区二区三区| 757午夜福利合集在线观看| av中文乱码字幕在线| 国产成人精品在线电影| 桃色一区二区三区在线观看| 亚洲av成人一区二区三| 无遮挡黄片免费观看| 老汉色av国产亚洲站长工具| 国产伦人伦偷精品视频| 欧美黄色片欧美黄色片| 久久亚洲真实| 久久99一区二区三区| 亚洲人成网站在线播放欧美日韩| 国产熟女午夜一区二区三区| 一级作爱视频免费观看| 色婷婷av一区二区三区视频| 极品人妻少妇av视频| 国产欧美日韩综合在线一区二区| 久久久国产成人免费| 无人区码免费观看不卡| 国产麻豆69| 18禁黄网站禁片午夜丰满| 精品无人区乱码1区二区| 日本wwww免费看| 午夜老司机福利片| 高清av免费在线| 国产亚洲欧美精品永久| 亚洲精品国产色婷婷电影| 在线播放国产精品三级| 黄片播放在线免费| 亚洲专区国产一区二区| 久久国产乱子伦精品免费另类| 1024香蕉在线观看| 波多野结衣一区麻豆| 午夜免费鲁丝| 老汉色∧v一级毛片| 天堂动漫精品| 精品无人区乱码1区二区| 亚洲国产欧美网| 好男人电影高清在线观看| 国产精品九九99| 在线观看日韩欧美| 亚洲一区二区三区不卡视频| 新久久久久国产一级毛片| 精品久久久久久久毛片微露脸| 久久久精品国产亚洲av高清涩受| 美国免费a级毛片| 婷婷精品国产亚洲av在线| 久久中文字幕人妻熟女| 少妇的丰满在线观看| 老司机深夜福利视频在线观看| 亚洲国产精品sss在线观看 | 国产精品 欧美亚洲| 9热在线视频观看99| 午夜福利欧美成人| 一边摸一边抽搐一进一小说| 高潮久久久久久久久久久不卡| 亚洲精品中文字幕在线视频| 亚洲av成人av| av片东京热男人的天堂| 91九色精品人成在线观看| 午夜影院日韩av| 久久人妻福利社区极品人妻图片| 午夜久久久在线观看| 侵犯人妻中文字幕一二三四区| 另类亚洲欧美激情| 69精品国产乱码久久久| 一本综合久久免费| 国产av一区二区精品久久| 中国美女看黄片| 黄片播放在线免费| 好男人电影高清在线观看| 丝袜美腿诱惑在线| 多毛熟女@视频| 亚洲五月色婷婷综合| 亚洲成人国产一区在线观看| 国产欧美日韩综合在线一区二区| 久久久久国产精品人妻aⅴ院| 亚洲片人在线观看| 欧美成狂野欧美在线观看| 免费一级毛片在线播放高清视频 | 视频区欧美日本亚洲| 性少妇av在线| 亚洲欧美日韩另类电影网站| 天堂√8在线中文| 中文字幕人妻熟女乱码| av电影中文网址| 亚洲国产看品久久| 中亚洲国语对白在线视频| 久久午夜综合久久蜜桃| 日本五十路高清| 午夜亚洲福利在线播放| 国产片内射在线| 夜夜看夜夜爽夜夜摸 | 在线播放国产精品三级| 韩国精品一区二区三区| 免费搜索国产男女视频| 国产aⅴ精品一区二区三区波| 国产一区二区三区视频了| 国产黄a三级三级三级人| 国产精品秋霞免费鲁丝片| 精品久久久精品久久久| 午夜福利一区二区在线看| 黄片大片在线免费观看| 亚洲av片天天在线观看| 91麻豆精品激情在线观看国产 | 国产野战对白在线观看| 久久久久九九精品影院| 午夜日韩欧美国产| 一区二区日韩欧美中文字幕| 国产欧美日韩综合在线一区二区| 老司机在亚洲福利影院| 国产精品九九99| 亚洲成国产人片在线观看| 手机成人av网站| 黄片小视频在线播放| av福利片在线| 激情在线观看视频在线高清| 99在线人妻在线中文字幕| 精品久久久久久电影网| 丝袜美足系列| 久久精品亚洲熟妇少妇任你| av片东京热男人的天堂| xxxhd国产人妻xxx| 国产99白浆流出| 亚洲国产看品久久| 精品久久久久久,| 天堂√8在线中文| 波多野结衣一区麻豆| 欧美最黄视频在线播放免费 | 欧美日本亚洲视频在线播放| 淫秽高清视频在线观看| 日韩有码中文字幕| 久久影院123| 国产乱人伦免费视频| 亚洲欧美日韩无卡精品| 国产成人精品在线电影| 久久香蕉激情| 多毛熟女@视频| 香蕉久久夜色| 亚洲一区中文字幕在线| 亚洲va日本ⅴa欧美va伊人久久| 在线观看66精品国产| 久久人人97超碰香蕉20202| 国产在线观看jvid| 国产一区二区三区综合在线观看| 亚洲七黄色美女视频| 热99re8久久精品国产| 久久人人爽av亚洲精品天堂| 黄色毛片三级朝国网站| 中文字幕精品免费在线观看视频| 在线观看www视频免费| 亚洲第一青青草原| 少妇的丰满在线观看| 亚洲成人免费电影在线观看| 琪琪午夜伦伦电影理论片6080| 欧美丝袜亚洲另类 | 夜夜看夜夜爽夜夜摸 | 中文字幕av电影在线播放| 伊人久久大香线蕉亚洲五| 男人舔女人的私密视频| 国产精品自产拍在线观看55亚洲| 丰满迷人的少妇在线观看| 女人高潮潮喷娇喘18禁视频| 欧美精品一区二区免费开放| 国产精品久久久久成人av| 亚洲激情在线av| 国产成人av教育| 激情在线观看视频在线高清| 大陆偷拍与自拍| 国产精品永久免费网站| 亚洲成人免费电影在线观看| 国内毛片毛片毛片毛片毛片| 怎么达到女性高潮| 国产av一区二区精品久久| 黄色片一级片一级黄色片| 岛国在线观看网站| 91成年电影在线观看| 亚洲男人的天堂狠狠| 12—13女人毛片做爰片一| 琪琪午夜伦伦电影理论片6080| 亚洲人成电影观看| 久久亚洲精品不卡| 亚洲av日韩精品久久久久久密| а√天堂www在线а√下载| 热99re8久久精品国产| 国产精品永久免费网站| 免费在线观看视频国产中文字幕亚洲| 久久精品91蜜桃| 女性生殖器流出的白浆| 久久久国产一区二区| 超碰97精品在线观看| 国产有黄有色有爽视频| 看片在线看免费视频| 精品一品国产午夜福利视频| 国产精品美女特级片免费视频播放器 | a级毛片在线看网站| 啦啦啦在线免费观看视频4| 美女大奶头视频| 成人手机av| 国产伦一二天堂av在线观看| 成人免费观看视频高清| svipshipincom国产片| 亚洲伊人色综图| 中亚洲国语对白在线视频| netflix在线观看网站| 另类亚洲欧美激情| 亚洲avbb在线观看| 久久久久亚洲av毛片大全| 久久精品91无色码中文字幕| 亚洲一区中文字幕在线| 免费观看人在逋| 午夜成年电影在线免费观看| 亚洲自拍偷在线| 欧美精品一区二区免费开放| 国产亚洲av高清不卡| av在线天堂中文字幕 | 日本 av在线| 免费在线观看黄色视频的| 亚洲色图av天堂| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲人成伊人成综合网2020| 色哟哟哟哟哟哟| 日韩av在线大香蕉| 午夜福利影视在线免费观看| 一个人免费在线观看的高清视频| av天堂久久9| 巨乳人妻的诱惑在线观看| bbb黄色大片| 亚洲五月色婷婷综合| 亚洲人成77777在线视频| 国产aⅴ精品一区二区三区波| 成人三级黄色视频| 久久久久久亚洲精品国产蜜桃av| 99久久人妻综合| 国产精品偷伦视频观看了| 欧美激情久久久久久爽电影 | 精品一区二区三区四区五区乱码| 欧美亚洲日本最大视频资源| 青草久久国产| 亚洲欧美日韩另类电影网站| 母亲3免费完整高清在线观看| 一区二区三区国产精品乱码| 天堂√8在线中文| 正在播放国产对白刺激| 日韩精品免费视频一区二区三区| 女人被狂操c到高潮| 丝袜在线中文字幕| a在线观看视频网站| 又黄又爽又免费观看的视频| 国产精品av久久久久免费| 亚洲色图综合在线观看| 88av欧美| 久久影院123| 午夜a级毛片| 亚洲欧美激情综合另类| www.自偷自拍.com| 午夜精品久久久久久毛片777| av免费在线观看网站| 久久人妻熟女aⅴ| 亚洲av片天天在线观看| 90打野战视频偷拍视频| 淫妇啪啪啪对白视频| 成人永久免费在线观看视频| 人人妻人人爽人人添夜夜欢视频| 欧美大码av| 精品一品国产午夜福利视频| 精品久久久久久成人av| 免费少妇av软件| 免费不卡黄色视频| 成人国产一区最新在线观看| 99久久国产精品久久久| 好男人电影高清在线观看| 午夜精品在线福利| 夜夜看夜夜爽夜夜摸 | av电影中文网址| 国产精品日韩av在线免费观看 | 国产一区二区三区视频了| 国产精品久久视频播放| 国产精品1区2区在线观看.| 亚洲精品中文字幕一二三四区| 精品高清国产在线一区| 91成年电影在线观看| 亚洲 欧美一区二区三区| 日韩欧美三级三区| 级片在线观看| 国产精品国产av在线观看| 可以免费在线观看a视频的电影网站| 亚洲av成人不卡在线观看播放网| 99在线视频只有这里精品首页| 久久国产精品影院| av超薄肉色丝袜交足视频| 色婷婷久久久亚洲欧美| 大型av网站在线播放| 9191精品国产免费久久| 90打野战视频偷拍视频| 亚洲av片天天在线观看| 大陆偷拍与自拍| 中文字幕高清在线视频| 女性生殖器流出的白浆| 亚洲色图综合在线观看| 亚洲中文av在线| 亚洲欧美日韩高清在线视频| 欧美日本中文国产一区发布| 我的亚洲天堂| 日韩三级视频一区二区三区| 久久国产亚洲av麻豆专区| 亚洲久久久国产精品| 国产日韩一区二区三区精品不卡| 欧美激情 高清一区二区三区| √禁漫天堂资源中文www| 男女下面进入的视频免费午夜 | 亚洲av熟女| 香蕉久久夜色| 亚洲欧美一区二区三区黑人| 99国产精品一区二区三区| 精品国产乱码久久久久久男人| 99精品在免费线老司机午夜| 啦啦啦 在线观看视频| 成人18禁高潮啪啪吃奶动态图| 久久天堂一区二区三区四区| 欧美久久黑人一区二区| 人人妻人人爽人人添夜夜欢视频| 久久青草综合色| 长腿黑丝高跟| 麻豆一二三区av精品| 女生性感内裤真人,穿戴方法视频| 亚洲在线自拍视频| 亚洲熟妇中文字幕五十中出 | 极品教师在线免费播放| 欧美人与性动交α欧美软件| 51午夜福利影视在线观看| 欧美人与性动交α欧美软件| 69av精品久久久久久| 欧美乱码精品一区二区三区| 亚洲男人天堂网一区| 午夜精品在线福利| 欧美久久黑人一区二区| 精品一区二区三区视频在线观看免费 | 99精品欧美一区二区三区四区| 欧美一级毛片孕妇| 水蜜桃什么品种好| 午夜福利一区二区在线看| 美女高潮到喷水免费观看| 美女 人体艺术 gogo| 美女国产高潮福利片在线看| 国产高清激情床上av| 精品久久久久久电影网| 搡老熟女国产l中国老女人| 国产在线观看jvid| 免费人成视频x8x8入口观看| 亚洲 欧美一区二区三区| 成人国产一区最新在线观看| 亚洲国产精品一区二区三区在线| 性少妇av在线| 国产熟女xx| 久久精品国产亚洲av香蕉五月| 69av精品久久久久久| 怎么达到女性高潮| 久久精品国产清高在天天线| 50天的宝宝边吃奶边哭怎么回事| 国产一区二区三区综合在线观看| 午夜日韩欧美国产| 精品免费久久久久久久清纯| 亚洲中文日韩欧美视频| 中文字幕另类日韩欧美亚洲嫩草| 欧美不卡视频在线免费观看 | 国产精品乱码一区二三区的特点 | 免费av中文字幕在线| 国产免费av片在线观看野外av| 国内久久婷婷六月综合欲色啪| 精品人妻在线不人妻| av天堂久久9| 欧美黑人欧美精品刺激| 日日夜夜操网爽| 成人亚洲精品一区在线观看| 国产精品久久久久成人av| 高清黄色对白视频在线免费看| 色老头精品视频在线观看| 大型av网站在线播放| 777久久人妻少妇嫩草av网站| 中国美女看黄片| 在线观看www视频免费| 久久久国产成人免费| 自线自在国产av| 国产97色在线日韩免费| 日本 av在线| 欧美大码av| www.999成人在线观看| 国产精品野战在线观看 | 亚洲精品一卡2卡三卡4卡5卡| 日韩高清综合在线| 99久久久亚洲精品蜜臀av| 亚洲人成电影免费在线| 国产亚洲精品第一综合不卡| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品香港三级国产av潘金莲| 最近最新中文字幕大全电影3 | 成人av一区二区三区在线看| e午夜精品久久久久久久| 亚洲成人精品中文字幕电影 | 一进一出抽搐gif免费好疼 | 国产免费av片在线观看野外av| 丰满迷人的少妇在线观看| 免费高清视频大片| 午夜日韩欧美国产| 国产成人精品久久二区二区91| 一边摸一边抽搐一进一出视频| 女性被躁到高潮视频| 国产黄a三级三级三级人| 淫妇啪啪啪对白视频| 在线免费观看的www视频| 欧美中文综合在线视频| 日本精品一区二区三区蜜桃| 99国产精品99久久久久| 亚洲国产精品一区二区三区在线| 午夜两性在线视频| 国产成人av教育| 亚洲国产毛片av蜜桃av| 高清av免费在线| 欧美老熟妇乱子伦牲交| 男男h啪啪无遮挡| 日本免费a在线| 国产精品98久久久久久宅男小说| 久9热在线精品视频| 乱人伦中国视频| 中文字幕色久视频| 在线观看舔阴道视频| 黄色视频不卡| 国产免费男女视频| 电影成人av| 精品一区二区三区视频在线观看免费 | 国产99久久九九免费精品| 国产精品自产拍在线观看55亚洲| 精品福利观看| 制服诱惑二区| av天堂在线播放| 国产亚洲欧美精品永久| 国产精品一区二区三区四区久久 | 国产精品亚洲av一区麻豆| 亚洲欧美日韩无卡精品| 成人影院久久| 女生性感内裤真人,穿戴方法视频| 成人永久免费在线观看视频| 久久久久国内视频| 欧美一区二区精品小视频在线| 免费不卡黄色视频| 丰满的人妻完整版| 一级毛片高清免费大全| 人成视频在线观看免费观看| 国产成人欧美| 亚洲第一欧美日韩一区二区三区| 欧美午夜高清在线| 丁香六月欧美| 精品免费久久久久久久清纯| 天堂俺去俺来也www色官网| 视频区图区小说| 亚洲国产毛片av蜜桃av| 精品第一国产精品| 极品教师在线免费播放| 亚洲精品成人av观看孕妇| 国产欧美日韩综合在线一区二区| 国产又色又爽无遮挡免费看| 精品国产乱子伦一区二区三区| 国内毛片毛片毛片毛片毛片| 久久香蕉精品热| 国产成人一区二区三区免费视频网站| 日本 av在线| av国产精品久久久久影院| 免费女性裸体啪啪无遮挡网站| 国产精品亚洲一级av第二区| 很黄的视频免费| 两个人免费观看高清视频| 怎么达到女性高潮| 亚洲欧美一区二区三区黑人| 亚洲一区二区三区色噜噜 | 亚洲全国av大片| 成人三级做爰电影| 亚洲成av片中文字幕在线观看| 亚洲av片天天在线观看| 午夜福利在线观看吧| 欧美日韩亚洲高清精品| 久久草成人影院| 人人妻人人爽人人添夜夜欢视频| 国产伦一二天堂av在线观看| 91国产中文字幕| 国产三级在线视频| 伦理电影免费视频| 日韩视频一区二区在线观看| 国产精品亚洲一级av第二区| 两人在一起打扑克的视频| 欧美午夜高清在线| 韩国av一区二区三区四区| 亚洲国产欧美一区二区综合| 欧美+亚洲+日韩+国产| 日韩欧美在线二视频| 五月开心婷婷网| 精品福利观看| 无人区码免费观看不卡| 国产蜜桃级精品一区二区三区| 一级毛片女人18水好多| 18禁美女被吸乳视频| 日韩中文字幕欧美一区二区| 欧美黄色淫秽网站| 国产精品免费一区二区三区在线| 一本综合久久免费| 两性夫妻黄色片| 欧美日本亚洲视频在线播放| 亚洲情色 制服丝袜| av在线天堂中文字幕 | av网站免费在线观看视频| 国产欧美日韩一区二区三区在线| 精品日产1卡2卡| 欧美激情极品国产一区二区三区| 欧美日韩av久久| 99久久国产精品久久久| 免费av毛片视频| 欧美乱码精品一区二区三区| 国产精品偷伦视频观看了| 欧美av亚洲av综合av国产av| 黑人欧美特级aaaaaa片| 狠狠狠狠99中文字幕| 国产高清视频在线播放一区| 欧美日韩亚洲国产一区二区在线观看| 日本黄色日本黄色录像| 久久久久国产精品人妻aⅴ院| 在线观看日韩欧美| 日韩 欧美 亚洲 中文字幕| 亚洲精品av麻豆狂野| 亚洲国产欧美一区二区综合| 亚洲精品在线观看二区| 两个人看的免费小视频| 狠狠狠狠99中文字幕| ponron亚洲| 国内久久婷婷六月综合欲色啪| 成人免费观看视频高清| 女同久久另类99精品国产91| 成人国语在线视频| 天堂√8在线中文| 欧美日韩精品网址| 热99re8久久精品国产| 亚洲视频免费观看视频| 又黄又粗又硬又大视频| 制服诱惑二区| 日本 av在线| 精品高清国产在线一区| 桃红色精品国产亚洲av| 日韩成人在线观看一区二区三区| 脱女人内裤的视频| 最近最新免费中文字幕在线| 久久久久亚洲av毛片大全| 天堂影院成人在线观看| 极品教师在线免费播放| 色哟哟哟哟哟哟| 美女扒开内裤让男人捅视频| 日韩视频一区二区在线观看| 亚洲精品在线美女| 国产亚洲欧美精品永久| 国产一区二区三区在线臀色熟女 | 国产区一区二久久| 美女高潮喷水抽搐中文字幕| 美女国产高潮福利片在线看| 精品久久久久久电影网| 欧美黑人欧美精品刺激| 亚洲av五月六月丁香网| av片东京热男人的天堂| 天堂√8在线中文| 久久国产精品影院| 久久精品国产99精品国产亚洲性色 | 亚洲片人在线观看| 黑人操中国人逼视频| 制服诱惑二区| 精品人妻在线不人妻| 成人永久免费在线观看视频| 欧美日韩一级在线毛片| 亚洲精品一二三| 日韩国内少妇激情av| 亚洲人成电影免费在线| 宅男免费午夜| 久久精品亚洲熟妇少妇任你| 国产成人av教育| 日本精品一区二区三区蜜桃| 欧美精品亚洲一区二区| 久久久国产成人精品二区 | 欧美精品啪啪一区二区三区|