• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    UNIQUENESS OF THE INVERSE TRANSMISSION SCATTERING WITH A CONDUCTIVE BOUNDARY CONDITION?

    2021-06-17 13:59:50向建立嚴(yán)國政
    關(guān)鍵詞:國政

    (向建立) (嚴(yán)國政)

    School of Mathematics and Statistics,Central China Normal University,Wuhan 430079,China

    E-mail:xiangjl@mails.ccnu.edu.cn;yangz@mail.ccnu.edu.cn

    Abstract This paper considers the inverse acoustic wave scattering by a bounded penetrable obstacle with a conductive boundary condition.We will show that the penetrable scatterer can be uniquely determined by its far-field pattern of the scattered field for all incident plane waves at a fixed wave number.In the first part of this paper,adequate preparations for the main uniqueness result are made.We establish the mixed reciprocity relation between the far-field pattern corresponding to point sources and the scattered field corresponding to plane waves.Then the well-posedness of a modified interior transmission problem is deeply investigated by the variational method.Finally,the a priori estimates of solutions to the general transmission problem with boundary data in Lp(?Ω)(1

    Key words Acoustic wave;uniqueness;mixed reciprocity relation;modified interior transmission problem;a priori estimates

    1 Introduction

    The inverse scattering problem we are concerned with here is determining the shape of an obstacle by measurements of the far-field patterns of acoustic waves.We are interested in the scattering of a penetrable obstacle covered by a thin layer of high conductivity;that is,the so-called conductive boundary condition([1,2]),which is a generalization of the classical transmission problem.

    Let ? denote a penetrable bounded open domain in R3withconnected.Let n(x)be the refractive index,let k>0 be the wave number,and set a jump parameter λ∈C{0}and a complex-valued functionμon the smooth boundary??.Then the conductive scattering problem we consider is modeled as follows:

    where u=ui+usis the total field,which is a superposition of the incident wave ui=ui(x,d):=eikx·d(note that the incident wave will be a plane wave or a point source in our later proofs and that d denotes the incident direction)and the scattered wave us,and ν is the unit outward normal to the boundary??.Here,u±anddenote the limit of u andfrom the exterior(+)and interior(?),respectively.Furthermore,the scattered field ussatisfies the Sommerfeld radiation condition

    and the convergence holds uniformly with respect to=x/|x|∈S,where S denotes the unit sphere in R3.

    Referring to Section 2 of paper[4],we make following assumptions on n,λ andμto guarantee the well-posedness of the direct problem(1.1):

    Assumption 1.1(1)The refractive function n∈L∞(?)satisfies Re(n)>0 and Im(n)≥0 almost everywhere(a.e.)in ?.

    (2)λ is a non-zero complex constant,such that there exists>0,such that Re(λ)≥and Im(λ)≤0,Im(λn)≥0 a.e.in ?.

    (3)μ∈L∞(??)with Re(μ)≤0 and Im(μ)≥0 a.e.on??.

    It is well known that the radiating solution ushas the asymptotic expansion

    uniformly for all directions=x/|x|∈S.Here,u∞is called the far-field pattern of us,which is an analytic function defined on S.

    The problem of uniqueness in the inverse obstacle scattering theory is of central importance both for the theoretical study and the implementation of numerical algorithms in acoustic,electromagnetic,fluid-solid interaction and elastic waves,etc..The first uniqueness result was shown by Schiffer[20]in acoustic waves with a Dirichlet boundary condition whose argument cannot be transferred to other boundary conditions.In 1990,Isakov[17]gave a uniqueness proof for transmission problems(ui=ue,?ue/?ν=μ?ui/?ν,μ/=1)based on the variational method by constructing a sequence of singular solutions.In 1993,Kirsch and Kress[18]simplified Isakov’s proof and also transferred it to the Neumann boundary condition by proving a continuous dependence result in a weighted Banach space of continuous functions.In the same year,Ramm[31]used a new method to prove the uniqueness of the impenetrable obstacle with a Dirichlet or Neumann boundary condition.

    In 1994,Hettlich[16]achieved the uniqueness theorem for the general conductive boundary condition(u+?u?=0,?u+/?ν?μ?u?/?ν=λu,the interior wave number is a constant)based on the idea of Isakov.Furthermore,the uniqueness of coefficientsμ,λ and the constant interior wave number were also proven.Later,in 1996,Gerlach and Kress[12]simplified and shortened the analysis of Hettlich.In order to present a refinement in the case when the boundary of the scatterer is allowed to have irregularities,in 1998,Mitrea[24]studied its uniqueness dependent upon boundary integral techniques and the Calderón-Zygmund theory.In 2004,Valdivia[33]worked on the uniqueness again based on the original idea of Isakov.Since then,there have been many other uniqueness problems,such as impenetrable scatterers with an unknown type of boundary condition([10,19]),local uniqueness([13,32]),penetrable orthotropic[11]or anisotropic inhomogeneous obstacles([14,25]),a piecewise homogeneous medium([21–23]),etc..

    In this paper,we again consider the uniqueness of the inverse transmission scattering with a conductive boundary condition by an inhomogeneous medium.The idea is inspired by[29](an inhomogeneous acoustic cavity),[30](fluid-solid interaction with embedded obstacles)and[34](penetrable obstacles with embedded objects in acoustic and electromagnetic scattering).Hence,before showing the main uniqueness proof,we discuss some important preparations,which are also of interest in their own right.

    Firstly,we establish a mixed reciprocity relation between the far-field pattern corresponding to point sources and the scattered field corresponding to plane waves of this general transmission problem.The mixed reciprocity relation was shown in[26](Theorem1)for sound-soft and sound-hard obstacles,in[9](Theorem 3.24)for generalized impedance objects,in[28](Theorem 2.2.4)for inhomogeneous media,and in[23]for a piecewise homogeneous medium,etc..In the derivation of(2.1)and the above references,we can conclude that the relation for y∈R3? is valid for all possible boundary conditions of penetrable or impenetrable scatterers.Furthermore,for y∈?,relation(2.1)has a close connection with the jump parameter λ(Lemma 3.2 in[23]),but that disregards the complex-valued functionμ.

    Secondly,we study the well-posedness of a modified interior transmission problem by the variational method.Though the interior transmission problems have been deeply investigated in the book[6],there are few results about the conductive boundary([3,15]for λ=1).The well-posedness is achieved under some limitations on λ andμ,and the discreteness of interior transmission eigenvalues is a by-product.In the future,we want to conduct further research on the interior transmission eigenvalues problem.

    Thirdly,we prove the a priori estimates of solutions to the general transmission problem with boundary data in Lp(??)(1

    Finally,the novel and simple method for proving the uniqueness of the conductive boundary by its far field pattern is easy to implement for our inverse transmission problem.

    The remainder section of the paper is organized as follows:Section 2 is devoted to making preparations;we show a mixed reciprocity relation,investigate the well-posedness of a modified interior transmission problem,and construct the a priori estimates of solutions to the general transmission problem with boundary data in Lp(??)(1

    2 Preparations

    In this section,we make some necessary preparations before showing the uniqueness of the inverse problem(1.1).

    2.1 Mixed reciprocity relation

    where the last equality is obtained by adding formula(2.2).

    Using Green’s representation theorem again,for y∈

    Applying Green’s second integral theorem to ui(·,d)and Φk(·,y)in ? yields

    Adding up the previous two equalities,we arrive at

    Combining(2.3)with(2.4),we find that

    Use the conductive boundary condition and Green’s formula in ?,we conclude that

    This implies that 4πu∞(?d;y)=us(y,d)for all d∈S,y∈

    Secondly,we consider the case y∈?.Recalling equality(2.3),which holds also for y∈?,using the conductive boundary condition,we obtain

    The last equality is obtained completely similar to the proof of(3.13)to(3.14)in Lemma 3.2([23]).

    On the other hand,with the help of Green’s representation formula,we know that

    Combining(2.5)with(2.6)and using the conductive boundary condition,we have

    For y∈?,both Φk(·,y)and us(·,d)satisfy the Helmholtz equation inand the Sommerfeld radiation condition(1.2),hence

    Consequently,

    This implies that 4πu∞(?d;y)=λus(y,d)+(λ?1)ui(y,d)for all d∈S,y∈?.The proof is complete. □

    Remark 2.2If there is a buried object inside ?,Theorem 2.1 also holds.Lemma 3.2 in[23]is a special case when n is a constant andμ=0 a.e.on??.

    Remark 2.3Theorem 2.1 also holds in two dimensional space with some modifications of the coefficient.

    2.2 Modified interior transmission problem

    Given ?1,?2∈L2(?),f1∈H1/2(??),f2∈H?1/2(??),we consider the following modified interior transmission problem:

    In order to reformulate(2.7)as an equivalent variational problem,we define the Hilbert space

    Using the conductive boundary condition in(2.7),we see that

    wherev=?v,and thenv∈X.After arranging,we obtain that

    We multiply the first equation in(2.7)by a test function ψ∈X.Similarly,integrating in ?and using the boundary condition,we obtain

    that is

    Based on the above calculations,we introduce the sesquilinear form A1(U,V),defined on{H1(?)×X}2by

    whereU:=(w,v)andV:=(?,ψ)are in H1(?)×X.We denote by L1:H1(?)×X?→C the bounded antilinear functional given by

    Therefore,the variational formulation of problem(2.7)is to findU=(w,v)∈H1(?)×X such that

    Changing the roles of w and v,we can obtain another different variational formulation of problem(2.7);namely,we multiply the first equation in(2.7)by a test function ?∈H1(?)and the second equation by a test function ψ∈X,integrate in ?,and use the boundary condition to obtain

    wherew=?w,and thenw∈X.

    We introduce the sesquilinear form A2(U,V)defined on{H1(?)×X}2and the bounded antilinear functional L2:H1(?)×X?→C given by

    where U:=(v,w)and V:=(?,ψ)are in H1(?)×X.Then,the variational formulation of problem(2.7)is to find U=(v,w)∈H1(?)×X such that

    The following Theorem states the equivalence between problems(2.7)and(2.8)or(2.9)(the detailed proof is the same as that of Theorem 3.3 in the paper[7]and Theorem 6.5 in the book[5],so for brevity we omit it here):

    Theorem 2.4Problem(2.7)has a unique solution(w,v)∈H1(?)×H1(?)if and only if problem(2.8)has a unique solutionU=(w,v)∈H1(?)×X or problem(2.9)has a unique solution U=(v,w)∈H1(?)×X.

    Now,we investigate the modified interior transmission problem in the variational formulations(2.8)and(2.9).

    Theorem 2.5(1)If Re(λ)≥>1 and Re(μ)≤0,then the variational problem(2.8)has a unique solutionU=(w,v)∈H1(?)×X that satisfies

    where cj>0(j=1,2)is independent of ?1,?2,f1and f2.

    ProofThe trace theorems and Schwarz’s inequality ensure the continuity of the antilinear functional Lj(j=1,2)on H1(?)×X and the existence of a constant cjwhich is independent of ?1,?2,f1and f2such that

    For the first part,ifU=(w,v)∈H1(?)×X,the assumptions that Re(λ)≥>1 and Re(μ)≤0 imply that

    For the second part,if U=(v,w)∈H1(?)×X,the assumptions that 0<≤Re(λ)<1 and Re(μ)≡0 imply that

    Hence Aj(j=1,2)is coercive.The continuity of Ajfollows easily from Schwarz’s inequality and the classical trace theorems.Then Theorem 2.5 is a direct consequence of the Lax-Milgram Lemma applied to(2.8)and(2.9). □

    Combining the above two Theorems 2.4 and 2.5,we obtain the well-posedness of the modified interior transmission problem(2.7).

    Theorem 2.6Assume that Re(λ)≥>1,Re(μ)≤0 or 0<≤Re(λ)<1,Re(μ)≡0.Then the modified interior transmission problem(2.7)has a unique solution(w,v)∈H1(?)×H1(?)that satisfies

    Using the analytic Fredholm theory(see Section 8.5 in the book[9]),we get a by-product regarding the discreteness of the following interior transmission eigenvalues problem:

    Definition 2.7Values of k for which the above interior transmission problem(2.10)has a nontrivial solution pair(v,w)∈H1(?)×H1(?)are called transmission eigenvalues.

    Before we establish the discreteness result,we first study the case when there are no real transmission eigenvalues.

    Lemma 2.8Assume that n,λ andμsatisfy Assumption 1.1.If either Im(λ)<0 or Im(n)>0 almost everywhere in ?,then there are no real transmission eigenvalues of the problem(2.10).

    ProofLet v and w be a solution pair of the interior transmission problem(2.10).Applying Green’s identity to v and w,we have

    Since Im(μ)≥0,Im(λ)≤0,Im(λn)≥0,we have that

    If Im(λ)<0 a.e.in ?,then?w=0 in ?,from the equation w=0.From the boundary condition in(2.10)and the integral representation formula,v also vanishes in ?.

    If Im(λ)=0 and Im(n)>0 a.e.in ?,then λ≥>0 and Im(λn)=λIm(n)>0.Hence,w=0 and v=0 in ?.This completes the proof. □

    Remark 2.9From the proof of Lemma 2.8,we conclude that k may be an interior transmission eigenvalue of(2.10)if Im(λ)=0 and Im(n)=0.In this case,if Im(μ)>0 almost everywhere on??,we further obtain that v=0 on??,whence the eigenvalues of(2.10)form a subset of the classical Dirichlet eigenvalues of?Δ in ?.

    Theorem 2.10Assume that n,λ andμsatisfy Assumption 1.1 and that Im(λ)=0 and Im(n)=0.If either λ≥>1,Re(μ)≤0 or 0<≤λ<1,Re(μ)≡0,then the transmission eigenvalues of(2.10)form a discrete(possibly empty)set with+∞as the only possible accumulation point.

    ProofLet us set

    Since(Fi,1?Fk,n)(w,v)=(?(1+k2)v,?(1+k2n)w,0,0)is compact based on the compact embedding of H1(?)to L2(?),we conclude that the transmission eigenvalues form a discrete(possibly empty)set with+∞as the only possible accumulation point by the analytic Fredholm theory(Section 8.5 of the book[9]).The proof is complete. □

    Remark 2.11For the case λ=1,the discreteness and existence of the transmission eigenvalues have been proven clearly in[3].

    2.3 A priori estimates for the transmission problem with Lp data

    By employing the boundary integral equation method([8,27,34]),we establish the a priori estimates of the solution to the following general transmission problem(2.11)with boundary data in Lp(??)(1

    We introduce the single-and double-layer boundary integral operators

    and their normal derivative operators

    Theorem 2.12Assuming that n,λ andμsatisfy Assumption 1.1.For h1,h2∈Lp(??)with 4/3≤p<2,the transmission problem(2.11)has a unique solution pair(w1,w2)∈satisfying that

    where BRdenotes a large ball centered at the origin with radius R such thatand C is a positive constant depending on R.

    ProofIn order to apply the boundary integral equation method,we divide our proof into two steps(refer to Theorem 2.5 in[34]).

    Step OneAssume that k2n(x)≡>0 is a constant.We seek a solution pairof problem(2.11)in the following form:

    Here,I denotes the identity operator.Then the transmission problem(2.11)can be reduced to a system of the integral equations

    where the integral matrix operator A is given by

    Since all elements of A are compact operators in the corresponding Banach spaces,it is easy to see that A+I(I denotes the identity matrix)is a Fredholm operator with index zero.Together with the uniqueness of the direct transmission problem(2.11),there exists a unique solution(?,ψ)∈Lp(??)×Lp(??)of system(2.13)satisfying the estimate

    Referring to inequalities(2.22)and(2.23)in the paper[34](Theorem 2.5),that is,

    where 1/p+1/q=1 and

    we achieve estimate(2.12).

    Step TwoFor the general case n(x)∈L∞(?),we consider the following problem:

    3 Uniqueness of the Inverse Transmission Problem

    In this section,we consider the uniqueness of the inverse transmission problem(1.1).Under some restrictions on λ andμ,we use a simple and novel method to show that the penetrable obstacle can be uniquely determined by its far-field pattern associated with plane waves.

    Figure 1 Possible choice of x?

    uniformly for all j∈N,where C2>0 is independent of j.

    where

    Remark 3.2If there are impenetrable buried objects inside ?,the penetrable obstacle can also be uniquely determined by our method,with small modifications in subsections 2.1(Remark 2.2)and 2.3(Theorem 2.5 in[34]).Furthermore,the buried object will be determined by the mixed reciprocity relation(2.1),after discovering the penetrable surface(Theorem 3.7 in[23]).

    猜你喜歡
    國政
    孤島“魯濱遜”的38年
    新傳奇(2021年18期)2021-05-21 08:34:10
    韓國瑜競選“國政”團隊或已成型
    翻蓋房子起風(fēng)波
    我的家鄉(xiāng)最美之貴港
    排水溝引發(fā)的爭議
    “我很忙”
    新四軍中的日本勇士——國政憲郎
    黨史文匯(2013年2期)2013-02-20 06:45:10
    伊人久久大香线蕉亚洲五| 777久久人妻少妇嫩草av网站| 亚洲精品第二区| videos熟女内射| 久久鲁丝午夜福利片| 天天躁夜夜躁狠狠久久av| 最新在线观看一区二区三区 | 国产精品一国产av| 激情五月婷婷亚洲| 女性被躁到高潮视频| www.自偷自拍.com| 久久鲁丝午夜福利片| 久久精品亚洲av国产电影网| 激情五月婷婷亚洲| 午夜激情av网站| 国产一区有黄有色的免费视频| 性高湖久久久久久久久免费观看| 亚洲精品久久久久久婷婷小说| 高清av免费在线| av卡一久久| 少妇猛男粗大的猛烈进出视频| 亚洲视频免费观看视频| 国产xxxxx性猛交| 国产又色又爽无遮挡免| 老鸭窝网址在线观看| 亚洲成国产人片在线观看| 亚洲婷婷狠狠爱综合网| 亚洲美女搞黄在线观看| www.av在线官网国产| 亚洲美女黄色视频免费看| 在线观看国产h片| 一级a爱视频在线免费观看| 国产日韩欧美在线精品| 亚洲欧美精品自产自拍| 爱豆传媒免费全集在线观看| av国产久精品久网站免费入址| 999久久久国产精品视频| 日本黄色日本黄色录像| 亚洲一区中文字幕在线| 久久久国产欧美日韩av| 最近中文字幕2019免费版| 久久这里只有精品19| 丁香六月欧美| 老司机靠b影院| 亚洲国产看品久久| 日本一区二区免费在线视频| 国产成人精品久久二区二区91 | 亚洲精品成人av观看孕妇| 午夜激情av网站| 国产精品久久久久久精品古装| 嫩草影视91久久| 亚洲精品久久成人aⅴ小说| 亚洲欧美色中文字幕在线| 欧美黑人精品巨大| 精品一品国产午夜福利视频| 美女中出高潮动态图| 亚洲精品一二三| 免费高清在线观看日韩| 亚洲一区二区三区欧美精品| 亚洲欧美成人综合另类久久久| 国产成人啪精品午夜网站| 免费观看性生交大片5| www日本在线高清视频| 免费看av在线观看网站| 男女无遮挡免费网站观看| 亚洲精品aⅴ在线观看| 又粗又硬又长又爽又黄的视频| 欧美国产精品va在线观看不卡| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩一区二区视频在线观看视频在线| 亚洲国产av影院在线观看| 精品卡一卡二卡四卡免费| 乱人伦中国视频| 波野结衣二区三区在线| 国产97色在线日韩免费| 超碰成人久久| 美女午夜性视频免费| 亚洲七黄色美女视频| 亚洲av福利一区| 久久久久精品性色| 午夜免费男女啪啪视频观看| 大香蕉久久成人网| 最近中文字幕高清免费大全6| 国产精品久久久久久精品古装| 欧美日本中文国产一区发布| 欧美日韩福利视频一区二区| 精品少妇内射三级| 精品亚洲成a人片在线观看| 一级毛片黄色毛片免费观看视频| 精品午夜福利在线看| av女优亚洲男人天堂| 精品人妻在线不人妻| 1024视频免费在线观看| 人人澡人人妻人| 晚上一个人看的免费电影| 亚洲av日韩精品久久久久久密 | 一本色道久久久久久精品综合| 又黄又粗又硬又大视频| 一区二区日韩欧美中文字幕| 欧美日韩成人在线一区二区| 国产99久久九九免费精品| 韩国精品一区二区三区| 久久人妻熟女aⅴ| 2018国产大陆天天弄谢| 亚洲精品成人av观看孕妇| 深夜精品福利| 视频区图区小说| 日韩欧美精品免费久久| 在线观看一区二区三区激情| 中文天堂在线官网| 在线观看国产h片| 晚上一个人看的免费电影| 亚洲成色77777| 少妇人妻久久综合中文| 最近手机中文字幕大全| 午夜免费观看性视频| av在线观看视频网站免费| 久久久久久久精品精品| 韩国精品一区二区三区| 久久99一区二区三区| 黑人猛操日本美女一级片| 亚洲精品在线美女| 女性生殖器流出的白浆| av片东京热男人的天堂| 97人妻天天添夜夜摸| 人妻一区二区av| 少妇被粗大猛烈的视频| 美国免费a级毛片| 欧美av亚洲av综合av国产av | 美女视频免费永久观看网站| 人人妻人人澡人人爽人人夜夜| 各种免费的搞黄视频| 久久久久国产精品人妻一区二区| 国产一区二区三区综合在线观看| 免费不卡黄色视频| 9热在线视频观看99| 国产不卡av网站在线观看| 成人黄色视频免费在线看| 久久精品久久精品一区二区三区| 亚洲国产精品国产精品| 精品福利永久在线观看| 亚洲国产精品一区三区| 韩国精品一区二区三区| 成人毛片60女人毛片免费| 国产精品一区二区在线不卡| 18禁动态无遮挡网站| 一级毛片黄色毛片免费观看视频| 久久久久精品国产欧美久久久 | 国产1区2区3区精品| 精品亚洲成a人片在线观看| 中文天堂在线官网| av国产精品久久久久影院| av在线app专区| 免费观看av网站的网址| 成人18禁高潮啪啪吃奶动态图| 老汉色∧v一级毛片| 欧美日韩综合久久久久久| 大片电影免费在线观看免费| 国产亚洲av高清不卡| 久久鲁丝午夜福利片| 国产精品亚洲av一区麻豆 | 日韩不卡一区二区三区视频在线| 日本欧美国产在线视频| 亚洲男人天堂网一区| 亚洲国产av影院在线观看| 国产精品久久久久久精品电影小说| 国产毛片在线视频| 亚洲一级一片aⅴ在线观看| 国产精品一区二区精品视频观看| www.av在线官网国产| 国产精品人妻久久久影院| 国产精品国产三级国产专区5o| 亚洲中文av在线| 自拍欧美九色日韩亚洲蝌蚪91| 国产亚洲av高清不卡| 国产成人精品在线电影| 午夜久久久在线观看| 国产无遮挡羞羞视频在线观看| 最近中文字幕2019免费版| 两性夫妻黄色片| 精品少妇久久久久久888优播| 性色av一级| 美女中出高潮动态图| 中文天堂在线官网| 国产亚洲最大av| 一区二区三区乱码不卡18| 久久精品国产a三级三级三级| 蜜桃在线观看..| 久久人妻熟女aⅴ| 免费不卡黄色视频| 黄色毛片三级朝国网站| 免费看av在线观看网站| 亚洲欧美成人精品一区二区| 亚洲精品自拍成人| 欧美久久黑人一区二区| 国产深夜福利视频在线观看| 欧美激情极品国产一区二区三区| 亚洲熟女精品中文字幕| 欧美久久黑人一区二区| 丰满饥渴人妻一区二区三| 国产一卡二卡三卡精品 | 久久久久人妻精品一区果冻| 最近2019中文字幕mv第一页| 久久久精品免费免费高清| 伊人亚洲综合成人网| 日本爱情动作片www.在线观看| 一个人免费看片子| 亚洲熟女精品中文字幕| 国产精品久久久久久精品电影小说| 久久鲁丝午夜福利片| av网站在线播放免费| 欧美成人精品欧美一级黄| 高清黄色对白视频在线免费看| 最近中文字幕高清免费大全6| 国产色婷婷99| 国产极品粉嫩免费观看在线| 久热爱精品视频在线9| 欧美最新免费一区二区三区| 久久久久人妻精品一区果冻| 少妇精品久久久久久久| 国产精品成人在线| 亚洲自偷自拍图片 自拍| 中文字幕人妻丝袜一区二区 | 亚洲,欧美,日韩| 各种免费的搞黄视频| 美女视频免费永久观看网站| 老鸭窝网址在线观看| 午夜日韩欧美国产| 尾随美女入室| 又粗又硬又长又爽又黄的视频| 三上悠亚av全集在线观看| 纵有疾风起免费观看全集完整版| 大片免费播放器 马上看| 亚洲欧美成人精品一区二区| 中文字幕色久视频| 狠狠精品人妻久久久久久综合| 国产精品久久久久久人妻精品电影 | 久久精品久久久久久久性| 精品免费久久久久久久清纯 | 久久人人97超碰香蕉20202| 亚洲精品自拍成人| 亚洲四区av| www.av在线官网国产| 欧美少妇被猛烈插入视频| 99久久人妻综合| 日韩大码丰满熟妇| 亚洲四区av| 女人久久www免费人成看片| 丰满乱子伦码专区| 无遮挡黄片免费观看| 成人黄色视频免费在线看| 欧美日韩精品网址| 99国产综合亚洲精品| 我的亚洲天堂| 亚洲精品久久成人aⅴ小说| 日本vs欧美在线观看视频| 国产无遮挡羞羞视频在线观看| 国产精品久久久久久人妻精品电影 | 尾随美女入室| 国产成人啪精品午夜网站| av在线app专区| 成人黄色视频免费在线看| 国产精品一区二区精品视频观看| 高清视频免费观看一区二区| 最新的欧美精品一区二区| 国产高清国产精品国产三级| 国产精品久久久久久久久免| 90打野战视频偷拍视频| 大码成人一级视频| 一级黄片播放器| 亚洲在久久综合| 国产精品成人在线| 日日摸夜夜添夜夜爱| 十八禁高潮呻吟视频| 狠狠婷婷综合久久久久久88av| 亚洲精品国产一区二区精华液| 国产精品国产三级国产专区5o| 精品酒店卫生间| 国产伦人伦偷精品视频| 悠悠久久av| 亚洲av电影在线进入| 啦啦啦在线观看免费高清www| 久热爱精品视频在线9| 国产免费现黄频在线看| 久久久久国产一级毛片高清牌| 国产亚洲一区二区精品| 国产探花极品一区二区| 成人黄色视频免费在线看| 欧美日韩国产mv在线观看视频| 男女午夜视频在线观看| 久久人妻熟女aⅴ| 综合色丁香网| 黑人巨大精品欧美一区二区蜜桃| 亚洲在久久综合| 亚洲av成人不卡在线观看播放网 | 亚洲色图 男人天堂 中文字幕| 啦啦啦在线免费观看视频4| 男女无遮挡免费网站观看| 超色免费av| 一本久久精品| 蜜桃在线观看..| 少妇人妻久久综合中文| 国产黄色视频一区二区在线观看| 亚洲av日韩精品久久久久久密 | 免费观看人在逋| 爱豆传媒免费全集在线观看| 久久久久精品性色| 国产精品二区激情视频| 久久99精品国语久久久| 国产亚洲午夜精品一区二区久久| av不卡在线播放| 午夜免费观看性视频| 国产男女超爽视频在线观看| 国产女主播在线喷水免费视频网站| 少妇的丰满在线观看| 国产精品一区二区精品视频观看| 99国产精品免费福利视频| 精品一区二区三区四区五区乱码 | 色婷婷av一区二区三区视频| 激情视频va一区二区三区| 免费高清在线观看日韩| 亚洲av日韩在线播放| a级毛片在线看网站| 国产99久久九九免费精品| av在线app专区| 成人手机av| 一边摸一边抽搐一进一出视频| 成人亚洲精品一区在线观看| 亚洲精品国产一区二区精华液| 亚洲美女搞黄在线观看| 欧美精品人与动牲交sv欧美| 亚洲婷婷狠狠爱综合网| 美女午夜性视频免费| 国产精品成人在线| 久久精品久久精品一区二区三区| 久久久久久人妻| 欧美xxⅹ黑人| 日韩av免费高清视频| 欧美国产精品va在线观看不卡| 欧美黑人欧美精品刺激| 又大又黄又爽视频免费| 毛片一级片免费看久久久久| 国产又爽黄色视频| 国产成人精品无人区| 久久人人爽av亚洲精品天堂| 精品亚洲成a人片在线观看| 最近最新中文字幕大全免费视频 | 国产日韩一区二区三区精品不卡| 纯流量卡能插随身wifi吗| 免费观看av网站的网址| 一级爰片在线观看| 丝袜人妻中文字幕| 中文字幕高清在线视频| 在线观看一区二区三区激情| 国产精品无大码| 不卡av一区二区三区| 老汉色av国产亚洲站长工具| 多毛熟女@视频| 丝袜喷水一区| 男人操女人黄网站| 777久久人妻少妇嫩草av网站| 一级毛片黄色毛片免费观看视频| 啦啦啦中文免费视频观看日本| 男女无遮挡免费网站观看| 99久久精品国产亚洲精品| 欧美成人精品欧美一级黄| 国产黄色免费在线视频| 欧美 亚洲 国产 日韩一| 精品酒店卫生间| 久久久久久久久免费视频了| 国产又爽黄色视频| 亚洲美女视频黄频| 久热爱精品视频在线9| 欧美日韩亚洲综合一区二区三区_| 满18在线观看网站| 啦啦啦视频在线资源免费观看| 另类亚洲欧美激情| 色婷婷av一区二区三区视频| 在线观看www视频免费| 久久人妻熟女aⅴ| 中文字幕最新亚洲高清| 亚洲少妇的诱惑av| 国产黄色免费在线视频| 日韩免费高清中文字幕av| 99re6热这里在线精品视频| 一区在线观看完整版| 老司机影院成人| 伦理电影大哥的女人| 亚洲国产中文字幕在线视频| 国产一级毛片在线| 美女脱内裤让男人舔精品视频| 国产一区二区 视频在线| 在线观看一区二区三区激情| 国产精品偷伦视频观看了| 99久国产av精品国产电影| 伦理电影大哥的女人| 男女边吃奶边做爰视频| 丁香六月天网| av免费观看日本| 我要看黄色一级片免费的| 国产探花极品一区二区| 一级毛片电影观看| 男女午夜视频在线观看| 国产精品成人在线| 午夜福利影视在线免费观看| 国产精品二区激情视频| 精品午夜福利在线看| 女的被弄到高潮叫床怎么办| 交换朋友夫妻互换小说| 一区二区三区四区激情视频| 亚洲成人免费av在线播放| 婷婷色综合大香蕉| 国产片特级美女逼逼视频| 性高湖久久久久久久久免费观看| 国产精品女同一区二区软件| 精品人妻在线不人妻| 七月丁香在线播放| 免费黄色在线免费观看| 国产有黄有色有爽视频| 国产成人免费无遮挡视频| 两个人免费观看高清视频| 99久久精品国产亚洲精品| 久久久久久人人人人人| 欧美激情高清一区二区三区 | 美女中出高潮动态图| 日本vs欧美在线观看视频| 欧美 日韩 精品 国产| 国产黄频视频在线观看| 热99国产精品久久久久久7| 久久久国产精品麻豆| 欧美精品av麻豆av| 亚洲国产看品久久| 亚洲免费av在线视频| 久久久久久人妻| 日本色播在线视频| 激情视频va一区二区三区| 欧美精品人与动牲交sv欧美| 日韩欧美精品免费久久| 国产精品二区激情视频| 欧美日韩亚洲国产一区二区在线观看 | avwww免费| 日韩不卡一区二区三区视频在线| 一区二区三区激情视频| 人体艺术视频欧美日本| 久久99热这里只频精品6学生| 国产午夜精品一二区理论片| 久久久国产一区二区| 国产99久久九九免费精品| 欧美97在线视频| 操美女的视频在线观看| 纯流量卡能插随身wifi吗| 天天躁夜夜躁狠狠久久av| 亚洲一区中文字幕在线| 满18在线观看网站| 亚洲欧美一区二区三区久久| 精品少妇黑人巨大在线播放| av天堂久久9| 国产不卡av网站在线观看| 伦理电影免费视频| 亚洲视频免费观看视频| 久久久国产一区二区| 无遮挡黄片免费观看| 国产成人免费观看mmmm| 热re99久久精品国产66热6| 国产伦人伦偷精品视频| 一区二区三区四区激情视频| 亚洲久久久国产精品| 黑人猛操日本美女一级片| 国产又爽黄色视频| 女人精品久久久久毛片| av线在线观看网站| 国产 一区精品| 一级黄片播放器| 亚洲一码二码三码区别大吗| 天天躁日日躁夜夜躁夜夜| 久久国产精品大桥未久av| 在线观看免费高清a一片| 老汉色av国产亚洲站长工具| 两个人看的免费小视频| 一区二区日韩欧美中文字幕| 色综合欧美亚洲国产小说| 欧美av亚洲av综合av国产av | 亚洲精品中文字幕在线视频| 一区二区三区精品91| 热re99久久精品国产66热6| 这个男人来自地球电影免费观看 | 久久久亚洲精品成人影院| 日韩 亚洲 欧美在线| 欧美精品人与动牲交sv欧美| 一边摸一边抽搐一进一出视频| 制服丝袜香蕉在线| 99久国产av精品国产电影| 一级毛片黄色毛片免费观看视频| 老司机影院成人| 国产av码专区亚洲av| 亚洲色图综合在线观看| 男女床上黄色一级片免费看| 久久午夜综合久久蜜桃| 一区福利在线观看| 日韩av免费高清视频| 精品视频人人做人人爽| 2018国产大陆天天弄谢| avwww免费| 国产男女内射视频| 国产精品香港三级国产av潘金莲 | 免费观看性生交大片5| 欧美黑人欧美精品刺激| 久久久久精品国产欧美久久久 | av又黄又爽大尺度在线免费看| 国产一区有黄有色的免费视频| 久久久久国产一级毛片高清牌| 精品亚洲成a人片在线观看| 七月丁香在线播放| 精品亚洲成a人片在线观看| 色婷婷av一区二区三区视频| 国产野战对白在线观看| 七月丁香在线播放| 欧美精品高潮呻吟av久久| 国产精品亚洲av一区麻豆 | 女人精品久久久久毛片| 国产又爽黄色视频| 国产亚洲午夜精品一区二区久久| 亚洲人成网站在线观看播放| 国产一区二区 视频在线| 国产毛片在线视频| 亚洲精品av麻豆狂野| 五月开心婷婷网| 午夜91福利影院| 国产福利在线免费观看视频| 秋霞在线观看毛片| 看非洲黑人一级黄片| 新久久久久国产一级毛片| 国产激情久久老熟女| 人妻一区二区av| 啦啦啦视频在线资源免费观看| 波野结衣二区三区在线| 精品少妇内射三级| 90打野战视频偷拍视频| 我要看黄色一级片免费的| 亚洲第一区二区三区不卡| 国产精品一区二区精品视频观看| 街头女战士在线观看网站| 亚洲av综合色区一区| 少妇被粗大猛烈的视频| 国产爽快片一区二区三区| av片东京热男人的天堂| 无遮挡黄片免费观看| www.精华液| 一本一本久久a久久精品综合妖精| 久久久久人妻精品一区果冻| 亚洲国产精品999| 啦啦啦视频在线资源免费观看| 色网站视频免费| 不卡av一区二区三区| 一级,二级,三级黄色视频| 少妇人妻精品综合一区二区| a级毛片在线看网站| 超碰97精品在线观看| 一区在线观看完整版| 亚洲精品国产区一区二| 大香蕉久久成人网| 黄色 视频免费看| 亚洲欧美成人综合另类久久久| 少妇精品久久久久久久| 亚洲欧洲日产国产| 午夜免费男女啪啪视频观看| 丰满迷人的少妇在线观看| 亚洲男人天堂网一区| 免费观看性生交大片5| 精品酒店卫生间| 亚洲成人手机| 亚洲成人av在线免费| 咕卡用的链子| 欧美xxⅹ黑人| 日韩 亚洲 欧美在线| 亚洲精品,欧美精品| 女人被躁到高潮嗷嗷叫费观| 亚洲国产av新网站| 午夜福利视频在线观看免费| 2018国产大陆天天弄谢| 亚洲欧美成人精品一区二区| 亚洲 欧美一区二区三区| 亚洲成人av在线免费| 一边摸一边抽搐一进一出视频| 日韩大码丰满熟妇| 女人被躁到高潮嗷嗷叫费观| 亚洲av男天堂| 两个人免费观看高清视频| 观看美女的网站| 国产免费现黄频在线看| av不卡在线播放| 免费人妻精品一区二区三区视频| 午夜精品国产一区二区电影| 少妇的丰满在线观看| 蜜桃在线观看..| 卡戴珊不雅视频在线播放| 欧美日韩亚洲综合一区二区三区_| 国产精品久久久久久精品电影小说| 汤姆久久久久久久影院中文字幕| 亚洲国产成人一精品久久久| 成人国语在线视频| 日韩一区二区视频免费看| 校园人妻丝袜中文字幕| 久久国产精品大桥未久av| 国产精品一区二区精品视频观看| 桃花免费在线播放| 成年人免费黄色播放视频| 日韩 亚洲 欧美在线| 中国三级夫妇交换| av有码第一页| 亚洲熟女毛片儿| 亚洲综合色网址| 亚洲成色77777| 婷婷成人精品国产| 国产精品 欧美亚洲|