• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DYNAMICS ANALYSIS OF A DELAYED HIV INFECTION MODEL WITH CTL IMMUNE RESPONSE AND ANTIBODY IMMUNE RESPONSE?

    2021-06-17 14:00:04楊俊仙
    關(guān)鍵詞:楊俊

    (楊俊仙)

    School of Science,Anhui Agricultural University,Hefei 230036,China

    E-mail:yangjunxian1976@126.com

    Leihong WANG(王雷宏)

    School of Forestry and Landscape Architecture,Anhui Agricultural University,Hefei 230036,China

    E-mail:wangleihong208010@126.com

    Abstract In this paper,dynamics analysis of a delayed HIV infection model with CTL immune response and antibody immune response is investigated.The model involves the concentrations of uninfected cells,infected cells,free virus,CTL response cells,and antibody antibody response cells.There are three delays in the model:the intracellular delay,virus replication delay and the antibody delay.The basic reproductive number of viral infection,the antibody immune reproductive number,the CTL immune reproductive number,the CTL immune competitive reproductive number and the antibody immune competitive reproductive number are derived.By means of Lyapunov functionals and LaSalle’s invariance principle,sufficient conditions for the stability of each equilibrium is established.The results show that the intracellular delay and virus replication delay do not impact upon the stability of each equilibrium,but when the antibody delay is positive,Hopf bifurcation at the antibody response and the interior equilibrium will exist by using the antibody delay as a bifurcation parameter.Numerical simulations are carried out to justify the analytical results.

    Key words Beddington-DeAngelis incidence;CTL immune response;antibody immune response;delay

    1 Introduction

    As is well known,Human Immunodeficiency Virus(HIV)and Acquired Immune Deficiency Syndrome(AIDS)are a serious threat to human health.The main target of HIV/AIDS is CD4+T cells–which is one type of white blood cell in the human immune system–and it can cause the number of CD4+T cells to decrease greatly.HIV seriously affects the ability of patients to defend opportunistic infections,so the eradication of HIV is the ultimate goal of research groups worldwide.Mathematical models are of great significance in terms of understanding the dynamics of populations in the context of epidemics.Models of virus infection in the host have been widely studied,and have provided insight into the dynamics of viral load in vivo for further research on the progress and control of HIV[1–30].In particular,issues including stability and Hopf bifurcation provide specific information for us to be able to understand disease control.

    It should be pointed out that immune response during the process of viral infection is universal and necessary to eliminate or control the disease.The models which include the adaptive immune response in fighting free viruses and in reducing the number of infected cells have been studied[3–5].This adaptive immunity is represented by Cytotoxic T Lymphocyte(CTL)and antibody immune responses.CTL immune response cells,which attack infected cells,play a critical part in defending against HIV.Hence,viral infection models with CTL immune response cells have received much attention[9–13,16–20,22,26,29,30].Recently,scientists have discovered that some patients produce a potent immune molecule,called a broadly neutralizing antibody,which recognizes many different HIV viruses[14,15].An effective immune system needs both the antibody and CTL immune responses to prevent HIV infection.Thus,the HIV infection model that incorporates both the antibody and CTL immune responses could be a realistic model for describing the dynamics of HIV infection[16–20,29,30].In[16],a basic model with bilinear incidence was proposed to describe the interactions of the antibody and CTL immune responses,and it included uninfected target cells x(t),productively infected cells y(t),free virus v(t),CTL immune response cells z(t)and antibody response cells w(t).It was assumed that the incidence rate is bilinear in the model,namely,that the infection rate per host and per virus is a constant,but experiments have shown that the incident rate is probably not linear over the entire interaction range of susceptible cells x(t)and virus v(t)[6,7,10,19–30].In[22–29],a more general infection rate,the Beddington-DeAngelis incidence ratewas proposed,where a and b are positive constants.In[29],Miao et al.investigated the HIV infection model with a Beddington-DeAngelis functional response and three delays:the intracellular delay,virus replication delay,and immune response delay.They reached the conclusion that the intracellular delay and virus replication delay do not affect the stability of the equilibria,but that the immune response delay markedly affects the stability of CTL response equilibrium and the interior equilibrium.In[30],Guo et al.pointed out the antibody delay cannot be ignored in the viral infection model.This raises the question:how will the antibody delay affect the equilibrium of system(1.1)?This will be the focus of our consideration.

    In this paper,we consider a five-dimensional HIV infection model with a Beddington-DeAngelis incidence rate and three time delays describing the intracellular delay,the virus replication delay,and the antibody delay as follows:

    Here,Λ,k,c and g are the proliferation rate of the uninfected cells,the virus,the CTL response cells and the antibody response cells,respectively;β is the infection rate constant;d,r,u,h and α represent the death rate constants of uninfected target cells,productively infected cells,virus,CTL response cells and antibody response cells,respectively;p represents the killing rate of infected cells by CTL response cells;q is the antibody cells neutralization rate;τ1denotes the intracellular delay anddenotes the surviving rate of infected cells during delay period[t?τ1,t];τ2is the virus replication delay,denotes the surviving rate of the virus during the delay period[t?τ2,t],τ3denotes the antibody response delay.

    Let τ=max{τ1,τ2,τ3}and={(x1,x2,x3,x4,x5):xi≥0,i=1,2,3,4,5},C([?τ,0],)denote the space of continuous functions mapping the interval[?τ,0]into.The initial condition for system(1.1)is

    where(φ1(θ),φ2(θ),φ3(θ),φ4(θ),φ5(θ))∈C([?τ,0],).It is well known,by the fundamental theory of functional differential equations(see[31]),that system(1.1)has a unique solution(x(t),y(t),v(t),z(t),w(t))satisfying the initial conditions(1.2).

    The organization of this paper is as follows:in the next section,the basic properties of model(1.1)for the boundedness of solutions,the threshold values and the existence of five equilibria are discussed.In Section 3,the threshold conditions on the global stability and instability for the infection-free equilibrium E0,immune-free equilibrium E1and infection equilibrium E3with only CTL immune responses are stated.When τ3=0,the threshold conditions on the global stability and instability for the infection equilibrium E2with only antibody responses and infection equilibrium E4with both CTL immune responses and antibody responses are proved.In Section 4,when τ3>0,the sufficient conditions on the existence of Hopf bifurcation for the infection equilibrium E2with only antibody responses and infection equilibrium E4with both CTL and antibody responses are established.In Section 5,the numerical simulations are carried out to further illustrate the dynamical behaviour of the model.Finally,we will give a discussion.

    2 Preliminaries

    In this section,we discuss the basic properties of model(1.1)for the non-negativity and boundedness of solutions,the threshold values and the existence of five equilibria.

    2.1 Non-negativity and Boundedness of solutions

    Theorem 2.1Let(x(t),y(t),v(t),z(t),w(t))be the solution of model(1.1)satisfying initial conditions(1.2).Then x(t),y(t),v(t),z(t)and w(t)are nonnegative and bounded on[0,+∞).

    ProofFrom(1.1),we know that,for t≥0,

    This implies that

    In a similar way,we obtain that z(t)>0 and w(t)>0.

    Using Lemma 2 from the work of Yang et al.[32],we obtain that y(t)>0 and v(t)>0.

    Next,we establish the boundedness of the solutions of system(1.1).Define

    We have

    Therefore,x(t),y(t),v(t),z(t)and w(t)are nonnegative and bounded on[0,+∞).This completes the proof. □

    2.2 The existence of equilibria

    Clearly,system(1.1)always exists an infection-free equilibrium E0(x0,0,0,0,0),where

    The basic reproductive number of viral infection for model(1.1)is

    where R0denotes the average amount of the free virus released by the infected cells which are infected by the first virus.

    It is easily proved that R0>1 implies>ur(d+aΛ)and k(β+bd)>

    If R0>1,system(1.1)means that there is an immune-free equilibrium E1(x1,y1,v1,0,0),besides the equilibrium E0,where

    Then,we obtain the antibody immune reproductive number R1and the CTL immune reproductive number R2for model(1.1)as follows:

    Here,R1denotes the average number of the antibody immune cells activated by the virus when virus infection is successful and CTL responses have not been established,and R2denotes the average number of the CTL immune cells activated by infected cells when virus infection is successful and antibody immune responses have not been established.

    We know that R1>1 is equivalent to gv1?α>0,and R2>1 is equivalent to cy1?h>0.If R1>1,system(1.1)gives a unique infection equilibrium E2(x2,y2,v2,0,w2)with only antibody responses,where

    and x2is a unique positive zero point of the quadratic function

    Next,we prove that each component of equilibrium E2is positive if R1>1.In fact,from

    it is easy to show that

    Therefore,if R1>1,we have

    Thus,it follows that

    From the expression of ω2,it follows that the existence of equilibrium E2is equivalent to

    Noticing that L(0)<0,we know that the existence and uniqueness of equilibrium E2is equivalent to

    Since

    from R1>1,we have

    Therefore,when R1>1,we obtain

    If R2>1,with system(1.1)there exists a unique infection equilibrium E3(x3,y3,v3,z3,0)with only CTL responses,where

    and x3is a unique positive root of the quadratic function

    Next,we prove that each component of equilibrium E3is positive if R2>1.In fact,from

    it is easy to show that

    Therefore,if R2>1,we have

    Thus,it follows that

    From the expression of z3,it follows that the existence of equilibrium E3is equivalent to

    Noticing that H(0)<0,we know that the existence and uniqueness of equilibrium E3is equivalent to

    Since

    from R2>1,we have

    Therefore,when R2>1,we obtain

    Furthermore,we obtain the CTL immune competitive reproductive number R3and the antibody immune competitive reproductive number R4for model(1.1)as follows:

    Here,R3denotes the average number of the CTL immune cells activated by infected cells under the condition that antibody immune responses have been established,and R4denotes the average number of the antibody immune cells activated by virus under the condition that CTL immune responses have been established.

    If R3>1 and R4>1,system(1.1)gives a unique infection equilibrium E4(x4,y4,v4,z4,w4)with CTL and antibody responses,where

    3 Stability Analysis of Each Equilibrium

    In this section,we discuss the global stability and instability for the infection-free equilibrium E0,immune-free equilibrium E1,and infection equilibrium E3with only CTL immune responses,and when τ3=0,the global stability for the infection equilibrium E2with only antibody responses and infection equilibrium E4with both CTL and antibody responses.

    Let g(x)=x?1?lnx.Clearly,for x∈(0,+∞),g(x)is nonnegative and has the global minimum at x=1 and g(1)=0.

    Theorem 3.1(i)If R0≤1,then the infection-free equilibrium E0(x0,0,0,0,0)is globally asymptotically stable;(ii)If R0>1,then E0(x0,0,0,0,0)is unstable.

    Proof(i)Define a Lyapunov function

    Clearly,V1(t)≥0,and V1(t)=0 if and only if x(t)=x0,y(t)=0,v(t)=0,z(t)=0 and ω(t)=0.

    Then the time derivative of V1(t)along system(1.1)satisfies

    Note that

    (ii)The characteristic equation of the linearized system of model(1.1)at the equilibrium E0is

    Clearly,equation(3.1)always has three negative real roots:λ1=?d,λ2=?α,λ3=?h.Hence,the stability of E0is determined by the roots of equation

    Let

    If R0>1,it is easy to show that

    Hence,equation(3.2)has at least one positive real root in this case.Therefore,if R0>1,the equilibrium E0is unstable.This completes the proof. □

    Theorem 3.2Let R0>1.

    (i)If R1≤1 and R2≤1,then the immune-free equilibrium E1(x1,y1,v1,0,0)is globally asymptotically stable.

    (ii)If R1>1 or R2>1,then E1(x1,y1,v1,0,0)is unstable.

    Proof(i)Define a Lyapunov function

    Clearly,V2(t)≥0,and V2(t)=0 if and only if x(t)=x1,y(t)=y1,v(t)=v1,z(t)=0 and w(t)=0.

    Then the time derivative of V2(t)along system(1.1)satisfies

    Note that

    (ii)The characteristic equation of the linearized system of model(1.1)at the equilibrium E1is

    where

    Let

    When R2>1,then we have h?cy1<0.Hence,f3(λ)=0 has one positive root λ?=cy1?h.

    Therefore,when R1>1 or R2>1,E1is unstable.This completes the proof. □

    Theorem 3.3Let R0>1 and R1>1.

    (i)If R3≤1 and τ3=0,then the antibody response equilibrium E2(x2,y2,v2,0,w2)is globally asymptotically stable.

    (ii)If R3>1,then E2(x2,y2,v2,0,w2)is unstable.

    Proof(i)Define a Lyapunov function

    Clearly,V3(t)≥0,and V3(t)=0 if and only if x(t)=x2,y(t)=y2,v(t)=v2,z(t)=0 and ω(t)=ω2.

    Then the time derivative of V3(t)along system(1.1)satisfies

    Note that

    which yields w(t)=w2.From LaSalle’s invariance principle[31],we have that E2is globally asymptotically stable when R0>1,R1>1,R3≤1 and τ3=0.(ii)The characteristic equation of the linearized system of model(1.1)at the equilibrium E2is

    where

    Let

    When R3>1,then we have f2(0)=h?cy2<0,and=+∞.Hence,f2(λ)=0 has at least one positive root.

    Therefore,when R3>1,E2is unstable.This completes the proof. □

    Theorem 3.4Let R0>1 and R2>1.

    (i)If R4≤1,then the CTL immune response equilibrium E3(x3,y3,v3,z3,0)is globally asymptotically stable.

    (ii)If R4>1,then E3(x3,y3,v3,z3,0)is unstable.

    Proof(i)Define a Lyapunov function

    Clearly,V4(t)≥0,and V4(t)=0 if and only if x(t)=x3,y(t)=y3,v(t)=v3,z(t)=z3and ω(t)=0.

    Then the time derivative of V4(t)along system(1.1)satisfies

    Note that

    (ii)The characteristic equation of the linearized system of model(1.1)at the equilibrium E3is

    Therefore,when R4>1,E3is unstable.This completes the proof. □

    Theorem 3.5If R0>1,R2>1,R3>1,R4>1 and τ3=0,the interior equilibrium E4(x4,y4,v4,z4,w4)is globally asymptotically stable.

    ProofDefine a Lyapunov function

    Clearly,V5(t)≥0,and V5(t)=0 if and only if x(t)=x4,y(t)=y4,v(t)=v4,z(t)=z4and ω(t)=ω4.

    Then the time derivative of V5(t)along system(1.1)satisfies

    Note that

    which yields z(t)=z4,w(t)=w4.From LaSalle’s invariance principle[31],we have that E4is globally asymptotically stable when R0>1,R2>1,R3>1,R4>1 and τ3=0.This completes the proof. □

    4 Hopf Bifurcation Analysis of E2 and E4

    4.1 Hopf bifurcation analysis of E2

    By Theorem 3.3,we obtain the globally asymptotic stability of the equilibrium E2when τ1≥0,τ2≥0,τ3=0.However,when τ3>0,Hope bifurcation occurs at the equilibrium E2.When τ1>0,τ2>0,the calculation is too complicated.Hence,in order to simplify the calculation,we let τ1=0,τ2=0,τ3>0 in the discussions that follow.

    From(3.4),the characteristic equation of the linearized system of model(1.1)at the equilibrium E2is

    Letting λ=iω(ω>0)be a solution of equation(4.1),separating real and imaginary parts,it follows that

    Squaring and adding the two equations of(4.2),we obtain that

    where

    Letting ξ=ω2,equation(4.3)becomes

    In what follows,some lemmas will be given to establish the existence of positive roots of equation(4.4).

    Lemma 4.1If e0<0,then equation(4.4)has at least one positive root.

    ProofDenote

    Next,we will discuss the distribution of positive roots of equation(4.4)when e0≥0.The derivative of F(ξ)with respect to ξ is

    Lemma 4.2Suppose that e0≥0 and b?1=0.Then

    (i)if Δ0<0,then equation(4.4)has no positive real roots;

    (ii)if Δ0≥0,a?1≥0 and c?1>0,then equation(4.4)has no positive real roots;

    (iii)if(i)and(ii)are not satisfied,then equation(4.4)has positive real roots if and only if there exists at least one ξ?∈{ξ1,ξ2,ξ3,ξ4}such that ξ?>0 and F(ξ?)≤0.

    Denote

    (i)if Δ2<0 and Δ3<0,then equation(4.4)has no positive real roots;

    (ii)if(i)is not satisfied,then equation(4.4)has positive real roots if and only if there exists at least one ξ?∈{ξ1,ξ2,ξ3,ξ4}such that ξ?>0 and F(ξ?)≤0,where ξi=(i=1,2,3,4),and

    Suppose that equation(4.4)has positive roots.Without loss of generality,we assume that it has m(1≤m≤5)positive roots,denoted by ξk,k=1,2,...,m.Then equation(4.3)has m positive roots ωk=k=1,2,...,m.

    From equation(4.2),we have

    Thus,if we denote

    From equation(4.3),we get

    By equation(4.5),we have

    Therefore,

    This completes the proof. □

    Summing up the above lemmas and the Hopf bifurcation theorem for functional differential equation[33],we get the following conclusion:

    Theorem 4.6Let ξ0and ω0,τ0be defined by equation(4.9).

    4.2 Hopf bifurcation analysis of E4

    By Theorem 3.5,we obtain the globally asymptotic stability of the equilibrium E4when R0>1,R2>1,R3>1,R4>1 and τ3=0.From the theoretical analysis that follows,we will see that Hopf bifurcation occurs at the equilibrium E4when τ3>0.However,when τ1>0,τ2>0,the calculation is too complicated.Hence,in order to simplify the calculation,we also let τ1=0,τ2=0,τ3>0 in the ensuing discussions.

    The characteristic equation of the linearized system of model(1.1)at the equilibrium E4is

    Letting λ=iω(ω>0)be a solution of equation(4.10),separating real and imaginary parts,it follows that

    Squaring and adding the two equations of(4.11),we obtain that

    where

    Letting ξ=ω2,equation(4.12)becomes

    The derivative of H(ξ)with respect to ξ is

    Denote

    Applying the same method as Theorem 4.6,we have the following result:

    Theorem 4.7Let ξ0and ω0,τ0be defined by equation(4.9).

    5 Numerical Simulations

    In Theorems 4.6 and 4.7,by using the theory of bifurcation,we have gather the existence of the Hopf bifurcation at equilibria E2and E4when τ1=0,τ2=0,τ3>0.However,when τ1>0,τ2>0,τ3>0,the theoretical analysis is very complicated.Thus,in what follows,by the numerical simulations it is shown that the Hopf bifurcation and stability switches occur at E2and E4as τ3increases.

    Example 5.1In system(1.1),we choose a set of parameters as follows:

    Λ=10,d=0.01,r=0.8,p=1,b=0.01,k=0.4,u=0.3,q=1,g=1.5,m=0.01,n=0.01,c=0.01,h=0.8,a=0.02,β=0.5,α=1,τ1=10,τ2=0.2.

    By direct calculation,we obtain that E2(64.4132,10.5819,0.6667,0,6.0365),and R1=22.5403>1,R3=0.1323<1.From Figure 1 to Figure 4,with the increase of τ3,the dynamic behavior of the equilibrium E2will change;that is,Hopf bifurcation appears.

    Figure 1 When τ3=0.1,infection equilibrium E2 with only the antibody response of system(1.1)is locally asymptotically stable

    Figure 2 When τ3=1.5,infection equilibrium E2 with only the antibody response of system(1.1)is unstable

    Figure 3 When τ3=8.95,infection equilibrium E2 with only the antibody response of system(1.1)is locally asymptotically stable

    Example 5.2In system(1.1),we choose a set of parameters as follows:

    Λ=10,d=0.01,r=0.5,p=1,b=0.01,k=0.4,u=0.3,q=1,g=1.5,m=0.01,n=0.01,c=0.1,h=0.15,a=0.02,β=0.5,α=1,τ1=1,τ2=4.

    By direct calculation,we obtain that E4(64.4132,1.5,0.6667,5.6752,0.5647),and R1=37.2577>1,R3=12.2275>1,R4=2.8537>1.From Figure 5 to Figure 8,with the increase of τ3,the dynamic behavior of the equilibrium E4will change as follows:locally asymptotically stable→unstable→locally asymptotically stable→unstable;that is,Hopf bifurcation appears.

    Figure 4 When τ3=10,infection equilibrium E2 with only the antibody response of system(1.1)is unstable

    Figure 5 When τ3=0.001,the infection equilibrium E4,with both the antibody and CTL responses of system(1.1),is locally asymptotically stable

    Figure 6 When τ3=2,the infection equilibrium E4,with both the antibody and CTL responses of system(1.1),is unstable

    Figure 7 When τ3=22.7,the infection equilibrium E4,with both the antibody and CTL responses of system(1.1),is locally asymptotically stable

    Figure 8 When τ3=30,the infection equilibrium E4,with both the antibody and CTL responses of system(1.1),is unstable

    6 Discussion

    In this paper,a delayed viral infection model with CTL immune response and antibody immune response have been considered,along with three delays:the intracellular delay,virus replication delay and the antibody delay.We assumed that the production of CTL immune response depends on the infected cells and CTL cells,and the production of antibody response depends on the virus and antibody cells.

    In Section 2,we presented that the solutions of model(1.1)are bounded,and showed that this model exists with five possible equilibria:an infection-free equilibrium E0,an immune-free equilibrium E1,an infection equilibrium E2with only antibody response,an infection equilibrium E3with only CTL response,and an infection equilibrium E4with both CTL and antibody responses,depending on the threshold values.In this paper,we have presented five threshold values:the basic reproductive rate of viral infection R0,the antibody immune reproductive rate R1,the CTL immune reproductive rate R2,the CTL immune competitive reproductive rate R3,and the antibody immune competitive reproductive rate R4.These determine not only the existence of the equilibrium point,but also the dynamic behavior of the model.

    In Section 3,the results have shown that when R0≤1,E0is globally asymptotically stable for any time delay τ1,τ2,τ3≥0,which means that the viruses are cleared,and CTL immunity and antibody immunity are not active.Moreover,we found that R0can be reduced by increasing the delay τ1and τ2;that is,we can reduce the average amount of viral infection.When R0>1,R1≤1 and R2≤1,E1is globally asymptotically stable for any time delay τ1,τ2,τ3≥0,which means that the infection becomes chronic but with no persistent CTL immune responses and antibody responses.When R0>1,R2>1,and R4≤1,E3is globally asymptotically stable for any time delay τ1,τ2,τ3≥0,which means that the infection becomes chronic with persistent CTL immune responses,but the virus loads cannot activate the antibody responses.The above results show that delays τ1,τ2,and τ3do not impact the global asymptotic properties of E0,E1,E3,and therefore the possibility of Hopf bifurcation is ruled out.With respect to the analysis of E2,E4,we considered special cases τ1≥0,τ2≥0,and τ3=0.When R0>1,R1>1,and R3≤1,E2is globally asymptotically stable,which means that the infection becomes chronic with persistent antibody responses,but the infected cells cannot stimulate and activate CTL immune responses.When R0>1,R2>1,R3>1,and R4>1,E4is globally asymptotically stable,that is,uninfected target cells,infected cells,free virus,CTL response cells and antibody response cells coexist in vivo.From the above results,we see that delays τ1,τ2do not impact upon the global asymptotic properties of E2,E4,but the antibody delay τ3can impact upon the stability of E2,E4.

    In Section 4,by using the bifurcation theory,a detailed analysis on the local asymptotic stability and the existence of Hopf bifurcation at the equilibrium point E2and E4was carried out when τ3>0.When τ1>0,τ2>0,the calculation proved to be too complicated.Hence,in order to simplify the calculation,we let τ1=0,τ2=0,τ3>0.In Section 5,by means of numerical simulations,it was shown that Hopf bifurcation occurs at the equilibrium points E2and E4as the antibody delay τ3increases.From Figures 1 to 8,as τ3increases,we saw that the dynamic behavior of E2and E4will change as follows:locally asymptotically stable→unstable→locally asymptotically stable→unstable;that is,Hopf bifurcation appears.

    Summarizing these results,we point out that the intracellular delay τ1and virus replication delay τ2do not impact the stability of all the equilibria,but the antibody delay τ3markedly affects the stability of the antibody response equilibrium E2and the interior equilibrium E4.This indicates that the antibody delay τ3plays a negative part in the diseases prevalence and control.In this paper,we have extended the conclusions of the model in[30]with a saturation incidence rate to a Beddington-DeAngelis infection rate,and have successfully completed the questions raised by Miao[29].We also point out the essential difference between our results and the results in[29],by which our work was motivated.In[29],CTL immune delay was considered,and the conclusion was that immune response delay markedly affects the stability of CTL response equilibrium and the interior equilibrium.In our model,however,the antibody delay was discussed,which is precisely the question raised in[29],but not studied,and a different conclusion has been drawn:the antibody delay markedly affects the stability of the antibody response equilibrium and the interior equilibrium.

    猜你喜歡
    楊俊
    Tailoring topological corner states in photonic crystals by near-and far-field coupling effects
    Topological states switching and group velocity control in two-dimensional non-reciprocal Hermitian photonic lattice
    Topological resonators based on hexagonal-star valley photonic crystals
    楊俊德:農(nóng)業(yè)豐收的“守護(hù)神”
    Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica*
    執(zhí)著
    詩(shī)潮(2019年11期)2019-11-23 12:20:12
    追愛(ài)五十天,這是浪漫的開(kāi)始嗎?
    追愛(ài)五十天,這是浪漫的開(kāi)始嗎?
    李泊城 隋邦平 楊俊顯 王綠竹 作品
    大眾文藝(2019年3期)2019-01-24 13:39:44
    《紅蜻蜓》教案
    非洲黑人性xxxx精品又粗又长| 久久97久久精品| 国产单亲对白刺激| 国产伦精品一区二区三区四那| 亚洲av中文av极速乱| 亚洲国产欧美人成| 午夜免费观看性视频| 国产精品久久视频播放| 精品人妻偷拍中文字幕| 国产亚洲精品久久久com| 老司机影院毛片| 97精品久久久久久久久久精品| 亚洲欧美一区二区三区国产| 精品久久久久久电影网| 国产伦精品一区二区三区四那| 午夜亚洲福利在线播放| 久久久久久久久中文| 国产v大片淫在线免费观看| 亚洲精品色激情综合| 亚洲图色成人| 激情五月婷婷亚洲| 亚洲av在线观看美女高潮| 嫩草影院新地址| 午夜福利在线在线| 91精品国产九色| 亚洲av电影在线观看一区二区三区 | 亚洲熟女精品中文字幕| 亚洲国产精品成人久久小说| 精品久久久久久电影网| 日本三级黄在线观看| 九色成人免费人妻av| 99热这里只有是精品50| 亚洲av免费高清在线观看| 国产男女超爽视频在线观看| 日韩不卡一区二区三区视频在线| 国产精品国产三级国产专区5o| 中文欧美无线码| 国产成人a区在线观看| 99久久精品热视频| 特大巨黑吊av在线直播| 国产亚洲午夜精品一区二区久久 | 亚洲欧美一区二区三区国产| 午夜日本视频在线| 国产精品蜜桃在线观看| 亚洲综合色惰| 午夜福利网站1000一区二区三区| 午夜视频国产福利| 18禁在线播放成人免费| 午夜福利在线在线| 成人漫画全彩无遮挡| 一个人看视频在线观看www免费| 国产在视频线精品| 亚洲在线自拍视频| 免费播放大片免费观看视频在线观看| 免费黄网站久久成人精品| 久久国产乱子免费精品| 白带黄色成豆腐渣| 国产精品人妻久久久久久| 亚洲精品一区蜜桃| av在线播放精品| 深夜a级毛片| 中文天堂在线官网| 全区人妻精品视频| 国产毛片a区久久久久| 久久久a久久爽久久v久久| 一级a做视频免费观看| 爱豆传媒免费全集在线观看| 久久久午夜欧美精品| 免费看美女性在线毛片视频| 国产色婷婷99| 亚洲人成网站高清观看| 丰满乱子伦码专区| 国产成人免费观看mmmm| 亚洲成人精品中文字幕电影| 一个人看的www免费观看视频| 丝袜喷水一区| 婷婷色综合www| 免费播放大片免费观看视频在线观看| 免费av观看视频| 午夜视频国产福利| 高清在线视频一区二区三区| 午夜激情欧美在线| a级毛色黄片| 欧美成人a在线观看| 乱人视频在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美激情在线99| 亚洲av一区综合| 日本爱情动作片www.在线观看| 国产精品爽爽va在线观看网站| 国产精品国产三级专区第一集| 在线观看av片永久免费下载| 美女脱内裤让男人舔精品视频| 你懂的网址亚洲精品在线观看| 国产精品综合久久久久久久免费| 亚洲国产高清在线一区二区三| 亚洲,欧美,日韩| 久久久a久久爽久久v久久| 精品久久久噜噜| 别揉我奶头 嗯啊视频| 国产精品一二三区在线看| 亚洲人与动物交配视频| av女优亚洲男人天堂| 日本一二三区视频观看| 超碰av人人做人人爽久久| 黑人高潮一二区| 亚洲av.av天堂| 国产精品国产三级国产av玫瑰| 久久久精品94久久精品| 毛片一级片免费看久久久久| 国产麻豆成人av免费视频| 99久久中文字幕三级久久日本| 永久免费av网站大全| 国产v大片淫在线免费观看| 国产v大片淫在线免费观看| 亚洲在线自拍视频| 联通29元200g的流量卡| 亚洲人成网站高清观看| 亚洲av中文字字幕乱码综合| av黄色大香蕉| 中文字幕人妻熟人妻熟丝袜美| 99久久人妻综合| 丝瓜视频免费看黄片| 国产av国产精品国产| 国国产精品蜜臀av免费| 最近中文字幕高清免费大全6| 免费大片18禁| 一级片'在线观看视频| 国产亚洲最大av| 国产精品综合久久久久久久免费| 国产三级在线视频| 又大又黄又爽视频免费| 一个人看的www免费观看视频| av福利片在线观看| 亚洲,欧美,日韩| 久久久久久九九精品二区国产| 午夜免费男女啪啪视频观看| 中国美白少妇内射xxxbb| 亚洲成人av在线免费| av在线蜜桃| 国产爱豆传媒在线观看| 亚洲真实伦在线观看| 亚洲av日韩在线播放| 边亲边吃奶的免费视频| av福利片在线观看| 亚洲人成网站高清观看| 亚洲在线自拍视频| 中文字幕av在线有码专区| 国产亚洲精品av在线| 国产欧美日韩精品一区二区| 亚洲国产日韩欧美精品在线观看| 日韩电影二区| 日韩电影二区| 免费av观看视频| 99re6热这里在线精品视频| 一个人看视频在线观看www免费| 美女被艹到高潮喷水动态| 人妻少妇偷人精品九色| 亚洲精品一区蜜桃| 亚洲精品456在线播放app| 丝瓜视频免费看黄片| 婷婷色av中文字幕| 国产精品蜜桃在线观看| 精品99又大又爽又粗少妇毛片| 亚洲国产精品成人久久小说| 干丝袜人妻中文字幕| 又爽又黄无遮挡网站| 久久久久久久久久久丰满| 青春草视频在线免费观看| 国产在线男女| 久久久欧美国产精品| 日日摸夜夜添夜夜添av毛片| 网址你懂的国产日韩在线| 黄色配什么色好看| 三级男女做爰猛烈吃奶摸视频| 99re6热这里在线精品视频| 国产毛片a区久久久久| 精品不卡国产一区二区三区| 日韩欧美 国产精品| 美女脱内裤让男人舔精品视频| 寂寞人妻少妇视频99o| 天堂中文最新版在线下载 | 在线观看av片永久免费下载| 久久精品国产亚洲av涩爱| 亚洲欧美成人精品一区二区| 久久久a久久爽久久v久久| 免费黄网站久久成人精品| 老师上课跳d突然被开到最大视频| 极品少妇高潮喷水抽搐| 日本一本二区三区精品| a级一级毛片免费在线观看| 日韩欧美一区视频在线观看 | 欧美性猛交╳xxx乱大交人| 色哟哟·www| 男女边吃奶边做爰视频| 狂野欧美激情性xxxx在线观看| 美女cb高潮喷水在线观看| 搡老妇女老女人老熟妇| 欧美成人一区二区免费高清观看| videossex国产| 一级毛片我不卡| 美女高潮的动态| 亚洲精品456在线播放app| 免费少妇av软件| 秋霞伦理黄片| 午夜精品一区二区三区免费看| av线在线观看网站| 99热这里只有是精品50| 欧美一级a爱片免费观看看| 国产精品人妻久久久久久| 大陆偷拍与自拍| 日韩欧美 国产精品| 日韩中字成人| 高清av免费在线| 啦啦啦中文免费视频观看日本| 国内精品宾馆在线| 麻豆成人午夜福利视频| 成人性生交大片免费视频hd| 亚洲一区高清亚洲精品| 亚洲三级黄色毛片| 欧美+日韩+精品| 高清午夜精品一区二区三区| 亚洲成人精品中文字幕电影| 有码 亚洲区| 少妇猛男粗大的猛烈进出视频 | xxx大片免费视频| 男女国产视频网站| 国产在视频线精品| 国产人妻一区二区三区在| 亚洲人成网站在线播| 午夜视频国产福利| 国产成人freesex在线| 国产亚洲av嫩草精品影院| 美女国产视频在线观看| 丰满人妻一区二区三区视频av| 汤姆久久久久久久影院中文字幕 | www.色视频.com| 最新中文字幕久久久久| 热99在线观看视频| 九色成人免费人妻av| 亚洲欧洲日产国产| 卡戴珊不雅视频在线播放| 91精品国产九色| 国产 一区 欧美 日韩| 午夜免费观看性视频| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美精品专区久久| 国产黄色免费在线视频| 色吧在线观看| 嫩草影院入口| 卡戴珊不雅视频在线播放| 国产精品一二三区在线看| 免费看日本二区| 大又大粗又爽又黄少妇毛片口| 99久久九九国产精品国产免费| 国产免费福利视频在线观看| 日韩一本色道免费dvd| 九九久久精品国产亚洲av麻豆| 黄片无遮挡物在线观看| 亚洲av福利一区| 国产精品精品国产色婷婷| 五月天丁香电影| 色尼玛亚洲综合影院| 亚洲精华国产精华液的使用体验| 特级一级黄色大片| 亚洲国产高清在线一区二区三| 3wmmmm亚洲av在线观看| or卡值多少钱| 国产免费视频播放在线视频 | 99热这里只有是精品50| 日韩电影二区| 天天一区二区日本电影三级| 免费av不卡在线播放| 一区二区三区高清视频在线| av网站免费在线观看视频 | 国产黄色小视频在线观看| 亚洲欧美一区二区三区国产| 日韩电影二区| 2022亚洲国产成人精品| 一个人免费在线观看电影| 别揉我奶头 嗯啊视频| 边亲边吃奶的免费视频| 日本免费a在线| 国产在视频线在精品| 午夜福利网站1000一区二区三区| 亚洲精品成人久久久久久| 少妇裸体淫交视频免费看高清| 偷拍熟女少妇极品色| 麻豆av噜噜一区二区三区| 午夜免费男女啪啪视频观看| 欧美日韩精品成人综合77777| 亚洲最大成人手机在线| 又黄又爽又刺激的免费视频.| 国产精品不卡视频一区二区| 岛国毛片在线播放| 爱豆传媒免费全集在线观看| 国产成人aa在线观看| www.av在线官网国产| 亚洲精品国产成人久久av| 直男gayav资源| 日韩av不卡免费在线播放| 午夜福利视频精品| 亚洲av中文字字幕乱码综合| 只有这里有精品99| 丰满少妇做爰视频| 精品久久久久久久人妻蜜臀av| 亚洲成人精品中文字幕电影| 美女cb高潮喷水在线观看| 看免费成人av毛片| 高清av免费在线| 久久精品国产鲁丝片午夜精品| 2021天堂中文幕一二区在线观| 国产亚洲精品久久久com| 内射极品少妇av片p| 国产成人精品婷婷| 又爽又黄无遮挡网站| 成人毛片60女人毛片免费| 日韩成人av中文字幕在线观看| 中文字幕人妻熟人妻熟丝袜美| 汤姆久久久久久久影院中文字幕 | 欧美xxxx黑人xx丫x性爽| 大又大粗又爽又黄少妇毛片口| 在线观看一区二区三区| 久久久精品欧美日韩精品| 丝瓜视频免费看黄片| 精品熟女少妇av免费看| 超碰av人人做人人爽久久| 亚洲在线观看片| 五月伊人婷婷丁香| 性色avwww在线观看| 国产大屁股一区二区在线视频| 国产午夜福利久久久久久| 国模一区二区三区四区视频| 国产免费又黄又爽又色| .国产精品久久| 亚洲精品国产成人久久av| 天堂影院成人在线观看| 只有这里有精品99| 免费观看的影片在线观看| 午夜免费男女啪啪视频观看| 神马国产精品三级电影在线观看| 天美传媒精品一区二区| 伊人久久国产一区二区| 最近中文字幕2019免费版| 欧美激情久久久久久爽电影| 国产免费福利视频在线观看| 综合色av麻豆| 国产精品一区二区三区四区久久| 久久6这里有精品| 成人鲁丝片一二三区免费| 亚洲色图av天堂| 亚洲欧美成人综合另类久久久| 青春草亚洲视频在线观看| 久久人人爽人人片av| 纵有疾风起免费观看全集完整版 | 一级a做视频免费观看| 熟妇人妻不卡中文字幕| 神马国产精品三级电影在线观看| 国产综合精华液| 国产高清三级在线| 日日啪夜夜撸| 午夜福利视频1000在线观看| 日本熟妇午夜| 久久久精品欧美日韩精品| 久久久久久久大尺度免费视频| 大香蕉久久网| 噜噜噜噜噜久久久久久91| 成年免费大片在线观看| 久久久久久久久久成人| 亚洲熟妇中文字幕五十中出| 简卡轻食公司| 夜夜看夜夜爽夜夜摸| 激情 狠狠 欧美| 精品亚洲乱码少妇综合久久| 国内少妇人妻偷人精品xxx网站| 国精品久久久久久国模美| 亚洲在线观看片| 日韩不卡一区二区三区视频在线| 久久人人爽人人片av| 国产有黄有色有爽视频| 久久久精品欧美日韩精品| 观看免费一级毛片| 黄片无遮挡物在线观看| 精品一区二区三区视频在线| 伊人久久精品亚洲午夜| 又粗又硬又长又爽又黄的视频| 免费在线观看成人毛片| 夫妻性生交免费视频一级片| 国产视频首页在线观看| 国产乱人偷精品视频| 日本午夜av视频| 国产片特级美女逼逼视频| 久久久久久久久久久免费av| 偷拍熟女少妇极品色| 亚洲国产精品国产精品| 国产高潮美女av| 欧美成人a在线观看| 国产又色又爽无遮挡免| 日韩欧美三级三区| 成年av动漫网址| 只有这里有精品99| 国产精品嫩草影院av在线观看| 三级经典国产精品| 校园人妻丝袜中文字幕| 精品久久久久久久人妻蜜臀av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 淫秽高清视频在线观看| 伊人久久国产一区二区| 欧美日韩精品成人综合77777| 色播亚洲综合网| 亚洲性久久影院| 久久久久久久午夜电影| av在线老鸭窝| 少妇丰满av| 国产精品国产三级国产专区5o| 日韩av不卡免费在线播放| 99久国产av精品国产电影| 伦理电影大哥的女人| 听说在线观看完整版免费高清| 青春草视频在线免费观看| 久久久久精品久久久久真实原创| 亚洲精品成人av观看孕妇| 99热这里只有是精品50| 亚洲欧美日韩无卡精品| 国产精品一区www在线观看| 久久久久免费精品人妻一区二区| 久久久成人免费电影| 韩国高清视频一区二区三区| 国产av码专区亚洲av| 天天躁日日操中文字幕| 亚洲,欧美,日韩| 噜噜噜噜噜久久久久久91| 欧美97在线视频| 九九久久精品国产亚洲av麻豆| 麻豆精品久久久久久蜜桃| 亚洲欧美精品自产自拍| 美女内射精品一级片tv| 特级一级黄色大片| 青春草亚洲视频在线观看| 免费人成在线观看视频色| 免费播放大片免费观看视频在线观看| 一级黄片播放器| 国产女主播在线喷水免费视频网站 | 一二三四中文在线观看免费高清| 91精品一卡2卡3卡4卡| 欧美性猛交╳xxx乱大交人| 国产精品久久久久久久久免| 91午夜精品亚洲一区二区三区| 国产精品嫩草影院av在线观看| 欧美最新免费一区二区三区| 一个人观看的视频www高清免费观看| 国产精品99久久久久久久久| 激情五月婷婷亚洲| 亚洲人成网站在线观看播放| av免费在线看不卡| 高清毛片免费看| 国产不卡一卡二| 韩国高清视频一区二区三区| 日韩av不卡免费在线播放| av女优亚洲男人天堂| 永久网站在线| 国产亚洲精品久久久com| 久久久久久久久久人人人人人人| av在线播放精品| 不卡视频在线观看欧美| 激情 狠狠 欧美| 国产欧美日韩精品一区二区| 五月玫瑰六月丁香| 晚上一个人看的免费电影| 精华霜和精华液先用哪个| 久久精品夜色国产| 成人亚洲欧美一区二区av| 亚州av有码| 蜜桃久久精品国产亚洲av| 最新中文字幕久久久久| 日本黄色片子视频| 2022亚洲国产成人精品| 2021少妇久久久久久久久久久| 国产精品一区二区在线观看99 | 非洲黑人性xxxx精品又粗又长| 国产免费一级a男人的天堂| 欧美成人一区二区免费高清观看| 亚洲欧美日韩东京热| 校园人妻丝袜中文字幕| 欧美激情国产日韩精品一区| 一级二级三级毛片免费看| 亚洲精品日本国产第一区| 成人亚洲精品一区在线观看 | 2022亚洲国产成人精品| 99久久精品国产国产毛片| 91狼人影院| 亚洲av一区综合| 国产伦在线观看视频一区| 久久久久久久午夜电影| 欧美变态另类bdsm刘玥| 久久久久久久午夜电影| 精品99又大又爽又粗少妇毛片| 日韩精品有码人妻一区| 国产精品伦人一区二区| 国产一区二区三区av在线| 麻豆av噜噜一区二区三区| 国产乱人视频| 天天躁日日操中文字幕| 日韩欧美一区视频在线观看 | 极品教师在线视频| 亚洲激情五月婷婷啪啪| 国产成人aa在线观看| 久久久亚洲精品成人影院| 国产精品久久视频播放| 欧美最新免费一区二区三区| 六月丁香七月| 色综合色国产| 午夜激情久久久久久久| 欧美高清性xxxxhd video| 免费观看在线日韩| 精品一区二区三区人妻视频| 嫩草影院新地址| 特级一级黄色大片| 精品久久国产蜜桃| 亚洲三级黄色毛片| 婷婷六月久久综合丁香| 久久草成人影院| 亚洲自拍偷在线| 91精品国产九色| 久久这里只有精品中国| 极品少妇高潮喷水抽搐| 在线免费观看的www视频| 国产亚洲av片在线观看秒播厂 | 成人漫画全彩无遮挡| 亚洲性久久影院| 国产高清有码在线观看视频| 国产精品一区二区三区四区免费观看| 亚洲精品影视一区二区三区av| 少妇高潮的动态图| 久久综合国产亚洲精品| 久久久久久久久中文| or卡值多少钱| 欧美高清成人免费视频www| 少妇裸体淫交视频免费看高清| 人妻一区二区av| 亚洲aⅴ乱码一区二区在线播放| 国产高清不卡午夜福利| 嫩草影院新地址| 白带黄色成豆腐渣| av国产久精品久网站免费入址| 亚洲电影在线观看av| 国产片特级美女逼逼视频| 久久久亚洲精品成人影院| 在线免费观看不下载黄p国产| 国产三级在线视频| 女的被弄到高潮叫床怎么办| 亚洲av成人精品一二三区| 直男gayav资源| 在线免费观看的www视频| 青春草视频在线免费观看| 国产精品爽爽va在线观看网站| 国产探花极品一区二区| 午夜福利视频精品| 国产有黄有色有爽视频| 国产精品嫩草影院av在线观看| 国产乱人视频| 免费黄色在线免费观看| 亚洲欧美精品专区久久| 蜜桃亚洲精品一区二区三区| 精品国产三级普通话版| 真实男女啪啪啪动态图| 免费电影在线观看免费观看| 黄色欧美视频在线观看| av一本久久久久| 亚洲,欧美,日韩| 国产免费视频播放在线视频 | 久久综合国产亚洲精品| 日韩,欧美,国产一区二区三区| 日本av手机在线免费观看| 色5月婷婷丁香| 精品一区在线观看国产| 不卡视频在线观看欧美| 一二三四中文在线观看免费高清| 搞女人的毛片| 国产综合精华液| 色综合色国产| 午夜福利视频1000在线观看| 国产精品一区二区性色av| 简卡轻食公司| 2022亚洲国产成人精品| 欧美丝袜亚洲另类| 永久免费av网站大全| 97精品久久久久久久久久精品| 久久99蜜桃精品久久| 狠狠精品人妻久久久久久综合| 亚洲av福利一区| 欧美高清成人免费视频www| 免费看美女性在线毛片视频| 国产精品99久久久久久久久| 69av精品久久久久久| 国产有黄有色有爽视频| 国产麻豆成人av免费视频| 免费观看a级毛片全部| 伊人久久国产一区二区| 国产精品三级大全| 91狼人影院| av国产久精品久网站免费入址| 白带黄色成豆腐渣| 少妇丰满av| 精品人妻一区二区三区麻豆| 亚洲内射少妇av| 亚洲欧美日韩东京热| 毛片女人毛片| 国产黄频视频在线观看| 日韩欧美国产在线观看| 最近视频中文字幕2019在线8| 亚洲av二区三区四区| 午夜精品在线福利| 国产精品国产三级专区第一集| 亚洲av不卡在线观看|