• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DYNAMICS ANALYSIS OF A DELAYED HIV INFECTION MODEL WITH CTL IMMUNE RESPONSE AND ANTIBODY IMMUNE RESPONSE?

    2021-06-17 14:00:04楊俊仙
    關(guān)鍵詞:楊俊

    (楊俊仙)

    School of Science,Anhui Agricultural University,Hefei 230036,China

    E-mail:yangjunxian1976@126.com

    Leihong WANG(王雷宏)

    School of Forestry and Landscape Architecture,Anhui Agricultural University,Hefei 230036,China

    E-mail:wangleihong208010@126.com

    Abstract In this paper,dynamics analysis of a delayed HIV infection model with CTL immune response and antibody immune response is investigated.The model involves the concentrations of uninfected cells,infected cells,free virus,CTL response cells,and antibody antibody response cells.There are three delays in the model:the intracellular delay,virus replication delay and the antibody delay.The basic reproductive number of viral infection,the antibody immune reproductive number,the CTL immune reproductive number,the CTL immune competitive reproductive number and the antibody immune competitive reproductive number are derived.By means of Lyapunov functionals and LaSalle’s invariance principle,sufficient conditions for the stability of each equilibrium is established.The results show that the intracellular delay and virus replication delay do not impact upon the stability of each equilibrium,but when the antibody delay is positive,Hopf bifurcation at the antibody response and the interior equilibrium will exist by using the antibody delay as a bifurcation parameter.Numerical simulations are carried out to justify the analytical results.

    Key words Beddington-DeAngelis incidence;CTL immune response;antibody immune response;delay

    1 Introduction

    As is well known,Human Immunodeficiency Virus(HIV)and Acquired Immune Deficiency Syndrome(AIDS)are a serious threat to human health.The main target of HIV/AIDS is CD4+T cells–which is one type of white blood cell in the human immune system–and it can cause the number of CD4+T cells to decrease greatly.HIV seriously affects the ability of patients to defend opportunistic infections,so the eradication of HIV is the ultimate goal of research groups worldwide.Mathematical models are of great significance in terms of understanding the dynamics of populations in the context of epidemics.Models of virus infection in the host have been widely studied,and have provided insight into the dynamics of viral load in vivo for further research on the progress and control of HIV[1–30].In particular,issues including stability and Hopf bifurcation provide specific information for us to be able to understand disease control.

    It should be pointed out that immune response during the process of viral infection is universal and necessary to eliminate or control the disease.The models which include the adaptive immune response in fighting free viruses and in reducing the number of infected cells have been studied[3–5].This adaptive immunity is represented by Cytotoxic T Lymphocyte(CTL)and antibody immune responses.CTL immune response cells,which attack infected cells,play a critical part in defending against HIV.Hence,viral infection models with CTL immune response cells have received much attention[9–13,16–20,22,26,29,30].Recently,scientists have discovered that some patients produce a potent immune molecule,called a broadly neutralizing antibody,which recognizes many different HIV viruses[14,15].An effective immune system needs both the antibody and CTL immune responses to prevent HIV infection.Thus,the HIV infection model that incorporates both the antibody and CTL immune responses could be a realistic model for describing the dynamics of HIV infection[16–20,29,30].In[16],a basic model with bilinear incidence was proposed to describe the interactions of the antibody and CTL immune responses,and it included uninfected target cells x(t),productively infected cells y(t),free virus v(t),CTL immune response cells z(t)and antibody response cells w(t).It was assumed that the incidence rate is bilinear in the model,namely,that the infection rate per host and per virus is a constant,but experiments have shown that the incident rate is probably not linear over the entire interaction range of susceptible cells x(t)and virus v(t)[6,7,10,19–30].In[22–29],a more general infection rate,the Beddington-DeAngelis incidence ratewas proposed,where a and b are positive constants.In[29],Miao et al.investigated the HIV infection model with a Beddington-DeAngelis functional response and three delays:the intracellular delay,virus replication delay,and immune response delay.They reached the conclusion that the intracellular delay and virus replication delay do not affect the stability of the equilibria,but that the immune response delay markedly affects the stability of CTL response equilibrium and the interior equilibrium.In[30],Guo et al.pointed out the antibody delay cannot be ignored in the viral infection model.This raises the question:how will the antibody delay affect the equilibrium of system(1.1)?This will be the focus of our consideration.

    In this paper,we consider a five-dimensional HIV infection model with a Beddington-DeAngelis incidence rate and three time delays describing the intracellular delay,the virus replication delay,and the antibody delay as follows:

    Here,Λ,k,c and g are the proliferation rate of the uninfected cells,the virus,the CTL response cells and the antibody response cells,respectively;β is the infection rate constant;d,r,u,h and α represent the death rate constants of uninfected target cells,productively infected cells,virus,CTL response cells and antibody response cells,respectively;p represents the killing rate of infected cells by CTL response cells;q is the antibody cells neutralization rate;τ1denotes the intracellular delay anddenotes the surviving rate of infected cells during delay period[t?τ1,t];τ2is the virus replication delay,denotes the surviving rate of the virus during the delay period[t?τ2,t],τ3denotes the antibody response delay.

    Let τ=max{τ1,τ2,τ3}and={(x1,x2,x3,x4,x5):xi≥0,i=1,2,3,4,5},C([?τ,0],)denote the space of continuous functions mapping the interval[?τ,0]into.The initial condition for system(1.1)is

    where(φ1(θ),φ2(θ),φ3(θ),φ4(θ),φ5(θ))∈C([?τ,0],).It is well known,by the fundamental theory of functional differential equations(see[31]),that system(1.1)has a unique solution(x(t),y(t),v(t),z(t),w(t))satisfying the initial conditions(1.2).

    The organization of this paper is as follows:in the next section,the basic properties of model(1.1)for the boundedness of solutions,the threshold values and the existence of five equilibria are discussed.In Section 3,the threshold conditions on the global stability and instability for the infection-free equilibrium E0,immune-free equilibrium E1and infection equilibrium E3with only CTL immune responses are stated.When τ3=0,the threshold conditions on the global stability and instability for the infection equilibrium E2with only antibody responses and infection equilibrium E4with both CTL immune responses and antibody responses are proved.In Section 4,when τ3>0,the sufficient conditions on the existence of Hopf bifurcation for the infection equilibrium E2with only antibody responses and infection equilibrium E4with both CTL and antibody responses are established.In Section 5,the numerical simulations are carried out to further illustrate the dynamical behaviour of the model.Finally,we will give a discussion.

    2 Preliminaries

    In this section,we discuss the basic properties of model(1.1)for the non-negativity and boundedness of solutions,the threshold values and the existence of five equilibria.

    2.1 Non-negativity and Boundedness of solutions

    Theorem 2.1Let(x(t),y(t),v(t),z(t),w(t))be the solution of model(1.1)satisfying initial conditions(1.2).Then x(t),y(t),v(t),z(t)and w(t)are nonnegative and bounded on[0,+∞).

    ProofFrom(1.1),we know that,for t≥0,

    This implies that

    In a similar way,we obtain that z(t)>0 and w(t)>0.

    Using Lemma 2 from the work of Yang et al.[32],we obtain that y(t)>0 and v(t)>0.

    Next,we establish the boundedness of the solutions of system(1.1).Define

    We have

    Therefore,x(t),y(t),v(t),z(t)and w(t)are nonnegative and bounded on[0,+∞).This completes the proof. □

    2.2 The existence of equilibria

    Clearly,system(1.1)always exists an infection-free equilibrium E0(x0,0,0,0,0),where

    The basic reproductive number of viral infection for model(1.1)is

    where R0denotes the average amount of the free virus released by the infected cells which are infected by the first virus.

    It is easily proved that R0>1 implies>ur(d+aΛ)and k(β+bd)>

    If R0>1,system(1.1)means that there is an immune-free equilibrium E1(x1,y1,v1,0,0),besides the equilibrium E0,where

    Then,we obtain the antibody immune reproductive number R1and the CTL immune reproductive number R2for model(1.1)as follows:

    Here,R1denotes the average number of the antibody immune cells activated by the virus when virus infection is successful and CTL responses have not been established,and R2denotes the average number of the CTL immune cells activated by infected cells when virus infection is successful and antibody immune responses have not been established.

    We know that R1>1 is equivalent to gv1?α>0,and R2>1 is equivalent to cy1?h>0.If R1>1,system(1.1)gives a unique infection equilibrium E2(x2,y2,v2,0,w2)with only antibody responses,where

    and x2is a unique positive zero point of the quadratic function

    Next,we prove that each component of equilibrium E2is positive if R1>1.In fact,from

    it is easy to show that

    Therefore,if R1>1,we have

    Thus,it follows that

    From the expression of ω2,it follows that the existence of equilibrium E2is equivalent to

    Noticing that L(0)<0,we know that the existence and uniqueness of equilibrium E2is equivalent to

    Since

    from R1>1,we have

    Therefore,when R1>1,we obtain

    If R2>1,with system(1.1)there exists a unique infection equilibrium E3(x3,y3,v3,z3,0)with only CTL responses,where

    and x3is a unique positive root of the quadratic function

    Next,we prove that each component of equilibrium E3is positive if R2>1.In fact,from

    it is easy to show that

    Therefore,if R2>1,we have

    Thus,it follows that

    From the expression of z3,it follows that the existence of equilibrium E3is equivalent to

    Noticing that H(0)<0,we know that the existence and uniqueness of equilibrium E3is equivalent to

    Since

    from R2>1,we have

    Therefore,when R2>1,we obtain

    Furthermore,we obtain the CTL immune competitive reproductive number R3and the antibody immune competitive reproductive number R4for model(1.1)as follows:

    Here,R3denotes the average number of the CTL immune cells activated by infected cells under the condition that antibody immune responses have been established,and R4denotes the average number of the antibody immune cells activated by virus under the condition that CTL immune responses have been established.

    If R3>1 and R4>1,system(1.1)gives a unique infection equilibrium E4(x4,y4,v4,z4,w4)with CTL and antibody responses,where

    3 Stability Analysis of Each Equilibrium

    In this section,we discuss the global stability and instability for the infection-free equilibrium E0,immune-free equilibrium E1,and infection equilibrium E3with only CTL immune responses,and when τ3=0,the global stability for the infection equilibrium E2with only antibody responses and infection equilibrium E4with both CTL and antibody responses.

    Let g(x)=x?1?lnx.Clearly,for x∈(0,+∞),g(x)is nonnegative and has the global minimum at x=1 and g(1)=0.

    Theorem 3.1(i)If R0≤1,then the infection-free equilibrium E0(x0,0,0,0,0)is globally asymptotically stable;(ii)If R0>1,then E0(x0,0,0,0,0)is unstable.

    Proof(i)Define a Lyapunov function

    Clearly,V1(t)≥0,and V1(t)=0 if and only if x(t)=x0,y(t)=0,v(t)=0,z(t)=0 and ω(t)=0.

    Then the time derivative of V1(t)along system(1.1)satisfies

    Note that

    (ii)The characteristic equation of the linearized system of model(1.1)at the equilibrium E0is

    Clearly,equation(3.1)always has three negative real roots:λ1=?d,λ2=?α,λ3=?h.Hence,the stability of E0is determined by the roots of equation

    Let

    If R0>1,it is easy to show that

    Hence,equation(3.2)has at least one positive real root in this case.Therefore,if R0>1,the equilibrium E0is unstable.This completes the proof. □

    Theorem 3.2Let R0>1.

    (i)If R1≤1 and R2≤1,then the immune-free equilibrium E1(x1,y1,v1,0,0)is globally asymptotically stable.

    (ii)If R1>1 or R2>1,then E1(x1,y1,v1,0,0)is unstable.

    Proof(i)Define a Lyapunov function

    Clearly,V2(t)≥0,and V2(t)=0 if and only if x(t)=x1,y(t)=y1,v(t)=v1,z(t)=0 and w(t)=0.

    Then the time derivative of V2(t)along system(1.1)satisfies

    Note that

    (ii)The characteristic equation of the linearized system of model(1.1)at the equilibrium E1is

    where

    Let

    When R2>1,then we have h?cy1<0.Hence,f3(λ)=0 has one positive root λ?=cy1?h.

    Therefore,when R1>1 or R2>1,E1is unstable.This completes the proof. □

    Theorem 3.3Let R0>1 and R1>1.

    (i)If R3≤1 and τ3=0,then the antibody response equilibrium E2(x2,y2,v2,0,w2)is globally asymptotically stable.

    (ii)If R3>1,then E2(x2,y2,v2,0,w2)is unstable.

    Proof(i)Define a Lyapunov function

    Clearly,V3(t)≥0,and V3(t)=0 if and only if x(t)=x2,y(t)=y2,v(t)=v2,z(t)=0 and ω(t)=ω2.

    Then the time derivative of V3(t)along system(1.1)satisfies

    Note that

    which yields w(t)=w2.From LaSalle’s invariance principle[31],we have that E2is globally asymptotically stable when R0>1,R1>1,R3≤1 and τ3=0.(ii)The characteristic equation of the linearized system of model(1.1)at the equilibrium E2is

    where

    Let

    When R3>1,then we have f2(0)=h?cy2<0,and=+∞.Hence,f2(λ)=0 has at least one positive root.

    Therefore,when R3>1,E2is unstable.This completes the proof. □

    Theorem 3.4Let R0>1 and R2>1.

    (i)If R4≤1,then the CTL immune response equilibrium E3(x3,y3,v3,z3,0)is globally asymptotically stable.

    (ii)If R4>1,then E3(x3,y3,v3,z3,0)is unstable.

    Proof(i)Define a Lyapunov function

    Clearly,V4(t)≥0,and V4(t)=0 if and only if x(t)=x3,y(t)=y3,v(t)=v3,z(t)=z3and ω(t)=0.

    Then the time derivative of V4(t)along system(1.1)satisfies

    Note that

    (ii)The characteristic equation of the linearized system of model(1.1)at the equilibrium E3is

    Therefore,when R4>1,E3is unstable.This completes the proof. □

    Theorem 3.5If R0>1,R2>1,R3>1,R4>1 and τ3=0,the interior equilibrium E4(x4,y4,v4,z4,w4)is globally asymptotically stable.

    ProofDefine a Lyapunov function

    Clearly,V5(t)≥0,and V5(t)=0 if and only if x(t)=x4,y(t)=y4,v(t)=v4,z(t)=z4and ω(t)=ω4.

    Then the time derivative of V5(t)along system(1.1)satisfies

    Note that

    which yields z(t)=z4,w(t)=w4.From LaSalle’s invariance principle[31],we have that E4is globally asymptotically stable when R0>1,R2>1,R3>1,R4>1 and τ3=0.This completes the proof. □

    4 Hopf Bifurcation Analysis of E2 and E4

    4.1 Hopf bifurcation analysis of E2

    By Theorem 3.3,we obtain the globally asymptotic stability of the equilibrium E2when τ1≥0,τ2≥0,τ3=0.However,when τ3>0,Hope bifurcation occurs at the equilibrium E2.When τ1>0,τ2>0,the calculation is too complicated.Hence,in order to simplify the calculation,we let τ1=0,τ2=0,τ3>0 in the discussions that follow.

    From(3.4),the characteristic equation of the linearized system of model(1.1)at the equilibrium E2is

    Letting λ=iω(ω>0)be a solution of equation(4.1),separating real and imaginary parts,it follows that

    Squaring and adding the two equations of(4.2),we obtain that

    where

    Letting ξ=ω2,equation(4.3)becomes

    In what follows,some lemmas will be given to establish the existence of positive roots of equation(4.4).

    Lemma 4.1If e0<0,then equation(4.4)has at least one positive root.

    ProofDenote

    Next,we will discuss the distribution of positive roots of equation(4.4)when e0≥0.The derivative of F(ξ)with respect to ξ is

    Lemma 4.2Suppose that e0≥0 and b?1=0.Then

    (i)if Δ0<0,then equation(4.4)has no positive real roots;

    (ii)if Δ0≥0,a?1≥0 and c?1>0,then equation(4.4)has no positive real roots;

    (iii)if(i)and(ii)are not satisfied,then equation(4.4)has positive real roots if and only if there exists at least one ξ?∈{ξ1,ξ2,ξ3,ξ4}such that ξ?>0 and F(ξ?)≤0.

    Denote

    (i)if Δ2<0 and Δ3<0,then equation(4.4)has no positive real roots;

    (ii)if(i)is not satisfied,then equation(4.4)has positive real roots if and only if there exists at least one ξ?∈{ξ1,ξ2,ξ3,ξ4}such that ξ?>0 and F(ξ?)≤0,where ξi=(i=1,2,3,4),and

    Suppose that equation(4.4)has positive roots.Without loss of generality,we assume that it has m(1≤m≤5)positive roots,denoted by ξk,k=1,2,...,m.Then equation(4.3)has m positive roots ωk=k=1,2,...,m.

    From equation(4.2),we have

    Thus,if we denote

    From equation(4.3),we get

    By equation(4.5),we have

    Therefore,

    This completes the proof. □

    Summing up the above lemmas and the Hopf bifurcation theorem for functional differential equation[33],we get the following conclusion:

    Theorem 4.6Let ξ0and ω0,τ0be defined by equation(4.9).

    4.2 Hopf bifurcation analysis of E4

    By Theorem 3.5,we obtain the globally asymptotic stability of the equilibrium E4when R0>1,R2>1,R3>1,R4>1 and τ3=0.From the theoretical analysis that follows,we will see that Hopf bifurcation occurs at the equilibrium E4when τ3>0.However,when τ1>0,τ2>0,the calculation is too complicated.Hence,in order to simplify the calculation,we also let τ1=0,τ2=0,τ3>0 in the ensuing discussions.

    The characteristic equation of the linearized system of model(1.1)at the equilibrium E4is

    Letting λ=iω(ω>0)be a solution of equation(4.10),separating real and imaginary parts,it follows that

    Squaring and adding the two equations of(4.11),we obtain that

    where

    Letting ξ=ω2,equation(4.12)becomes

    The derivative of H(ξ)with respect to ξ is

    Denote

    Applying the same method as Theorem 4.6,we have the following result:

    Theorem 4.7Let ξ0and ω0,τ0be defined by equation(4.9).

    5 Numerical Simulations

    In Theorems 4.6 and 4.7,by using the theory of bifurcation,we have gather the existence of the Hopf bifurcation at equilibria E2and E4when τ1=0,τ2=0,τ3>0.However,when τ1>0,τ2>0,τ3>0,the theoretical analysis is very complicated.Thus,in what follows,by the numerical simulations it is shown that the Hopf bifurcation and stability switches occur at E2and E4as τ3increases.

    Example 5.1In system(1.1),we choose a set of parameters as follows:

    Λ=10,d=0.01,r=0.8,p=1,b=0.01,k=0.4,u=0.3,q=1,g=1.5,m=0.01,n=0.01,c=0.01,h=0.8,a=0.02,β=0.5,α=1,τ1=10,τ2=0.2.

    By direct calculation,we obtain that E2(64.4132,10.5819,0.6667,0,6.0365),and R1=22.5403>1,R3=0.1323<1.From Figure 1 to Figure 4,with the increase of τ3,the dynamic behavior of the equilibrium E2will change;that is,Hopf bifurcation appears.

    Figure 1 When τ3=0.1,infection equilibrium E2 with only the antibody response of system(1.1)is locally asymptotically stable

    Figure 2 When τ3=1.5,infection equilibrium E2 with only the antibody response of system(1.1)is unstable

    Figure 3 When τ3=8.95,infection equilibrium E2 with only the antibody response of system(1.1)is locally asymptotically stable

    Example 5.2In system(1.1),we choose a set of parameters as follows:

    Λ=10,d=0.01,r=0.5,p=1,b=0.01,k=0.4,u=0.3,q=1,g=1.5,m=0.01,n=0.01,c=0.1,h=0.15,a=0.02,β=0.5,α=1,τ1=1,τ2=4.

    By direct calculation,we obtain that E4(64.4132,1.5,0.6667,5.6752,0.5647),and R1=37.2577>1,R3=12.2275>1,R4=2.8537>1.From Figure 5 to Figure 8,with the increase of τ3,the dynamic behavior of the equilibrium E4will change as follows:locally asymptotically stable→unstable→locally asymptotically stable→unstable;that is,Hopf bifurcation appears.

    Figure 4 When τ3=10,infection equilibrium E2 with only the antibody response of system(1.1)is unstable

    Figure 5 When τ3=0.001,the infection equilibrium E4,with both the antibody and CTL responses of system(1.1),is locally asymptotically stable

    Figure 6 When τ3=2,the infection equilibrium E4,with both the antibody and CTL responses of system(1.1),is unstable

    Figure 7 When τ3=22.7,the infection equilibrium E4,with both the antibody and CTL responses of system(1.1),is locally asymptotically stable

    Figure 8 When τ3=30,the infection equilibrium E4,with both the antibody and CTL responses of system(1.1),is unstable

    6 Discussion

    In this paper,a delayed viral infection model with CTL immune response and antibody immune response have been considered,along with three delays:the intracellular delay,virus replication delay and the antibody delay.We assumed that the production of CTL immune response depends on the infected cells and CTL cells,and the production of antibody response depends on the virus and antibody cells.

    In Section 2,we presented that the solutions of model(1.1)are bounded,and showed that this model exists with five possible equilibria:an infection-free equilibrium E0,an immune-free equilibrium E1,an infection equilibrium E2with only antibody response,an infection equilibrium E3with only CTL response,and an infection equilibrium E4with both CTL and antibody responses,depending on the threshold values.In this paper,we have presented five threshold values:the basic reproductive rate of viral infection R0,the antibody immune reproductive rate R1,the CTL immune reproductive rate R2,the CTL immune competitive reproductive rate R3,and the antibody immune competitive reproductive rate R4.These determine not only the existence of the equilibrium point,but also the dynamic behavior of the model.

    In Section 3,the results have shown that when R0≤1,E0is globally asymptotically stable for any time delay τ1,τ2,τ3≥0,which means that the viruses are cleared,and CTL immunity and antibody immunity are not active.Moreover,we found that R0can be reduced by increasing the delay τ1and τ2;that is,we can reduce the average amount of viral infection.When R0>1,R1≤1 and R2≤1,E1is globally asymptotically stable for any time delay τ1,τ2,τ3≥0,which means that the infection becomes chronic but with no persistent CTL immune responses and antibody responses.When R0>1,R2>1,and R4≤1,E3is globally asymptotically stable for any time delay τ1,τ2,τ3≥0,which means that the infection becomes chronic with persistent CTL immune responses,but the virus loads cannot activate the antibody responses.The above results show that delays τ1,τ2,and τ3do not impact the global asymptotic properties of E0,E1,E3,and therefore the possibility of Hopf bifurcation is ruled out.With respect to the analysis of E2,E4,we considered special cases τ1≥0,τ2≥0,and τ3=0.When R0>1,R1>1,and R3≤1,E2is globally asymptotically stable,which means that the infection becomes chronic with persistent antibody responses,but the infected cells cannot stimulate and activate CTL immune responses.When R0>1,R2>1,R3>1,and R4>1,E4is globally asymptotically stable,that is,uninfected target cells,infected cells,free virus,CTL response cells and antibody response cells coexist in vivo.From the above results,we see that delays τ1,τ2do not impact upon the global asymptotic properties of E2,E4,but the antibody delay τ3can impact upon the stability of E2,E4.

    In Section 4,by using the bifurcation theory,a detailed analysis on the local asymptotic stability and the existence of Hopf bifurcation at the equilibrium point E2and E4was carried out when τ3>0.When τ1>0,τ2>0,the calculation proved to be too complicated.Hence,in order to simplify the calculation,we let τ1=0,τ2=0,τ3>0.In Section 5,by means of numerical simulations,it was shown that Hopf bifurcation occurs at the equilibrium points E2and E4as the antibody delay τ3increases.From Figures 1 to 8,as τ3increases,we saw that the dynamic behavior of E2and E4will change as follows:locally asymptotically stable→unstable→locally asymptotically stable→unstable;that is,Hopf bifurcation appears.

    Summarizing these results,we point out that the intracellular delay τ1and virus replication delay τ2do not impact the stability of all the equilibria,but the antibody delay τ3markedly affects the stability of the antibody response equilibrium E2and the interior equilibrium E4.This indicates that the antibody delay τ3plays a negative part in the diseases prevalence and control.In this paper,we have extended the conclusions of the model in[30]with a saturation incidence rate to a Beddington-DeAngelis infection rate,and have successfully completed the questions raised by Miao[29].We also point out the essential difference between our results and the results in[29],by which our work was motivated.In[29],CTL immune delay was considered,and the conclusion was that immune response delay markedly affects the stability of CTL response equilibrium and the interior equilibrium.In our model,however,the antibody delay was discussed,which is precisely the question raised in[29],but not studied,and a different conclusion has been drawn:the antibody delay markedly affects the stability of the antibody response equilibrium and the interior equilibrium.

    猜你喜歡
    楊俊
    Tailoring topological corner states in photonic crystals by near-and far-field coupling effects
    Topological states switching and group velocity control in two-dimensional non-reciprocal Hermitian photonic lattice
    Topological resonators based on hexagonal-star valley photonic crystals
    楊俊德:農(nóng)業(yè)豐收的“守護(hù)神”
    Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica*
    執(zhí)著
    詩(shī)潮(2019年11期)2019-11-23 12:20:12
    追愛(ài)五十天,這是浪漫的開(kāi)始嗎?
    追愛(ài)五十天,這是浪漫的開(kāi)始嗎?
    李泊城 隋邦平 楊俊顯 王綠竹 作品
    大眾文藝(2019年3期)2019-01-24 13:39:44
    《紅蜻蜓》教案
    成年动漫av网址| 黄片小视频在线播放| 午夜福利,免费看| 在线看a的网站| 日本一区二区免费在线视频| 精品第一国产精品| 亚洲三区欧美一区| 欧美变态另类bdsm刘玥| av超薄肉色丝袜交足视频| 桃花免费在线播放| 精品一区二区三区av网在线观看 | 一边摸一边抽搐一进一出视频| 蜜桃国产av成人99| 国产精品二区激情视频| 视频区欧美日本亚洲| 亚洲av日韩在线播放| 亚洲国产av影院在线观看| 黄色怎么调成土黄色| 一级黄色大片毛片| 亚洲国产看品久久| 欧美在线一区亚洲| 精品久久蜜臀av无| 亚洲欧美一区二区三区久久| av线在线观看网站| 免费高清在线观看日韩| 麻豆国产av国片精品| 99久久国产精品久久久| 别揉我奶头~嗯~啊~动态视频 | 91精品三级在线观看| 国产一区二区三区综合在线观看| 捣出白浆h1v1| 亚洲九九香蕉| 日韩视频一区二区在线观看| 免费高清在线观看日韩| 精品久久久久久久毛片微露脸 | 亚洲七黄色美女视频| 狠狠婷婷综合久久久久久88av| 亚洲av日韩精品久久久久久密| 亚洲九九香蕉| 亚洲美女黄色视频免费看| 中文字幕人妻丝袜一区二区| 99国产综合亚洲精品| 久久女婷五月综合色啪小说| 久久精品国产亚洲av高清一级| 交换朋友夫妻互换小说| 亚洲av国产av综合av卡| 深夜精品福利| 黄片播放在线免费| 国产精品免费大片| 中国国产av一级| 色婷婷av一区二区三区视频| 国产亚洲欧美精品永久| 欧美少妇被猛烈插入视频| 黄片播放在线免费| 少妇猛男粗大的猛烈进出视频| 久久人人爽av亚洲精品天堂| www.999成人在线观看| 99精品欧美一区二区三区四区| 大香蕉久久网| 免费观看av网站的网址| 亚洲精品国产精品久久久不卡| 99国产综合亚洲精品| 久久久水蜜桃国产精品网| 欧美激情高清一区二区三区| 亚洲黑人精品在线| 日韩人妻精品一区2区三区| 亚洲久久久国产精品| 午夜影院在线不卡| 蜜桃国产av成人99| 老司机深夜福利视频在线观看 | 国产老妇伦熟女老妇高清| 久久综合国产亚洲精品| 黄色片一级片一级黄色片| 天天添夜夜摸| 久热这里只有精品99| 亚洲专区中文字幕在线| 午夜激情av网站| 99久久综合免费| 欧美少妇被猛烈插入视频| 日韩一卡2卡3卡4卡2021年| 狠狠婷婷综合久久久久久88av| 亚洲第一青青草原| 精品人妻一区二区三区麻豆| 黄色视频在线播放观看不卡| 精品少妇久久久久久888优播| 午夜激情久久久久久久| 女警被强在线播放| 久久免费观看电影| 叶爱在线成人免费视频播放| 国产又色又爽无遮挡免| 99久久人妻综合| 丝袜脚勾引网站| 国产成人a∨麻豆精品| 中文字幕最新亚洲高清| 国产97色在线日韩免费| 男人操女人黄网站| 国产精品 国内视频| 大陆偷拍与自拍| 巨乳人妻的诱惑在线观看| 欧美亚洲日本最大视频资源| 亚洲精品av麻豆狂野| 免费在线观看黄色视频的| 精品亚洲乱码少妇综合久久| 麻豆乱淫一区二区| 精品一区在线观看国产| 一区二区三区精品91| 国产在线免费精品| 国产精品国产av在线观看| 亚洲国产欧美日韩在线播放| 91精品伊人久久大香线蕉| 2018国产大陆天天弄谢| 两性夫妻黄色片| 日韩熟女老妇一区二区性免费视频| 国产亚洲av片在线观看秒播厂| 免费在线观看影片大全网站| 亚洲专区字幕在线| 欧美精品av麻豆av| 麻豆国产av国片精品| 中文字幕人妻丝袜制服| 老熟妇仑乱视频hdxx| 成年女人毛片免费观看观看9 | 男女床上黄色一级片免费看| 免费在线观看视频国产中文字幕亚洲 | 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美一区二区三区久久| 女性被躁到高潮视频| 亚洲av日韩在线播放| 免费在线观看完整版高清| 国产精品一区二区精品视频观看| 国产99久久九九免费精品| 成人国产av品久久久| 夜夜骑夜夜射夜夜干| 亚洲欧洲日产国产| 国产精品秋霞免费鲁丝片| 叶爱在线成人免费视频播放| 国产精品国产av在线观看| av线在线观看网站| 老司机在亚洲福利影院| 亚洲欧美日韩高清在线视频 | 在线天堂中文资源库| 免费少妇av软件| 国产一级毛片在线| 国产精品久久久久成人av| 两个人看的免费小视频| 亚洲免费av在线视频| 国产国语露脸激情在线看| 亚洲av欧美aⅴ国产| 久久女婷五月综合色啪小说| 免费在线观看完整版高清| 91成人精品电影| 秋霞在线观看毛片| 男男h啪啪无遮挡| 亚洲国产中文字幕在线视频| 亚洲激情五月婷婷啪啪| 午夜福利免费观看在线| 精品人妻1区二区| 麻豆乱淫一区二区| 国产在视频线精品| 一本—道久久a久久精品蜜桃钙片| 国产一区二区三区av在线| 国产伦人伦偷精品视频| 久久久水蜜桃国产精品网| 精品一品国产午夜福利视频| 丰满饥渴人妻一区二区三| 午夜福利影视在线免费观看| 国产一区二区 视频在线| 日韩一卡2卡3卡4卡2021年| 久久精品成人免费网站| 欧美激情极品国产一区二区三区| 男女无遮挡免费网站观看| 97在线人人人人妻| 国产视频一区二区在线看| 在线十欧美十亚洲十日本专区| 丝袜美足系列| 色婷婷av一区二区三区视频| 99热网站在线观看| 热99re8久久精品国产| 国产精品久久久久久人妻精品电影 | 亚洲伊人久久精品综合| 最新的欧美精品一区二区| av网站免费在线观看视频| 亚洲性夜色夜夜综合| 久久久久精品人妻al黑| 青春草视频在线免费观看| 欧美av亚洲av综合av国产av| 动漫黄色视频在线观看| 国产亚洲精品一区二区www | 女性被躁到高潮视频| 亚洲成人手机| 99国产精品99久久久久| 亚洲欧洲精品一区二区精品久久久| 久久久国产一区二区| 各种免费的搞黄视频| 在线观看免费日韩欧美大片| 亚洲欧美一区二区三区黑人| 老司机影院毛片| 美女高潮喷水抽搐中文字幕| 青春草视频在线免费观看| 99国产极品粉嫩在线观看| 成人国产一区最新在线观看| 午夜视频精品福利| 日韩 亚洲 欧美在线| 亚洲av成人一区二区三| 亚洲 欧美一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 高清欧美精品videossex| 黄片播放在线免费| 国产日韩一区二区三区精品不卡| 人人妻人人添人人爽欧美一区卜| 黑人欧美特级aaaaaa片| 欧美一级毛片孕妇| 日韩大片免费观看网站| 99久久国产精品久久久| 欧美日韩福利视频一区二区| 波多野结衣一区麻豆| 一级片免费观看大全| 女性生殖器流出的白浆| 捣出白浆h1v1| 欧美黑人欧美精品刺激| 亚洲精品美女久久久久99蜜臀| 日韩欧美一区二区三区在线观看 | av不卡在线播放| 国产成人精品久久二区二区免费| 久久国产亚洲av麻豆专区| 久久 成人 亚洲| 免费av中文字幕在线| 久久久久视频综合| 在线av久久热| 久久久国产一区二区| 成人三级做爰电影| 久久久久国产一级毛片高清牌| 人妻久久中文字幕网| 国产成人欧美在线观看 | 老司机午夜十八禁免费视频| 亚洲一码二码三码区别大吗| 肉色欧美久久久久久久蜜桃| 日本a在线网址| 欧美日韩亚洲综合一区二区三区_| 国产有黄有色有爽视频| 叶爱在线成人免费视频播放| 叶爱在线成人免费视频播放| 午夜福利在线免费观看网站| 久久久久精品人妻al黑| 成人亚洲精品一区在线观看| 在线天堂中文资源库| 精品乱码久久久久久99久播| 免费在线观看完整版高清| 男女床上黄色一级片免费看| 国产精品麻豆人妻色哟哟久久| 国产不卡av网站在线观看| 欧美午夜高清在线| 国产一卡二卡三卡精品| 久久久久精品人妻al黑| 亚洲av日韩精品久久久久久密| 一个人免费在线观看的高清视频 | a级片在线免费高清观看视频| 成年动漫av网址| 国产免费av片在线观看野外av| 少妇精品久久久久久久| 亚洲国产毛片av蜜桃av| 国产xxxxx性猛交| 亚洲成人免费av在线播放| 新久久久久国产一级毛片| 国产又爽黄色视频| 人妻 亚洲 视频| 国产又色又爽无遮挡免| 亚洲精品美女久久av网站| 五月开心婷婷网| 日韩熟女老妇一区二区性免费视频| 美女脱内裤让男人舔精品视频| 性色av乱码一区二区三区2| 国产亚洲精品久久久久5区| 亚洲精品自拍成人| 精品熟女少妇八av免费久了| 日韩有码中文字幕| 中文字幕人妻熟女乱码| 久久久久久久久久久久大奶| 欧美精品人与动牲交sv欧美| 满18在线观看网站| 亚洲人成电影观看| 久久香蕉激情| 久久久久久亚洲精品国产蜜桃av| 国产男人的电影天堂91| 黑人欧美特级aaaaaa片| 黄色毛片三级朝国网站| 99久久99久久久精品蜜桃| 亚洲午夜精品一区,二区,三区| a级毛片黄视频| 99热全是精品| 蜜桃国产av成人99| 波多野结衣av一区二区av| 亚洲国产看品久久| 老汉色av国产亚洲站长工具| 十八禁网站网址无遮挡| 老司机影院毛片| 国产成人精品久久二区二区91| 国产成人影院久久av| 亚洲欧美成人综合另类久久久| 国产成人av教育| 一级片'在线观看视频| 亚洲欧洲精品一区二区精品久久久| 99国产精品99久久久久| 亚洲av欧美aⅴ国产| 伊人亚洲综合成人网| 国产黄频视频在线观看| 日本一区二区免费在线视频| 狂野欧美激情性xxxx| 日韩中文字幕视频在线看片| 亚洲欧洲精品一区二区精品久久久| 黄色怎么调成土黄色| 亚洲情色 制服丝袜| 国产av国产精品国产| 国产精品久久久久久精品电影小说| 成人国产一区最新在线观看| 91麻豆精品激情在线观看国产 | 午夜福利影视在线免费观看| 丝袜脚勾引网站| 黄色 视频免费看| 国产精品久久久av美女十八| 宅男免费午夜| 国产男女超爽视频在线观看| 男女下面插进去视频免费观看| 久久性视频一级片| 99久久国产精品久久久| 亚洲avbb在线观看| 国精品久久久久久国模美| 热99国产精品久久久久久7| 国产亚洲一区二区精品| 久久人人97超碰香蕉20202| 亚洲国产毛片av蜜桃av| 蜜桃在线观看..| 视频区欧美日本亚洲| 天天操日日干夜夜撸| 国产色视频综合| 日本撒尿小便嘘嘘汇集6| 国产成人啪精品午夜网站| 黄片播放在线免费| 美国免费a级毛片| 手机成人av网站| 精品国产超薄肉色丝袜足j| 国产一区有黄有色的免费视频| 欧美激情 高清一区二区三区| 成人免费观看视频高清| 亚洲精品粉嫩美女一区| 亚洲国产精品一区二区三区在线| 亚洲一卡2卡3卡4卡5卡精品中文| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久精品国产欧美久久久 | 啦啦啦视频在线资源免费观看| 久久久久久久精品精品| 99九九在线精品视频| 亚洲五月色婷婷综合| 成年av动漫网址| 久久亚洲国产成人精品v| 91av网站免费观看| 欧美日韩成人在线一区二区| 亚洲免费av在线视频| 青春草亚洲视频在线观看| 色婷婷久久久亚洲欧美| 日韩 亚洲 欧美在线| 午夜免费成人在线视频| 99re6热这里在线精品视频| 久久国产精品大桥未久av| 国产一区二区三区在线臀色熟女 | 青青草视频在线视频观看| 无限看片的www在线观看| 亚洲精品在线美女| 精品国产一区二区三区四区第35| 99re6热这里在线精品视频| 欧美精品人与动牲交sv欧美| 国产成人av教育| 国产日韩一区二区三区精品不卡| 欧美 亚洲 国产 日韩一| tube8黄色片| 日韩三级视频一区二区三区| 亚洲精华国产精华精| 99热网站在线观看| 啦啦啦视频在线资源免费观看| 久久久久国产精品人妻一区二区| av欧美777| 中文字幕人妻丝袜制服| 日韩有码中文字幕| 黄片播放在线免费| 水蜜桃什么品种好| 免费黄频网站在线观看国产| 亚洲精品美女久久久久99蜜臀| a级毛片在线看网站| 最新在线观看一区二区三区| 亚洲综合色网址| 少妇猛男粗大的猛烈进出视频| 一区福利在线观看| 极品少妇高潮喷水抽搐| 亚洲九九香蕉| 成年女人毛片免费观看观看9 | 国产高清视频在线播放一区 | 人妻久久中文字幕网| 久久ye,这里只有精品| 黑人巨大精品欧美一区二区mp4| 蜜桃国产av成人99| 欧美激情 高清一区二区三区| 国产色视频综合| 精品人妻在线不人妻| 久久免费观看电影| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美激情在线| 十八禁网站免费在线| 99热国产这里只有精品6| 亚洲国产欧美网| 十八禁高潮呻吟视频| 91av网站免费观看| 一级片'在线观看视频| 亚洲欧美精品综合一区二区三区| 久久久欧美国产精品| 成年人黄色毛片网站| 亚洲色图综合在线观看| 水蜜桃什么品种好| 精品视频人人做人人爽| 性色av乱码一区二区三区2| 国产成人av教育| 日韩免费高清中文字幕av| 亚洲av成人不卡在线观看播放网 | 亚洲av男天堂| 国产亚洲欧美精品永久| 国产免费视频播放在线视频| 999精品在线视频| 免费在线观看完整版高清| 亚洲一区二区三区欧美精品| 久久久国产一区二区| 国产精品熟女久久久久浪| 精品人妻一区二区三区麻豆| 精品国产一区二区三区久久久樱花| 免费不卡黄色视频| 亚洲第一欧美日韩一区二区三区 | 十八禁高潮呻吟视频| 欧美日韩中文字幕国产精品一区二区三区 | 女人精品久久久久毛片| 丝袜美足系列| 咕卡用的链子| 日本五十路高清| 亚洲性夜色夜夜综合| 日韩有码中文字幕| 久久热在线av| 国产精品一二三区在线看| 午夜福利乱码中文字幕| 香蕉丝袜av| 精品欧美一区二区三区在线| 免费日韩欧美在线观看| 18禁观看日本| 亚洲成人国产一区在线观看| 久久性视频一级片| 色综合欧美亚洲国产小说| 女人爽到高潮嗷嗷叫在线视频| 飞空精品影院首页| 99精品欧美一区二区三区四区| 国产精品成人在线| 制服人妻中文乱码| av免费在线观看网站| 另类亚洲欧美激情| 亚洲精品久久久久久婷婷小说| 操出白浆在线播放| 91九色精品人成在线观看| 蜜桃国产av成人99| 国产欧美亚洲国产| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利影视在线免费观看| 国产日韩欧美在线精品| 国产av精品麻豆| 老司机福利观看| 在线观看舔阴道视频| 天天躁夜夜躁狠狠躁躁| 国产亚洲欧美在线一区二区| 人人妻人人澡人人看| 日日夜夜操网爽| 免费在线观看影片大全网站| 日本黄色日本黄色录像| 国产麻豆69| 亚洲一区中文字幕在线| 18禁观看日本| 国产av精品麻豆| 欧美少妇被猛烈插入视频| 一区二区三区激情视频| 男女床上黄色一级片免费看| 一进一出抽搐动态| 在线十欧美十亚洲十日本专区| 热99久久久久精品小说推荐| 18禁黄网站禁片午夜丰满| 黄色视频在线播放观看不卡| 午夜福利免费观看在线| 黄片播放在线免费| av欧美777| 日韩有码中文字幕| 又黄又粗又硬又大视频| 999久久久国产精品视频| 国产野战对白在线观看| 肉色欧美久久久久久久蜜桃| 正在播放国产对白刺激| 男人舔女人的私密视频| 国产精品 国内视频| 亚洲情色 制服丝袜| 亚洲av成人不卡在线观看播放网 | 美女大奶头黄色视频| 成人三级做爰电影| 777久久人妻少妇嫩草av网站| 国产免费av片在线观看野外av| 视频在线观看一区二区三区| 两个人看的免费小视频| 老司机靠b影院| 精品一品国产午夜福利视频| 国产黄色免费在线视频| 午夜91福利影院| 中文字幕人妻丝袜一区二区| 免费人妻精品一区二区三区视频| 视频区图区小说| 久久久精品94久久精品| 男女之事视频高清在线观看| 爱豆传媒免费全集在线观看| 午夜激情av网站| www.av在线官网国产| 中文字幕色久视频| 天堂俺去俺来也www色官网| 丝袜美腿诱惑在线| 成人18禁高潮啪啪吃奶动态图| 自线自在国产av| 国产精品九九99| 日韩制服骚丝袜av| 婷婷色av中文字幕| 性色av乱码一区二区三区2| 国精品久久久久久国模美| 国产野战对白在线观看| 狠狠狠狠99中文字幕| 大片电影免费在线观看免费| 亚洲精品第二区| 久久久久精品人妻al黑| 中文精品一卡2卡3卡4更新| 一级a爱视频在线免费观看| 天天添夜夜摸| 制服人妻中文乱码| 老熟女久久久| 大香蕉久久成人网| 成年人午夜在线观看视频| 亚洲精品美女久久av网站| 欧美一级毛片孕妇| 国产成+人综合+亚洲专区| 欧美亚洲日本最大视频资源| 国产精品自产拍在线观看55亚洲 | 蜜桃在线观看..| 欧美亚洲 丝袜 人妻 在线| 国产在视频线精品| 99re6热这里在线精品视频| av福利片在线| 亚洲国产欧美网| 亚洲精品美女久久久久99蜜臀| 大片电影免费在线观看免费| 黑人巨大精品欧美一区二区蜜桃| 男人操女人黄网站| 国产精品99久久99久久久不卡| 欧美xxⅹ黑人| 在线观看免费高清a一片| 日韩三级视频一区二区三区| 国产精品 欧美亚洲| 精品视频人人做人人爽| 精品久久久久久电影网| 好男人电影高清在线观看| 日韩欧美免费精品| 日日夜夜操网爽| 日本91视频免费播放| tocl精华| 水蜜桃什么品种好| 亚洲九九香蕉| 各种免费的搞黄视频| 亚洲熟女毛片儿| 日本黄色日本黄色录像| 国产片内射在线| 久久久久久久国产电影| 久久国产精品大桥未久av| 欧美日韩亚洲国产一区二区在线观看 | 日韩免费高清中文字幕av| 日韩精品免费视频一区二区三区| 制服诱惑二区| 一级a爱视频在线免费观看| 91av网站免费观看| 中文字幕高清在线视频| 国产91精品成人一区二区三区 | 超碰成人久久| kizo精华| 老司机午夜福利在线观看视频 | 精品少妇久久久久久888优播| 亚洲欧美激情在线| 99精国产麻豆久久婷婷| 99久久国产精品久久久| 亚洲欧美精品综合一区二区三区| 99国产精品免费福利视频| 高清av免费在线| 91字幕亚洲| 麻豆av在线久日| 美国免费a级毛片| 国产一区二区激情短视频 | 国产99久久九九免费精品| 亚洲精品国产av蜜桃| 亚洲精华国产精华精| 精品少妇一区二区三区视频日本电影| 在线看a的网站| netflix在线观看网站| 国产免费av片在线观看野外av| 色综合欧美亚洲国产小说| 国产亚洲av片在线观看秒播厂| 女警被强在线播放| 精品国产乱子伦一区二区三区 | 精品国产超薄肉色丝袜足j| 免费观看人在逋| 在线av久久热| 亚洲精品国产av蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 极品少妇高潮喷水抽搐| 免费女性裸体啪啪无遮挡网站|