• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE FIELD ALGEBRA IN HOPF SPIN MODELS DETERMINED BY A HOPF ?-SUBALGEBRA AND ITS SYMMETRIC STRUCTURE?

    2021-06-17 13:59:46魏曉敏蔣立寧

    (魏曉敏) (蔣立寧)

    School of Mathematics and Statistics,Beijing Institute of Technology,Beijing 100081,China

    E-mail:wxiaomin1509@163.com;jianglining@bit.edu.cn

    Qiaoling XIN(辛巧玲)

    School of Mathematical Sciences,Tianjin Normal University,Tianjin 300387,China

    E-mail:xinqiaoling0923@163.com

    Abstract Denote a finite dimensional Hopf C?-algebra by H,and a Hopf?-subalgebra of H by H1.In this paper,we study the construction of the field algebra in Hopf spin models determined by H1 together with its symmetry.More precisely,we consider the quantum double D(H,H1)as the bicrossed product of the opposite dual of H and H1 with respect to the coadjoint representation,the latter acting on the former and vice versa,and under the non-trivial commutation relations between H1 and we define the observable algebra Then using a comodule action of D(H,H1)on we obtain the field algebra which is the crossed product and show that the observable algebra is exactly a D(H,H1)-invariant subalgebra of Furthermore,we prove that there exists a duality between D(H,H1)and implemented by a?-homomorphism of D(H,H1).

    Key words Comodule algebra;field algebra;observable algebra;commutant;duality

    1 Introduction

    A system is made up of a large number of composite subsystems called“atoms”,which can be in a certain small number of microstates.Each state σ of the system,given by a microstate assigned to every atom,possesses a certain energy E(σ).A mathematical description of the system and the energy function E(σ)is called a model([1]).Quantum chains considered as models of 1+1-dimensional quantum field theory exhibit many features,including braid group statistics and quantum symmetry.These interesting features can be discussed in terms of Hopf spin models as a general class of quantum chains and can be described by Drinfeld’s quantum double D(H)of the underlying Hopf algebra H.

    The most famous and fundamental of all models is the G-spin model,where G is a finite group.The G-spin models consist of atoms placed on the vertices and edges of a one-dimensional lattice,which can provide the simplest example of lattice field theory and exhibits quantum symmetry:

    Generally,G-spin models with abelian group G have a symmetry group G×^G,where^G denotes the Pontryagin dual of G(the group of characters of G).If G is non-abelian,the Pontryagin dual of G is meaningless.Szlachányi and Vecsernyés in[2]generalized G×^G to D(G),which is defined as the crossed product of algebra C(G)of complex functions on G and algebra CG,and can be interpreted as the order-disorder type of quantum symmetry of G-spin models.On the foundations of commutation relations of order-disorder operators,Szlachányi and Vecsernyés defined the field algebra F in G-spin models,and furthermore,established the observable algebra A as a D(G)-invariant subalgebra.However,as the disorder part of the double D(G),the algebra C(G)is always abelian,so G-spin models cannot be selfdual in the Kramers-Wannier sense([3]),unless the group G is abelian.Non-abelian Kramers-Wannier duality therefore needs to be considered in a larger class of models.It makes sense to further generalize the G-spin models in terms of the general models.In 1997,Nill and Szlachányi([4])studied the Hopf spin models as the generalization of G-spin models,since the finite group algebra CG is a Hopf C?-algebra of finite dimension.In Hopf spin models,there is a copy of finite dimensional Hopf C?-algebra H on each lattice site,and a copy of its dualon the link;non-trivial commutation relations are postulated only between neighboring links and sites,so the observable algebra A can be constructed by generators H and.Subsequently,the corresponding field algebra F is obtained under the coaction of D(H)on A.At the same time,V.Schomerus discussed the construction of field algebras with quantum symmetry from local algebras([5]).Specifically,it was shown that field algebras can be constructed by some field operators which are obtained by acting on a positive definite Hilbert space of states and transform covariantly under the quantum symmetry,and that they obey local braid relations.

    The article[6]defines the field algebra FNdetermined by a normal subgroup N in G-spin models,where G is a finite group,and gives the observable algebra ANas the D(N,G)-invariant subalgebra of FN.Furthermore,the symmetric structure of FNis fulfilled by the double D(N,G),which is the crossed product of the algebra C(N)and group algebra CG.Motivated by all of the above,this paper considers a more general situation in Hopf spin models,which can be shown in the following one-dimensional lattice model:let H be a Hopf C?-algebra of finite dimension over a complex field,H1be a Hopf?-subalgebra of H,with the model consisting of copies of H1on lattice sites andon links together with non-trivial commutation relations between H1and,such that

    Then one can construct a C?-subalgebra AH1of the observable algebra A in Hopf spin models by generators H1and;this is called the observable algebra in Hopf spin models determined by H1.

    2 Preliminaries

    Definition 2.1([7]) Let(H,m,ι,Δ,ε,S)be a Hopf algebra over the complex field C.We say that H is a Hopf?-algebra if there exists an antilinear involution?on H satisfying the following two conditions:

    (1)the map?is an antimorphism of real algebras,as well as a morphism of real coalgebras.In other words,for every a∈H,

    (2)the map?is compatible with the antipode S of H,

    Definition 2.2([8]) Suppose that(H,Δ)is a pair of finite dimensional C?-algebra with a unital?-homomorphism Δ:H→H?H.We call this pair a Hopf C?-algebra if the following conditions hold:

    (1)(Δ?id)°Δ=(id?Δ)°Δ;

    (2)the linear spaces span{Δ(H)(H?1)}and span{Δ(H)(1?H)}both are equal to H?H.

    Such a Δ is called the comultiplication of H.(H,Δ)is said to be cocommutative if τ°Δ=Δ,where τ:H?H→H?H is a flip,τ(a?b)=b?a,a,b∈H.

    There exist linear maps

    satisfying the following properties:

    (1)ε is a unital?-homomorphism,and S is a unital?-preserving anti-multiplicative involution;

    (2)(ε?id)°Δ=(id?ε)°Δ=id;

    (3)m°(S?id)°Δ=m°(id?S)°Δ=ι°ε,where m,ι are the multiplication and unit,respectively.

    We say that ε is a counit,and S is an antipode of(H,Δ).In this case,(H,Δ,ε,S,?)is a Hopf C?-algebra of finite dimension.

    Example 2.4Let H be a finite dimensional Hopf C?-algebra.Then Drinfeld’s quantum double D(H)([7])is also a Hopf C?-algebra.

    Definition 2.5Let H be a Hopf?-algebra,and A be a?-algebra.A bilinear map γ:H?A→A is an action of H on A if the following hold for any a,b∈A,x,y∈H:

    In this case,A is called a left H-module algebra.

    Remark 2.6The map γ is assumed to be weakly continuous with respect to A and continuous with respect to some C?-norm on H(which is unique in the case of finite dimensionality).In the case of Hopf C?-algebra,γ is assumed to be continuously related to the C?-norm on H.

    Definition 2.7Let H be a Hopf algebra,and A be a coalgebra.If A is a left H-module with respect to the linear map γ:H?A→A,and the comultiplication and counit structure maps of A are H-module morphisms,namely,for any a,b∈A,x,y∈H,

    then A is said to be a left H-module coalgebra.

    For more detail about Hopf algebras one can refer to[9–12],and some definitions and properties about Hopf C?-algebras can be found in[13–17],etc..We now present Sweedler’s sigma notation,which is standard in Hopf algebra theory.Denote the comultiplication,the counit and the antipode of Hopf algebra H by Δ,ε and S,respectively.If c is an element of H,the element Δ(c)of H?H is of the form

    Moreover,if the coassociative law

    holds,then

    The counitary and antipode properties can be expressed by Sweedler’s notation as well.

    3 The Field Algebra Determined by D(H,H1)

    From now on,let(H,m,ι,Δ,ε,S,?)be a finite dimensional Hopf C?-algebra,and let H1be a Hopf?-subalgebra of H.Then H and H1are semisimple and involutive with S2=id([16]).We still denote the structure maps of H1by Δ,ε,S,and denote the dual of H1bywhich is also a Hopf C?-algebra.

    3.1 The quantum double D(H,H1)

    As shown in[18,19],the construction of Drinfeld’s double is investigated for any regular multiplier Hopf?-algebra pairings,which generalizes the quantum double construction of ordinary Hopf algebra pairings.In these papers,two dually paired regular multiplier Hopf?-algebras A and B,associated with a bilinear mapping〈·,·〉:A×B→C and satisfying certain properties,can yield a quantum double which is again a regular multiplier Hopf?-algebra.Delvaux and Van Daele in[19]constructed Drinfeld’s double related to the pairing〈A,B〉by using appropriate representations of A and B on the vector space B?A.If A and B are Hopf algebras,then the quantum double multiplier Hopf algebra is the usual quantum double.In particular,the finite dimensional Hopf?-algebrasand H1form a regular multiplier Hopf?-algebra pairing which allows us to construct the quantum double D(H,H1)by using appropriate representations.

    Now we review the definition of the quantum double D(H,H1).

    We will have one between us, continued the old dame; and as you are the visitor, you shall have the half which contains the stone; but be very careful that you don t swallow it, for I keep them against the winter, and you have no idea what a good fire they make

    Lemma 3.1Let H be a finite dimensional Hopf?-algebra,and let H1be a Hopf?-subalgebra of H.Let α:be the coadjoint representations given by

    in terms of(S°?)2=id for ?∈and x∈H1.Combining these results,D(H,H1)is a Hopf?-algebra. □

    A left invariant Haar functional on the Hopf algebra H is a non-zero linear map ?:H→C satisfying the property(id??)Δ(a)=?(a)1 for all a∈H.Similarly,a right invariant Haar functional is a linear map ψ:H→C with the property(ψ?id)Δ(a)=ψ(a)1.When the left and the right invariant Haar functionals coincide,we called it the Haar functional,or the Haar measure.If H is a Hopf C?-algebra of finite dimension,there exists a normalized Haar measure on H so that H is involutive([16]).Denoting λ,Λ as the normalized Haar measures onand H1,respectively,we then get that for ??x∈D(H,H1),

    defines a faithful positive linear functional on D(H,H1).According to the GNS construction([20]),the map〈·,·〉:D(H,H1)→C given by〈??x,ψ?y〉=θ((ψ?y)?(??x))is an inner product on D(H,H1)such that D(H,H1)is a Hilbert space.For each ??x∈D(H,H1),

    is a faithful?-representation on D(H,H1),so D(H,H1)is a C?-algebra of finite dimension with C?-norm([21])

    Therefore the quantum double D(H,H1)is a Hopf C?-algebra of finite dimension.

    3.2 The field algebra in Hopf spin models determined by a Hopf?-subalgebra

    With the assumptions and notations as above,H is a finite dimensional Hopf C?-algebra,and H1is a Hopf?-subalgebra of H.We denote the elements of D(H,H1)by ?x instead of ??x=just to make the subsequent computation clearer.Thus D(H,H1)can be denoted as a?-algebra generated by H1andtogether with the following cross relation,which is in accord with the relation(3.1):

    Here x∈H1,?∈,and(x?)?=??x?.The structure maps Δ,ε and S are still adopted as relations(3.2)?(3.4).

    The dual Hopf?-algebra of the D(H,H1)is determined by the following structure maps(we still denote them by Δ,ε,S):

    Remark 3.5By the antipode of H1,together with the relation S2=id,the commutation relations above are equivalent to the following relations:

    Our method for constructing the field algebra determined by H1will be to give the coaction of D(H,H1)on the local observable algebraof the finite interval.Here we review some conceptions of right comodule algebra.

    Definition 3.7([9]) Let(H,m,ι,Δ,ε)be a bialgebra.If an algebra A is also a right H-comodule with respect to the map γ:A→A?H,that is,

    and the structure maps,multiplication and unit of A are right H-comodule morphisms,namely,when

    then A is said to be a right H-comodule algebra.

    Actually,A is a right H-comodule algebra if and only if A has an H-comodule structure given by a map γ:A→A?H,and the map γ is a morphism of algebras.

    Then the coaction of D(H,H1)onis given by the follows:

    Proposition 3.8For i∈Z,the linear maps ρ2i,2i+1:A2i,2i+1→A2i,2i+1?D(H,H1)with respect to the natural comultiplicationwhich are given by

    and

    which forms the desired result.

    and the penultimate equation follows from the relation S2=id in D(H,H1).Hence the local observable algebra of finite interval A2i,2i+1is a right D(H,H1)-comodule algebra. □

    Remark 3.9We have an equivalent definition of ρ2i,2i+1as follows:

    Similarly,there is a right(D(H,H1),Δop)-comodule algebrastructure on the algebra A2i?1,2i,i∈Z given by

    Now we construct the coaction of D(H,H1)on the local observable algebra of finite interval A2i,2i+2n+1(n∈N).According to iterated application of the Takesaki duality theorem,we have the?-algebra inclusion

    where Ti,i+1is given by

    Next,we put

    Then Li,i+2n+1and Ri,i+2n+1define?-algebra inclusions.

    Therefore,when n≥1,we can define ρ2i,2i+2n+1:A2i,2i+2n+1→A2i,2i+2n+1?D(H,H1)by

    obeys the following relation:

    and ρε(A)=A,meaning that the comodule algebra structure of D(H,H1)on the algebra A2i,2i+1uniquely determines the module algebra structure on A2i,2i+1fulfilled by the map

    Using the continuity and uniqueness of the C?-inductive limit,one can get

    and,

    Remark 3.12Sinceis a left D(H,H1)-module algebra,and D(H,H1)is a semisimple algebra([21]),the field algebrais completely reducible,and can be decomposed into a direct sum

    Here we omit the proofs,since the above result can be obtained in the following way:for locally compact quantum groups in a von Neumann algebraic setting,the fixed point subalgebra of the crossed product N?M,associated to the the natural dual action ofon N?M,is given by the original algebra N([26]).Furthermore,in the algebraic framework,this property also holds for algebraic quantum groups without the assumption on the topological structure([27]).

    In particular,we have

    Corollary 3.14where Z∈D(H,H1)is a normalized integral.

    4 The Duality Between the Observable Algebra and D(H,H1)

    This section will consider the symmetric structure of field algebra in Hopf spin models determined by a Hopf?-subalgebra.

    This is exactly

    One can verify that

    Now we come to the final result of this section,which gives a duality between the finite dimensional C?-algebra D(H,H1)and the observable algebraand thus exhibits the quantum symmetry in Hopf spin models determined by H1exactly.

    Theorem 4.2With the assumptions and notations as above,

    or

    where the equality follows from the fact that U(D(H,H1))′is a von Neumann algebra,and is thus closed in the weak operator topology.

    The last shows that

    In particular,letting X=Z be the normalized integral of D(H,H1),one can get

    人人妻人人添人人爽欧美一区卜| 免费大片黄手机在线观看| 你懂的网址亚洲精品在线观看| 国产一区二区在线观看日韩| 视频中文字幕在线观看| 水蜜桃什么品种好| 一级毛片电影观看| 亚洲国产色片| 国产午夜精品一二区理论片| 日本-黄色视频高清免费观看| 国产一区二区在线观看av| 国产高清国产精品国产三级| 亚洲国产精品成人久久小说| 国产成人精品一,二区| 亚洲成色77777| 中文欧美无线码| 自拍欧美九色日韩亚洲蝌蚪91| 一区二区三区免费毛片| 精品亚洲乱码少妇综合久久| 国产一区二区三区综合在线观看 | a级毛片在线看网站| 97超视频在线观看视频| 美女福利国产在线| 99久久人妻综合| 国产在线免费精品| 亚洲欧洲国产日韩| 观看美女的网站| 国产日韩欧美视频二区| 午夜免费男女啪啪视频观看| 22中文网久久字幕| 日韩强制内射视频| 欧美3d第一页| 亚洲国产日韩一区二区| 日韩伦理黄色片| 国产精品免费大片| 中国国产av一级| 欧美少妇被猛烈插入视频| www.色视频.com| 桃花免费在线播放| xxx大片免费视频| 日韩不卡一区二区三区视频在线| 五月伊人婷婷丁香| 亚洲国产精品专区欧美| 七月丁香在线播放| 国产成人91sexporn| 亚洲精品乱久久久久久| 777米奇影视久久| 亚洲天堂av无毛| 2022亚洲国产成人精品| 国产精品一区二区在线不卡| 成人二区视频| videosex国产| 少妇被粗大猛烈的视频| 国模一区二区三区四区视频| 亚洲第一av免费看| 国产精品 国内视频| 大片电影免费在线观看免费| 色婷婷久久久亚洲欧美| 两个人免费观看高清视频| 午夜福利网站1000一区二区三区| 国国产精品蜜臀av免费| 久久99热6这里只有精品| 国产又色又爽无遮挡免| 国产精品成人在线| 天美传媒精品一区二区| 狠狠精品人妻久久久久久综合| 亚洲精品美女久久av网站| 男人操女人黄网站| 大片免费播放器 马上看| 久久久久久久久久久丰满| 久久精品人人爽人人爽视色| 久久久久精品久久久久真实原创| 18禁在线无遮挡免费观看视频| 蜜桃久久精品国产亚洲av| 岛国毛片在线播放| 国产一区二区在线观看日韩| av电影中文网址| 日本91视频免费播放| 色网站视频免费| 亚洲综合色惰| 人妻人人澡人人爽人人| 日韩精品免费视频一区二区三区 | 日韩av在线免费看完整版不卡| 色哟哟·www| 亚洲欧美中文字幕日韩二区| 亚洲国产精品999| 免费人妻精品一区二区三区视频| 久久久久人妻精品一区果冻| 麻豆精品久久久久久蜜桃| 亚洲国产精品999| 欧美日韩在线观看h| 人人澡人人妻人| 91精品国产九色| 国产在线视频一区二区| 99热网站在线观看| 大香蕉97超碰在线| 日韩电影二区| 国产黄频视频在线观看| 国产成人免费无遮挡视频| 亚洲国产成人一精品久久久| 精品国产一区二区三区久久久樱花| 亚洲综合色惰| 久久久久精品性色| 少妇的逼水好多| 婷婷色麻豆天堂久久| 成人18禁高潮啪啪吃奶动态图 | 中文天堂在线官网| 国产精品三级大全| 妹子高潮喷水视频| 黑丝袜美女国产一区| 十分钟在线观看高清视频www| 美女cb高潮喷水在线观看| 国产精品麻豆人妻色哟哟久久| 边亲边吃奶的免费视频| 男女国产视频网站| 欧美亚洲日本最大视频资源| 最近中文字幕2019免费版| 免费不卡的大黄色大毛片视频在线观看| 国内精品宾馆在线| 亚洲欧美成人精品一区二区| 观看av在线不卡| 美女福利国产在线| 久久这里有精品视频免费| a级毛片在线看网站| 18禁在线播放成人免费| 丝瓜视频免费看黄片| 高清午夜精品一区二区三区| 亚洲精品国产av成人精品| 亚洲av成人精品一区久久| 交换朋友夫妻互换小说| 日本爱情动作片www.在线观看| 久久精品国产亚洲av天美| 99视频精品全部免费 在线| 精品午夜福利在线看| 下体分泌物呈黄色| 人妻制服诱惑在线中文字幕| 日韩大片免费观看网站| 国产精品国产三级国产专区5o| 一个人看视频在线观看www免费| 又大又黄又爽视频免费| 简卡轻食公司| 国产毛片在线视频| 久久精品久久久久久噜噜老黄| 亚洲国产最新在线播放| 午夜免费男女啪啪视频观看| 五月伊人婷婷丁香| 久久久久精品性色| 午夜福利,免费看| 亚洲天堂av无毛| av国产久精品久网站免费入址| 高清在线视频一区二区三区| 欧美日韩成人在线一区二区| videossex国产| 男女无遮挡免费网站观看| 午夜日本视频在线| 亚洲婷婷狠狠爱综合网| 精品视频人人做人人爽| 26uuu在线亚洲综合色| 亚洲国产最新在线播放| 尾随美女入室| 一级毛片 在线播放| av女优亚洲男人天堂| 欧美激情 高清一区二区三区| 久久精品国产自在天天线| 精品久久久精品久久久| 国产成人一区二区在线| 国产欧美另类精品又又久久亚洲欧美| 久久国产精品男人的天堂亚洲 | 人人妻人人澡人人看| 中文字幕最新亚洲高清| 性色avwww在线观看| 国产精品久久久久久精品古装| 伊人久久国产一区二区| 亚洲精品一二三| 久久99一区二区三区| 日本午夜av视频| 大片电影免费在线观看免费| 国产高清有码在线观看视频| 日韩亚洲欧美综合| 99久久人妻综合| 欧美激情国产日韩精品一区| 国产av码专区亚洲av| 69精品国产乱码久久久| 免费久久久久久久精品成人欧美视频 | 国产日韩欧美在线精品| 亚洲经典国产精华液单| av在线观看视频网站免费| 国产男女内射视频| 成年人午夜在线观看视频| 国产又色又爽无遮挡免| 18禁裸乳无遮挡动漫免费视频| 狂野欧美白嫩少妇大欣赏| 岛国毛片在线播放| 亚洲精品国产色婷婷电影| 精品99又大又爽又粗少妇毛片| 在线看a的网站| 亚洲国产精品一区三区| 十八禁高潮呻吟视频| 91久久精品电影网| 91精品伊人久久大香线蕉| 国产免费又黄又爽又色| 精品国产乱码久久久久久小说| 老司机亚洲免费影院| 欧美激情国产日韩精品一区| 欧美国产精品一级二级三级| 国产精品蜜桃在线观看| 久久久亚洲精品成人影院| 黄色毛片三级朝国网站| 精品久久久噜噜| 日本av免费视频播放| 午夜福利影视在线免费观看| 一个人看视频在线观看www免费| 一本—道久久a久久精品蜜桃钙片| 亚洲精品成人av观看孕妇| 成人免费观看视频高清| 青春草亚洲视频在线观看| 97在线人人人人妻| 久久久午夜欧美精品| 毛片一级片免费看久久久久| 欧美老熟妇乱子伦牲交| 精品久久久久久久久av| 亚洲不卡免费看| 日韩人妻高清精品专区| 我要看黄色一级片免费的| 熟女av电影| 99热网站在线观看| 亚洲精品成人av观看孕妇| 波野结衣二区三区在线| 久久综合国产亚洲精品| 久热这里只有精品99| 婷婷色综合大香蕉| 日韩一区二区三区影片| 熟女电影av网| 久久 成人 亚洲| 青春草视频在线免费观看| 男人操女人黄网站| 美女国产高潮福利片在线看| 女人久久www免费人成看片| 亚洲欧洲日产国产| 久久久久久久国产电影| av在线观看视频网站免费| 婷婷色综合www| 99国产精品免费福利视频| 国产一区亚洲一区在线观看| 国产一级毛片在线| 国产极品天堂在线| 国产成人aa在线观看| 久久精品人人爽人人爽视色| 日韩成人av中文字幕在线观看| 精品一区二区三卡| 国产成人免费观看mmmm| 欧美日韩亚洲高清精品| 欧美日韩在线观看h| 五月天丁香电影| 黄色一级大片看看| 欧美性感艳星| 久久这里有精品视频免费| 精品国产一区二区久久| 如何舔出高潮| 日产精品乱码卡一卡2卡三| 亚洲av免费高清在线观看| 九草在线视频观看| 国产精品女同一区二区软件| 国产又色又爽无遮挡免| 精品久久久久久久久av| 国产成人精品一,二区| 久久久久精品久久久久真实原创| 啦啦啦啦在线视频资源| 欧美精品人与动牲交sv欧美| 国产亚洲精品久久久com| 亚洲久久久国产精品| 亚洲内射少妇av| 极品少妇高潮喷水抽搐| 黄片无遮挡物在线观看| 欧美日韩av久久| 三上悠亚av全集在线观看| 天天躁夜夜躁狠狠久久av| 午夜91福利影院| 亚洲在久久综合| 日本猛色少妇xxxxx猛交久久| 九九爱精品视频在线观看| 只有这里有精品99| 人妻少妇偷人精品九色| 天堂中文最新版在线下载| 国产免费视频播放在线视频| 久久精品国产亚洲av涩爱| 国产亚洲午夜精品一区二区久久| 免费少妇av软件| 亚洲欧洲国产日韩| 狠狠精品人妻久久久久久综合| 午夜日本视频在线| 九色亚洲精品在线播放| 免费观看av网站的网址| 插阴视频在线观看视频| 亚洲人成77777在线视频| 亚洲精品国产色婷婷电影| 国产高清三级在线| 亚洲伊人久久精品综合| 国产爽快片一区二区三区| av在线观看视频网站免费| 男人爽女人下面视频在线观看| 99精国产麻豆久久婷婷| 美女内射精品一级片tv| av有码第一页| 在线观看免费高清a一片| 国产精品人妻久久久久久| 欧美精品国产亚洲| 日本欧美视频一区| 日韩制服骚丝袜av| 亚洲av综合色区一区| 伊人亚洲综合成人网| 夜夜骑夜夜射夜夜干| 久久鲁丝午夜福利片| 欧美性感艳星| 亚洲国产精品999| 男女边吃奶边做爰视频| 在线观看免费视频网站a站| av免费在线看不卡| 高清在线视频一区二区三区| 极品人妻少妇av视频| 欧美成人精品欧美一级黄| 亚洲精品亚洲一区二区| 97精品久久久久久久久久精品| 成年美女黄网站色视频大全免费 | 国产女主播在线喷水免费视频网站| 午夜91福利影院| 伦理电影大哥的女人| 欧美日韩视频高清一区二区三区二| 国产精品国产av在线观看| 九色成人免费人妻av| 欧美精品高潮呻吟av久久| 国产一区二区在线观看av| 特大巨黑吊av在线直播| 精品久久久久久久久亚洲| 欧美3d第一页| 哪个播放器可以免费观看大片| 久久精品国产亚洲网站| 亚洲精品视频女| 午夜激情av网站| 高清黄色对白视频在线免费看| 成人无遮挡网站| 伦理电影大哥的女人| 久久青草综合色| 人妻一区二区av| 伦理电影免费视频| 在线播放无遮挡| 国国产精品蜜臀av免费| 少妇被粗大的猛进出69影院 | 校园人妻丝袜中文字幕| 免费看光身美女| 国产精品一区二区在线不卡| 久久亚洲国产成人精品v| av一本久久久久| 精品一品国产午夜福利视频| 日韩av免费高清视频| 国产一区有黄有色的免费视频| 亚洲av男天堂| av在线老鸭窝| 国产一区亚洲一区在线观看| 欧美97在线视频| 日韩中文字幕视频在线看片| 久久狼人影院| 欧美精品国产亚洲| 黄色欧美视频在线观看| 日本猛色少妇xxxxx猛交久久| 夜夜爽夜夜爽视频| 男女边吃奶边做爰视频| 免费看不卡的av| 欧美国产精品一级二级三级| 18+在线观看网站| 激情五月婷婷亚洲| 国产精品人妻久久久久久| 91久久精品国产一区二区三区| 人妻 亚洲 视频| 久久久国产一区二区| 在线观看一区二区三区激情| 十分钟在线观看高清视频www| 亚洲少妇的诱惑av| 美女国产视频在线观看| 午夜福利视频在线观看免费| 免费不卡的大黄色大毛片视频在线观看| 91成人精品电影| 18禁裸乳无遮挡动漫免费视频| 久久久a久久爽久久v久久| 国产成人91sexporn| 十八禁高潮呻吟视频| 国产成人91sexporn| 97在线人人人人妻| 国产一区亚洲一区在线观看| 国产淫语在线视频| 国产精品一区二区在线不卡| 久久精品国产亚洲av涩爱| 久久99热这里只频精品6学生| 欧美+日韩+精品| 欧美性感艳星| 国产欧美亚洲国产| videossex国产| 美女脱内裤让男人舔精品视频| 插阴视频在线观看视频| 久久99一区二区三区| 亚洲国产精品成人久久小说| 婷婷色麻豆天堂久久| a级毛色黄片| 欧美日韩在线观看h| 飞空精品影院首页| 菩萨蛮人人尽说江南好唐韦庄| 十八禁高潮呻吟视频| 爱豆传媒免费全集在线观看| h视频一区二区三区| 色哟哟·www| 国产精品国产av在线观看| 久久午夜综合久久蜜桃| 欧美激情国产日韩精品一区| 在线观看免费高清a一片| 国产成人精品在线电影| 国产在视频线精品| 人成视频在线观看免费观看| 少妇 在线观看| 免费人妻精品一区二区三区视频| 晚上一个人看的免费电影| 日韩精品有码人妻一区| 十八禁高潮呻吟视频| 久久久久精品久久久久真实原创| av黄色大香蕉| 国产精品人妻久久久影院| 精品一品国产午夜福利视频| 亚洲av电影在线观看一区二区三区| 日韩在线高清观看一区二区三区| 国产成人av激情在线播放 | 一级毛片电影观看| 亚洲久久久国产精品| 免费观看无遮挡的男女| 国产av码专区亚洲av| 国产片特级美女逼逼视频| 欧美精品人与动牲交sv欧美| 国产69精品久久久久777片| 欧美日韩精品成人综合77777| 内地一区二区视频在线| 99久久中文字幕三级久久日本| 欧美精品高潮呻吟av久久| 精品久久久久久久久av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲精品自拍成人| 婷婷成人精品国产| 亚洲怡红院男人天堂| 新久久久久国产一级毛片| 97超视频在线观看视频| 91精品国产九色| 国产熟女午夜一区二区三区 | 国产精品欧美亚洲77777| 日韩在线高清观看一区二区三区| 亚洲精品av麻豆狂野| 精品国产一区二区三区久久久樱花| 热99国产精品久久久久久7| 边亲边吃奶的免费视频| 在线观看www视频免费| 国产一区二区在线观看日韩| 午夜福利视频在线观看免费| 伦理电影免费视频| www.av在线官网国产| 大片免费播放器 马上看| 久久久久久久久久人人人人人人| 一本一本综合久久| 亚洲精品日韩在线中文字幕| 欧美日韩亚洲高清精品| 国产精品国产三级国产av玫瑰| 中文字幕久久专区| 成人漫画全彩无遮挡| 黄色一级大片看看| 2021少妇久久久久久久久久久| 男的添女的下面高潮视频| 久久精品国产亚洲网站| 日韩精品有码人妻一区| 黄色欧美视频在线观看| 亚洲情色 制服丝袜| 看十八女毛片水多多多| 国产老妇伦熟女老妇高清| 汤姆久久久久久久影院中文字幕| 亚洲人成网站在线播| 国产国语露脸激情在线看| 国产色爽女视频免费观看| 免费av中文字幕在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲色图 男人天堂 中文字幕 | 亚洲精品久久成人aⅴ小说 | 久久久久久久亚洲中文字幕| 欧美国产精品一级二级三级| 国产成人精品福利久久| 亚洲精品日本国产第一区| 久久99蜜桃精品久久| 九九爱精品视频在线观看| 中文精品一卡2卡3卡4更新| 人妻一区二区av| 国模一区二区三区四区视频| 亚洲精品亚洲一区二区| 亚洲不卡免费看| 亚洲内射少妇av| 精品人妻熟女毛片av久久网站| 午夜91福利影院| 久久久亚洲精品成人影院| 中文字幕制服av| 亚洲精品乱久久久久久| 国产毛片在线视频| 亚洲精品国产av成人精品| 18在线观看网站| 狠狠精品人妻久久久久久综合| 精品午夜福利在线看| 91精品一卡2卡3卡4卡| 国产精品久久久久久av不卡| 精品人妻偷拍中文字幕| 内地一区二区视频在线| 国产亚洲午夜精品一区二区久久| 精品酒店卫生间| 老司机影院成人| 欧美日韩在线观看h| 久久久国产欧美日韩av| 亚洲情色 制服丝袜| 精品国产露脸久久av麻豆| 欧美xxxx性猛交bbbb| 3wmmmm亚洲av在线观看| 精品视频人人做人人爽| 日日爽夜夜爽网站| 91久久精品电影网| 精品99又大又爽又粗少妇毛片| 高清av免费在线| 91精品三级在线观看| 国语对白做爰xxxⅹ性视频网站| av网站免费在线观看视频| 美女视频免费永久观看网站| 亚洲av福利一区| 国产在线视频一区二区| a级毛片黄视频| av福利片在线| 老熟女久久久| 最近最新中文字幕免费大全7| 大又大粗又爽又黄少妇毛片口| 亚洲内射少妇av| 国产不卡av网站在线观看| 激情五月婷婷亚洲| 考比视频在线观看| 精品一区在线观看国产| 两个人免费观看高清视频| 一本色道久久久久久精品综合| 天天影视国产精品| 亚洲内射少妇av| 国产午夜精品一二区理论片| 亚洲国产精品一区三区| 在线精品无人区一区二区三| 观看美女的网站| 考比视频在线观看| 亚洲内射少妇av| 十八禁高潮呻吟视频| 精品人妻熟女毛片av久久网站| 一级毛片黄色毛片免费观看视频| 一级毛片我不卡| 伊人久久精品亚洲午夜| 久久97久久精品| 99久久精品一区二区三区| 啦啦啦在线观看免费高清www| 97在线人人人人妻| 插逼视频在线观看| 一本久久精品| 少妇高潮的动态图| 国精品久久久久久国模美| 亚洲精品一二三| av又黄又爽大尺度在线免费看| 久久狼人影院| 亚洲精品色激情综合| 精品一品国产午夜福利视频| 久久综合国产亚洲精品| 欧美三级亚洲精品| 国产黄色视频一区二区在线观看| 亚洲av成人精品一二三区| 国产乱人偷精品视频| 黄片播放在线免费| 免费av不卡在线播放| 丰满饥渴人妻一区二区三| 在线看a的网站| 99热这里只有精品一区| 久久精品久久久久久噜噜老黄| 新久久久久国产一级毛片| 色视频在线一区二区三区| 黑丝袜美女国产一区| a级毛色黄片| 亚洲激情五月婷婷啪啪| 老女人水多毛片| 久久精品久久精品一区二区三区| 性高湖久久久久久久久免费观看| 秋霞在线观看毛片| 国产熟女午夜一区二区三区 | 视频区图区小说| 美女中出高潮动态图| 美女内射精品一级片tv| 赤兔流量卡办理| 久久综合国产亚洲精品| 亚洲成人av在线免费| 国产免费一区二区三区四区乱码| 成人手机av| 夜夜爽夜夜爽视频| 黑人猛操日本美女一级片| 国产精品久久久久久久电影| 男人爽女人下面视频在线观看| 草草在线视频免费看| 黄色欧美视频在线观看| 99久久综合免费| 国产成人精品在线电影| 亚洲精品成人av观看孕妇| 国产精品人妻久久久影院| 成人午夜精彩视频在线观看| 能在线免费看毛片的网站| 日韩av不卡免费在线播放| tube8黄色片| 久久人人爽人人爽人人片va| 国产男女超爽视频在线观看| 欧美丝袜亚洲另类|