• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Topological states switching and group velocity control in two-dimensional non-reciprocal Hermitian photonic lattice

    2023-12-02 09:29:14YuLin林宇YuandanWang王元旦JunhaoYang楊俊豪YixuanFu符藝萱andXinyuanQi齊新元
    Chinese Physics B 2023年11期
    關(guān)鍵詞:楊俊新元

    Yu Lin(林宇), Yuandan Wang(王元旦), Junhao Yang(楊俊豪), Yixuan Fu(符藝萱), and Xinyuan Qi(齊新元)

    School of Physics,Northwest University,Xi’an 710127,China

    Keywords: Dirac point,imaginary coupling,Chern number,group velocity

    1.Introduction

    In recent years, topological photonic systems have attracted much attention from researchers,who have performed extensive studies on different topological photonic systems and achieved rich research results.[1]The study of topological photonic systems started in 1979, with the one-dimensional(1D) Su–Schrieffer–Heeger (SSH) model proposed by Suet al.[2]as a representative example, which realized topological phase transition through staggered coupling in the lattice.[3,4]Based on this,topological photonic devices have gradually attracted attention.[5–7]The SSH model has chiral and particle–hole symmetries,[8,9]and many novel phenomena have been discovered by studying the SSH model, such as topological invariants, topological phase transitions, edge states, etc.[10]With the progress of research,two-dimensional(2D)topological photonic systems have aroused great interest.[11]Quantum spin Hall effect (QSHE) and quantum valley Hall effect (QVHE) with time reversal symmetry can be realized in 2D photonic crystals.[12]QSHE can be realized in photonic crystals with strong spin–orbit coupling,[13]where spinup and spin-down bands are inverted and separated by a band gap,[14]each spin sector having a nonzero Chern number with opposite signs.Therefore, there exist topologically protected edge states propagating along the system boundary, with opposite spins and directions.These edge states are immune to disorder-induced backscattering.QVHE can be realized in photonic crystals with honeycomb or hexagonal lattices,[15]where valleys correspond to two inequivalent Dirac cones atKandK′points.By introducing a staggered potential or breaking the sublattice symmetry,[16–18]a band gap can be opened at the Dirac points (DPs), and valleys acquire opposite Chern numbers.[19]Therefore,there exist topologically protected edge states propagating along the system boundary,[20,21]with opposite pseudospins and opposite group velocities.Both QVHE and QSHE based photonic topological insulators(PTIs)preserve time-reversal symmetry,and moreover,these PTIs can also host higher-order topological phases, such as second-order PTIs with corner states or third-order PTIs with hinge states.[22–26]In 2008,Haldane and Raghu proposed a method of breaking time reversal symmetry using magneto-optical materials,[27,28]which can realize oneway transmission of chiral edge states of light.[29,30]Wanget al.,successfully observed the robust one-way transmission of edge states in a 2D magnetic photonic crystal experiment.[31]However, most of the aforementioned 2D photonic systems require the time reversal symmetry breaking,[32]and are non Hermitian.[33–38]The studies in 2D non-reciprocal Hermitian photonic systems are still rarely reported.

    In this paper,we constructed a 2D non-reciprocal Hermitian photonic lattice and studied theoretically and numerically the system’s topological states and group velocity control.By changing the coupling coefficients,we analyzed the movement of DPs in the energy band structure,and the transformation between any topological states corresponding to different Chern numbers.Finally,we studied the impact of the topology on the group velocity.

    2.Topological state and dispersion curve

    This section presents a 2D non-reciprocal coupled Hermitian photonic lattice and its unique properties.Figure 1 illustrates the structure of this lattice, which consists of two straight waveguides,An(blue) andBn(red), forming a unit cell (red dashed box).Each unit cell has an imaginary coupling coefficient±iγbetween the two sublattices.The system can be modeled by coupled mode equations for the amplitudesanandbnof the sublatticesAandB,respectively:

    wherenis the number of cells;?is the intralayer coupling coefficient;the interlayer coupling within a cell is non-reciprocal coupling with different imaginary coupling coefficientst±iγ;the interlayer coupling between cells isδandσ.zrepresents the propagation distance of the wave packet,an,bnare the field amplitudes of waveguidesAn,Bn.

    Fig.1.(a)Schematic diagram of a 2D non-reciprocal Hermitian photonic lattice with two sites per cell.(b)The effective 1D chain structure of the model in(a).

    For reduction of calculation, we simplify the Bloch Hamiltonian of the system to a 1D narrow-band chain model that is periodic alongxand confined alongy.Applying Bloch’s theorem:an+1=aneik,bn+1=bneik.In the momentum space,the equation can be written as

    wherem= 2?coskx;s=t-2σcoskx;u±=u±iγandu=t+2δcoskx.For a givenkx, wheng/=0 andu-/=u+,equation (4) describes a 1D narrow-band chain model with non-reciprocal intra-cell coupling,as shown in Fig.2(b).Analyzing the Bloch Hamiltonian reveals that it satisfiesH?=H,indicating that the system is a Hermitian system with real energy spectra.

    The dispersion relation can characterize and predict light transmission behavior in periodic photonic crystals.The Bloch Hamiltonian is given by Eq.(4), and a solution of the equation gave the dispersion relation, which was the expression of the system’s energy band structure

    The dispersion relation can characterize and predict a 2D Brillouin zone (BZ).We divide it into several small squares and calculate each square’s Berry curvature.We use the Chern number efficient method to simplify the calculation to solve whether the system has topological properties and transform the Berry curvature integral into a linear algebra problem.[49]This method is based on the Haldane model,[39–41]which assumes that the Hamiltonian can be expressed as

    whereσiis the Pauli matrix anddi(k)is the real function.For such Hamiltonian quantities, the Berry curvature can be expressed as

    whereεijkis the Levi–Civita notation.The Berry curvature can be transformed into a linear problem by fittingdi(k)with a cubic function

    whered(k)=[d1(k),d2(k),d3(k)]andCis a constant.This linear problem can be solved by computing the dot product of[d(k)×?kd(k)]·CandC, and then integrating the result to obtain the Berry curvature.Finally,the Chern number can be calculated by substituting the Berry curvature into the integral formula for the Chern number.

    The 2D non-reciprocal Hermitian system can be solved for whether it has topological properties by the above stale efficient method.We solve the topological states of the system separately whenδ=σandδ/=σ.Whenδ=σ,the coupling coefficient?=0,t=0.5 are fixed,and the Chern number of the system is calculated.The state is determined numerically,and the calculation results show that when the coupling coefficientδ=0.5 andγ=0,C=-2, corresponding to a topological non-trivial state;when the coupling coefficientδ<0.5 andγ>0.3,C=-1, corresponding to another topological non-trivial state; when the coupling coefficientδ>0.5 andγ>0.3,C=0, corresponding to a trivial topological state.The robustness of the topological state is further calculated,and it is found that the topological state remains unchanged when?∈[0,0.1].

    Whenδ/=σ, the coupling coefficient?=0.5,δ=-1,t=2,σ=1 is fixed, and the Chern number of the system is calculated.It is found thatC=0, regardless of the value of the imaginary coupling coefficientγ, implies that the system is in a topologically trivial state.For a fixed coupling constant?=0,δ=-1,t=2,σ=1,the band structure of the Bloch HamiltonianH(k)is shown in Figs.2(a)–2(c),where we plot the dispersion relation as a function of the wave vectorskxandky.

    When the intralayer coupling constant?=0,the system is chiral symmetric and preservesCH(k)C-1=-H(k).The band structure of the Bloch Hamiltonianγ=0 is shown in Fig.2(a);due to the chiral symmetry of the system,the upper and lower bands are symmetric,and there are two band inversion points at(kx,ky)=(π/2,π/2),(kx,ky)=(-π/2,-π/2).Because of the imaginary coupling constantγ=0, the bands are also symmetric about the origin,and there are three DPs located at the edge(A2,A3)and center(A1)of the BZ,with the edge DPs being symmetric about the origin (kx,ky)=(0,0).The 2D Dirac states reported to date are distributed only at high symmetry points in the BZ,and the low-energy dispersion of these Dirac states is isotropic due to symmetry constraints.Ref.[42] reported in 2022 that the Dirac states in antimony films are located at general momentum points.

    A DP at a non-high-symmetry point of an optical system can be realized by adjusting the imaginary coupling coefficient in a 2D photonic crystal,as shown in Fig.2.When the imaginary coupling coefficient increases gradually toγ=0.3, the DP shifts from the edge of the BZ to the center of the BZ,and the DP at the center breaks.Under this condition,there is only one non-high symmetry DP,The imaginary coupling coefficient can be interpreted as a phase factor that modifies the hopping amplitude between neighboring sites in the photonic crystal.This phase factor violates the time-reversal symmetry and leads to a non-reciprocal propagation of light.Consequently, the dispersion relation is distorted and shifted by the imaginary coupling coefficient.The DP,which is a degenerate point of two bands with opposite parity, is sensitive to the phase factor and can be manipulated or split by tuning the imaginary coupling coefficient.The band gap,which is determined by the band inversion between the two bands, is also influenced by the imaginary coupling coefficient.When the imaginary coupling coefficient is sufficiently large, the band inversion can be reversed and the band gap can be opened.as shown in Fig.2(b).When the imaginary coupling coefficientγincreases further,we find that the DP moves wholly and again breaks.The band gap widens with the rise of the imaginary coupling coefficient.By adjusting the coupling coefficient,we provide a simple model and method to locate the 2D DP at a general momentum point.

    Figure 2(d)shows the band structure forδ=σ=t=0.5.Due to the chiral symmetry of the system,the upper and lower bands are symmetric, and there is no degenerate point in the design,only two band sharp points.When the intralayer coupling coefficient?=0.1, the chiral symmetry of the system is broken.In Fig.2(e), due to the breaking of chiral symmetry,the balance of the upper and lower bands is destroyed,but the two band abrupt points at(kx,ky)=(π/2,π/2),(kx,ky)=(-π/2,-π/2)are not broken due to the breaking of symmetry,and as?increases,the maximum value of the band in the range ofkx=-π/2 tokx=π/2 andky=-π/2 toky=π/2 increases,and the maximum value of the band in the range ofkx=|π/2|tokx=|π|andky=|π/2|toky=|π|decreases.By adjusting the coupling coefficient,we provide a simple model and method to make the 2D DP at a general momentum point.

    When the system is in the topologically non-trivial state corresponding toC=-1,the band structure shows that,compared with the topological state corresponding toC=-2,the overall dispersion relation decreases inward, and the maximum value of the dispersion relation is lower.Nevertheless,the broadband sharp points do not disappear, as shown in Fig.2(f).

    A comparison of the six band diagrams reveals that there are always two sharp points in each band and that their positions do not depend on the imaginary coupling coefficientγ.The analytical solution indicates that the strong points are located at(kx,ky)=(π/2,π/2)and(kx,ky)=(-π/2,-π/2).

    3.Research on topological states

    However, not all topological systems exhibit consistent boundary state behavior under open boundary conditions.[43,44]Therefore, in specific studies, the system structure and boundary conditions must be considered to determine the energy spectrum of topological systems under open boundary conditions.

    When the intralayer coupling coefficient?=0 and the other coupling coefficients areγ= 0,δ= 0.5,t= 0.5 andσ=0.5, the system is in the topological state when Chern numberC=-2.Figure 3(a)shows the energy spectrum structure of the system with an open boundary in theydirection and an even number of lattice points, assumingny=40 andNy=80.There are zero energy degenerate bands in the energy spectrum of the system and several particular degenerate points in the bulk state.The numerical solution indicates that the positions of these points arekx=±1.04,±2.08,where there are four-fold degeneracies ofnyand the intracell couplingu±vanishes,that is,t+2δcoskx±iγ=0,as shown by the blue dashed line and the intersection point with the bulk state.If an odd number of lattice pointsNy=81 is chosen in theydirection, a flat band appears in the open boundary energy spectrum throughout the BZ,as shown in Fig.3(d).

    When the intralayer coupling coefficient?= 0.1, figures 3(b) and 3(e) show the change of the energy spectrum structure of the open boundary in theydirection when the intralayer coupling coefficient?/=0.Figure 3(b) is the energy band diagram when the number of lattice points is even(Ny=80),indicating that when the intralayer coupling coefficient?changes within a small range,it has a particular impact on the energy spectrum of the whole system.First,it changes the edge state of the system, making it from a topologically protected zero mode to a topologically protected near-zero way; second, it changes the symmetry of the system, making the upper and lower energy spectra no longer symmetrical but does not affect the position of the degenerate points in the bulk state.The bulk state is still decayed atkx=±1.04,±2.08.For the energy band diagram with an odd number of lattice points(Ny=81), the change of the energy spectrum diagram is consistent with Fig.3(d), and a zero-energy flat band appears throughout the BZ.The appearance of these states is closely related to the specific shape and topological properties of the lattice.However,increasing the number of lattice points does not change the existence and position of bulk degenerate points and topological edge states because the appearance of these states depends on the specific shape and topological characteristics of the lattice rather than just the increase in the number of lattice points.

    In general, the intralayer coupling coefficient?affects the edge state of the system: when the intralayer coupling coefficient?=0,the edge state of the system is a topologically protected zero mode;when the intralayer coupling coefficient?/=0,the edge state of the system is a topologically protected near-zero mode.

    The number of lattice points in theydirection affects the appearance of the zero-energy flat band in the open boundary energy spectrum,regardless of whether the system is topologically trivial or non-trivial.No flat band appears in the whole space when the number of lattice points in theydirection is even.When the number of lattice points in theydirection is odd,the zero-energy flat band always exists,regardless of how the coupling coefficients change.[45,46]In summary, we propose a method to realize a flat band at a single lattice point without considering the amplitude and phase of the lattice points.

    Figure 3 has simplified the 2D photonic crystal into a 1D non-reciprocal narrow-band chain model along theydirection.This narrow-band chain model simulates the light wave transmission behavior.

    Figure 4 illustrates the light wave transmission process at the boundary of a finite system under the topologically nontrivial condition.Assumingy=25, the number of lattices isNy=2ny=50,the wave vectork0=π,and a Gaussian wave packet is used for excitation.Figures 4(a) and 4(c) show the evolution of the edge states under topological non-trivial condition when the system’s Chern numberC=-2,with the coupling coefficients?=0,δ=0.5,t=0.5,σ=0.5,γ=0.We observe topological edge states at the upper and lower waveguide edges, and the waveguide is localized on the outermost waveguide.Figures 4(b) and 4(d) show the evolution of the edge states under topological non-trivial condition when the system’s Chern numberC=-1,with the coupling coefficients?=0,δ=0.3,t=0.5,σ=0.3,γ=0.1.We observe that the light wave oscillates and couples with other waveguides, but due to the topological property of the system, the light wave eventually localizes on the edge waveguide,which is the topological edge state.

    4.Study on group velocity control

    This section investigates how to control the photonic crystal’s group velocity by tuning the system’s coupling coefficients.The group velocitieskxandkyof the wave packet along thexandydirections,respectively,are obtained by solving the first-order derivatives of Eq.(8)concerningvkxandvky.

    The formula for the group velocityvkxis derived as follows:

    whereA=(-2?±(1+eiky)2t(δ-σ)-(-1+e2iky)iγσ ?4(eikyδ-σ)(-δ+ eikyσ)coskx)),B= e2iky(t+ iγ+2δcoskx)(t-2σcoskx),C= eiky(2t2+γ2+2(δ2+σ2)),D=4t(δ-σ)+4t(δ-σ)coskx+2(δ2+σ2)cos2kx),E=t2-iγt-2δσ+2tδcoskx+2iγσcoskx.

    Figure 5 shows how tuningγ,an imaginary coupling coefficient in our system, affects group velocities alongx.Figures 5(a)–5(c) illustrate howvkxvaries withkxfor different values ofγ.Whenγ=0,there are three points wherevkx=0,corresponding to the edge and center of the BZ.The band jump point in the band structure remains a discontinuity invkxregardless ofγ.Whenγ=0.3,vkxchanges slightly: it becomes flatter around the center point and reaches higher maxima and lower minima.Asγincreases further, these trends continue:vkxbecomes more gentle at the center and more extreme at other points.Increasingγdoes not affect the zero group velocity points.Still, it causesvkxto increase or decrease continuously depending onkxand become flatter at the center.Figure 5(d) showsvkxunder topological conditions.There are still three points wherevkx= 0, as in the non-topological case, but there is no abrupt change at the band jump point; instead, two group velocity bands intersect at(kx,ky,vkx)=(±π/2,±π/2,0).The overall variation ofvkxis also significantly reduced due to topological suppression.

    Fig.5.Group velocity control in the x direction.(a)–(c) The group velocity variation curves for the topologically trivial state, with the same parameters as Figs.2(a)–2(c).(d)The group velocity variation curve for the topologically non-trivial state,with the same parameters as Fig.2(d).

    The formula for the group velocityvkyis derived as follows:

    Figure 6 shows the group velocity variation curve in theydirection.Figures 6(a)–6(c) illustrate how increasingγaffectsvky.Unlikevkx,vkyis not zero at the edge of the BZ; it has a value of 50 whenγ=0.Asγincreases,vkydecreases at most points except for the center point, where it remains zero.The slope around this point is also tiny and close to zero,which may result in localized or dispersion-less transmission of light waves.In addition,vkyis negative for most values ofkyin in the range of 0 toπ,indicating group velocity deceleration.Thus,we observe group velocity acceleration,deceleration,and zero group velocity within one period.Increasingγdoes not change these phenomena significantly;it only causesvkyto decrease further.Figure 6(d)showsvkyunder topological conditions.The variation ofvkyis tiny under this condition;only near(0,0)is there a noticeable curvature that may cause light wave diffraction due to topological suppression of group velocity variation.

    5.Conclusion

    As one of the most attractive optical systems for light manipulation, non-reciprocal photonic lattices provide abundant means to realize the topological edge states and regulate the group velocity.This paper presents a theoretical design of the non-reciprocal Hermite 2D photonic lattice, and the topological phase transition, topological edge state, optical transport behavior,and group velocity change in the non-reciprocal coupling photonic lattice are studied.The research results show that when the imaginary coupling coefficientγ<0.3 and interlayer coupling coefficientδ<0.5,the system has a topologically non-trivial state ofC=-1;when the imaginary coupling coefficientγ=0 and the interlayerδ=0.5,the system has a topologically non-trivial state ofC=-2.When the imaginary coupling coefficientγ=0,the system energy band is symmetric relative to the wave vector (kx,ky)=(0,0).In a finitely large system,the system has a zero-energy flat-top band when the lattice number in the directionyis odd.The study of group velocity shows that zero group velocity points exist regardless of the topological property of the system.However,the topological state can suppress the amplitude of the group velocity profile.To sum up, this work realizes different topological states of system and localized states of light waves in 2D photonic lattices,enriches the connotation of optical transmission and group velocity regulation in 2D non-reciprocal Hermitic photonic lattices, and has particular theoretical guiding significance in the fields of optical communication and photonic device fabrication.[47,48]

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant No.1217040857).

    猜你喜歡
    楊俊新元
    Topological resonators based on hexagonal-star valley photonic crystals
    舊歲千重錦,新元百尺竿
    楊俊德:農(nóng)業(yè)豐收的“守護(hù)神”
    DYNAMICS ANALYSIS OF A DELAYED HIV INFECTION MODEL WITH CTL IMMUNE RESPONSE AND ANTIBODY IMMUNE RESPONSE?
    李泊城 隋邦平 楊俊顯 王綠竹 作品
    大眾文藝(2019年3期)2019-01-24 13:39:44
    《紅蜻蜓》教案
    《新元史·高防傳》勘補(bǔ)
    Eあects of Correlation between Network Structure and Dynamics of Oscillators on Synchronization Transition in a Kuramoto Model on Scale-Free Networks?
    王新元與“萬(wàn)家美”聯(lián)手推出“面子”針織時(shí)尚秀
    流行色(2005年5期)2005-04-29 18:26:58
    国产精品熟女久久久久浪| 亚洲最大成人手机在线| 国产高清有码在线观看视频| 精品一区二区三区视频在线| 国产综合懂色| 欧美日韩一区二区视频在线观看视频在线 | 精品久久久久久久末码| 免费黄网站久久成人精品| 亚洲在久久综合| 午夜日本视频在线| 国产亚洲午夜精品一区二区久久 | 特级一级黄色大片| 亚洲精品久久久久久婷婷小说 | 亚洲图色成人| 内射极品少妇av片p| 久久久久久久久久久免费av| 青春草亚洲视频在线观看| 日韩三级伦理在线观看| 欧美一区二区精品小视频在线| 亚洲五月天丁香| 丝袜美腿在线中文| 一级二级三级毛片免费看| АⅤ资源中文在线天堂| 精品午夜福利在线看| 国产成人精品婷婷| 欧美一区二区亚洲| 一个人免费在线观看电影| 狂野欧美激情性xxxx在线观看| 禁无遮挡网站| 国产精品电影一区二区三区| 午夜福利在线在线| 午夜亚洲福利在线播放| 99久国产av精品| 国产伦一二天堂av在线观看| 26uuu在线亚洲综合色| 青青草视频在线视频观看| 免费在线观看成人毛片| 亚洲无线观看免费| 日本午夜av视频| 免费看美女性在线毛片视频| 欧美极品一区二区三区四区| 国产精品一区二区三区四区免费观看| 午夜a级毛片| 久久99热这里只频精品6学生 | 国产一区有黄有色的免费视频 | 神马国产精品三级电影在线观看| 中文字幕熟女人妻在线| 啦啦啦啦在线视频资源| 色综合色国产| 国产精品久久久久久精品电影| 99久久九九国产精品国产免费| 少妇人妻精品综合一区二区| 午夜激情福利司机影院| 晚上一个人看的免费电影| av在线老鸭窝| 久久人妻av系列| 一级爰片在线观看| 久久久色成人| 亚洲最大成人手机在线| 麻豆精品久久久久久蜜桃| 国产av一区在线观看免费| 国产一级毛片在线| 搞女人的毛片| 国产三级在线视频| 床上黄色一级片| 99久国产av精品国产电影| 国产乱人偷精品视频| 白带黄色成豆腐渣| 成人三级黄色视频| 69av精品久久久久久| 欧美丝袜亚洲另类| 亚洲欧美成人精品一区二区| 欧美又色又爽又黄视频| 免费观看人在逋| 国产乱来视频区| 久久久欧美国产精品| 日韩一本色道免费dvd| 99在线人妻在线中文字幕| 久久国内精品自在自线图片| 国产探花在线观看一区二区| 国内少妇人妻偷人精品xxx网站| 高清日韩中文字幕在线| 午夜精品在线福利| 99久久精品一区二区三区| 国产女主播在线喷水免费视频网站 | 亚洲在线自拍视频| 久久久久久九九精品二区国产| 亚洲熟妇中文字幕五十中出| 亚洲欧美一区二区三区国产| 亚洲性久久影院| 自拍偷自拍亚洲精品老妇| 国产高清国产精品国产三级 | 久久国产乱子免费精品| 91久久精品国产一区二区成人| 国产精品蜜桃在线观看| 国产精品一区二区在线观看99 | 九色成人免费人妻av| 国产精品嫩草影院av在线观看| 久热久热在线精品观看| 免费无遮挡裸体视频| 亚洲欧洲国产日韩| 大香蕉97超碰在线| 波多野结衣巨乳人妻| 亚洲精品亚洲一区二区| 国产黄片视频在线免费观看| 色尼玛亚洲综合影院| 夫妻性生交免费视频一级片| 欧美精品国产亚洲| 久久精品国产亚洲网站| 亚洲欧美日韩东京热| 哪个播放器可以免费观看大片| 嫩草影院新地址| 极品教师在线视频| 精品国产露脸久久av麻豆 | 国产一区二区在线观看日韩| 亚洲av成人精品一二三区| 国产成年人精品一区二区| 禁无遮挡网站| 黄色欧美视频在线观看| 日日啪夜夜撸| 91久久精品国产一区二区成人| av线在线观看网站| 国产女主播在线喷水免费视频网站 | 中文字幕熟女人妻在线| 99久国产av精品| 嘟嘟电影网在线观看| 日韩强制内射视频| 久久久久久久国产电影| av.在线天堂| 国产成年人精品一区二区| 精品欧美国产一区二区三| 青春草视频在线免费观看| 22中文网久久字幕| 一夜夜www| 欧美极品一区二区三区四区| 国产精品久久久久久久电影| 久久久久久久午夜电影| 亚洲久久久久久中文字幕| 国产熟女欧美一区二区| 男女国产视频网站| 蜜桃久久精品国产亚洲av| 三级男女做爰猛烈吃奶摸视频| 免费电影在线观看免费观看| 51国产日韩欧美| 尾随美女入室| 亚洲伊人久久精品综合 | 国产探花极品一区二区| 国产成人免费观看mmmm| 51国产日韩欧美| 内射极品少妇av片p| 日韩精品有码人妻一区| 国产真实乱freesex| 久久久久久久久中文| 日韩欧美精品v在线| 丝袜美腿在线中文| 久久精品熟女亚洲av麻豆精品 | 亚洲av成人精品一二三区| 春色校园在线视频观看| 亚洲无线观看免费| 我的女老师完整版在线观看| 国产中年淑女户外野战色| kizo精华| 国产私拍福利视频在线观看| 国产成人aa在线观看| 久久久久免费精品人妻一区二区| 美女国产视频在线观看| 久久人人爽人人片av| 国产成人freesex在线| 九九久久精品国产亚洲av麻豆| 男人的好看免费观看在线视频| 国产精品电影一区二区三区| 亚洲精品成人久久久久久| 美女内射精品一级片tv| 看黄色毛片网站| 久久久精品大字幕| 夫妻性生交免费视频一级片| a级毛片免费高清观看在线播放| 啦啦啦啦在线视频资源| 夜夜看夜夜爽夜夜摸| 久久久精品94久久精品| 久久久久久久久久久丰满| 1000部很黄的大片| 一二三四中文在线观看免费高清| 美女被艹到高潮喷水动态| 日韩欧美精品v在线| 日韩高清综合在线| 天天一区二区日本电影三级| 亚洲熟妇中文字幕五十中出| 91精品国产九色| 久久精品91蜜桃| 欧美性猛交黑人性爽| 午夜福利成人在线免费观看| 永久免费av网站大全| 我要搜黄色片| 老师上课跳d突然被开到最大视频| 久久久久久九九精品二区国产| 69人妻影院| 亚洲av成人精品一区久久| 国产亚洲5aaaaa淫片| 国产成人a∨麻豆精品| 夜夜爽夜夜爽视频| 欧美bdsm另类| 国产视频内射| 亚洲中文字幕日韩| 一区二区三区四区激情视频| 赤兔流量卡办理| 国产不卡一卡二| 禁无遮挡网站| 国语自产精品视频在线第100页| 国产成年人精品一区二区| 中文字幕精品亚洲无线码一区| 亚洲天堂国产精品一区在线| 亚洲,欧美,日韩| 3wmmmm亚洲av在线观看| 非洲黑人性xxxx精品又粗又长| 色综合色国产| 青春草亚洲视频在线观看| 久久久久久久久久久丰满| 婷婷色麻豆天堂久久 | 91久久精品电影网| 一区二区三区免费毛片| 国产探花极品一区二区| 有码 亚洲区| 精品久久久久久成人av| 亚洲成人精品中文字幕电影| 国产精品美女特级片免费视频播放器| 亚洲中文字幕日韩| 欧美成人a在线观看| 国产又色又爽无遮挡免| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品不卡视频一区二区| 亚洲精品乱久久久久久| 一级av片app| 麻豆久久精品国产亚洲av| 免费观看性生交大片5| 大话2 男鬼变身卡| 一个人免费在线观看电影| 久久久久久久亚洲中文字幕| 久久久成人免费电影| 热99re8久久精品国产| 三级男女做爰猛烈吃奶摸视频| 中文字幕熟女人妻在线| 成人综合一区亚洲| 色吧在线观看| 99热这里只有精品一区| 国产午夜精品久久久久久一区二区三区| 亚洲综合精品二区| 久久久久久久久久久免费av| 日本爱情动作片www.在线观看| 亚洲三级黄色毛片| 菩萨蛮人人尽说江南好唐韦庄 | av在线蜜桃| av视频在线观看入口| 波多野结衣巨乳人妻| 高清日韩中文字幕在线| 亚洲不卡免费看| 婷婷色麻豆天堂久久 | av播播在线观看一区| 国产老妇伦熟女老妇高清| 99久久九九国产精品国产免费| 有码 亚洲区| 午夜久久久久精精品| 亚洲成人中文字幕在线播放| 国产精品一二三区在线看| 夜夜看夜夜爽夜夜摸| 狠狠狠狠99中文字幕| 免费一级毛片在线播放高清视频| 爱豆传媒免费全集在线观看| 在线播放国产精品三级| 男女下面进入的视频免费午夜| 久久久久性生活片| 国产精品综合久久久久久久免费| 国产亚洲精品久久久com| 少妇高潮的动态图| 搡老妇女老女人老熟妇| 午夜视频国产福利| 亚洲内射少妇av| 在线播放国产精品三级| 亚洲欧美成人综合另类久久久 | 国产成人91sexporn| 日本黄色片子视频| 亚洲精品乱码久久久久久按摩| 男人的好看免费观看在线视频| 黄色配什么色好看| 天美传媒精品一区二区| 亚洲,欧美,日韩| 欧美一区二区国产精品久久精品| 欧美潮喷喷水| 亚洲内射少妇av| 国产综合懂色| 久久99热这里只有精品18| 大香蕉97超碰在线| 亚洲人成网站在线观看播放| 国产精品一区二区性色av| 亚洲乱码一区二区免费版| 老司机影院成人| 国产黄片美女视频| 在线观看美女被高潮喷水网站| 成人欧美大片| 美女黄网站色视频| 欧美成人午夜免费资源| 精品久久久久久久久亚洲| 麻豆乱淫一区二区| 国产精品国产三级专区第一集| 国语对白做爰xxxⅹ性视频网站| 人妻制服诱惑在线中文字幕| 国产高清有码在线观看视频| 日韩国内少妇激情av| 中国国产av一级| 国产淫语在线视频| 少妇的逼好多水| 99久久人妻综合| 五月伊人婷婷丁香| 一级av片app| 只有这里有精品99| 99热这里只有是精品在线观看| 22中文网久久字幕| 最近2019中文字幕mv第一页| 久久热精品热| 中文乱码字字幕精品一区二区三区 | 在线a可以看的网站| 校园人妻丝袜中文字幕| 国产伦在线观看视频一区| 色综合站精品国产| 小蜜桃在线观看免费完整版高清| 丰满乱子伦码专区| kizo精华| 亚洲最大成人av| av专区在线播放| 长腿黑丝高跟| 联通29元200g的流量卡| 一边亲一边摸免费视频| 免费观看精品视频网站| 国产成人精品婷婷| 成人综合一区亚洲| 有码 亚洲区| 啦啦啦韩国在线观看视频| 爱豆传媒免费全集在线观看| 又黄又爽又刺激的免费视频.| 婷婷六月久久综合丁香| 又爽又黄a免费视频| 亚洲欧洲国产日韩| 国产av一区在线观看免费| 搡女人真爽免费视频火全软件| 18禁动态无遮挡网站| 亚洲国产精品sss在线观看| 日本黄色片子视频| 日本午夜av视频| 免费看av在线观看网站| 美女大奶头视频| 美女高潮的动态| 国产三级在线视频| 国产一级毛片在线| 在线观看一区二区三区| 亚洲精品乱码久久久v下载方式| www日本黄色视频网| 日本黄色片子视频| 亚洲精品成人久久久久久| 国产精品伦人一区二区| 黄片wwwwww| 晚上一个人看的免费电影| 亚洲成人中文字幕在线播放| 亚洲久久久久久中文字幕| 男女下面进入的视频免费午夜| 中文字幕制服av| 婷婷色综合大香蕉| 99热这里只有精品一区| 久久久久久久久大av| 国产在视频线在精品| 亚洲国产精品专区欧美| 国产大屁股一区二区在线视频| 亚洲伊人久久精品综合 | 精品久久久久久久久亚洲| 亚洲欧美精品综合久久99| 亚洲成人中文字幕在线播放| 中文字幕精品亚洲无线码一区| 国产精品野战在线观看| 九九热线精品视视频播放| 亚洲人成网站在线观看播放| 青春草亚洲视频在线观看| 91狼人影院| 免费大片18禁| 久久久久国产网址| 欧美成人一区二区免费高清观看| 人体艺术视频欧美日本| 国产精品熟女久久久久浪| 日本黄大片高清| 久久久色成人| 亚洲av中文av极速乱| 久久精品夜色国产| 日韩欧美精品v在线| 国产v大片淫在线免费观看| 亚洲成人中文字幕在线播放| 色尼玛亚洲综合影院| 亚洲av男天堂| 欧美97在线视频| 色哟哟·www| 精品久久久久久久人妻蜜臀av| 国产亚洲最大av| 亚洲精华国产精华液的使用体验| 少妇裸体淫交视频免费看高清| 亚洲在久久综合| 成人午夜高清在线视频| 人体艺术视频欧美日本| 欧美色视频一区免费| 国产乱人视频| 欧美丝袜亚洲另类| 黄片wwwwww| 亚洲图色成人| 黑人高潮一二区| 免费人成在线观看视频色| 久久久久久国产a免费观看| 看片在线看免费视频| 九九热线精品视视频播放| 91狼人影院| 岛国在线免费视频观看| 三级男女做爰猛烈吃奶摸视频| 国产黄色视频一区二区在线观看 | 最近的中文字幕免费完整| 国产极品天堂在线| 中文字幕制服av| www.色视频.com| 99热这里只有是精品50| 欧美一区二区国产精品久久精品| 欧美激情国产日韩精品一区| 国产成人a∨麻豆精品| 美女脱内裤让男人舔精品视频| 国内精品宾馆在线| 午夜日本视频在线| 一级av片app| 亚洲欧美成人综合另类久久久 | 乱人视频在线观看| 国产精品乱码一区二三区的特点| 久久午夜福利片| 国产一级毛片七仙女欲春2| 国产精品美女特级片免费视频播放器| 亚洲成人精品中文字幕电影| 亚洲图色成人| 一边亲一边摸免费视频| 麻豆成人av视频| 国产免费视频播放在线视频 | 亚州av有码| 久久精品熟女亚洲av麻豆精品 | 好男人视频免费观看在线| 你懂的网址亚洲精品在线观看 | 3wmmmm亚洲av在线观看| 国产又黄又爽又无遮挡在线| 丰满乱子伦码专区| 成人高潮视频无遮挡免费网站| 91精品伊人久久大香线蕉| 插逼视频在线观看| 国产黄色视频一区二区在线观看 | 国产大屁股一区二区在线视频| 99在线人妻在线中文字幕| 欧美高清成人免费视频www| 69人妻影院| 最近中文字幕2019免费版| 日韩亚洲欧美综合| 国产极品天堂在线| 免费黄网站久久成人精品| 日韩大片免费观看网站 | 欧美色视频一区免费| 国产精品综合久久久久久久免费| 干丝袜人妻中文字幕| 亚洲美女视频黄频| 中文字幕久久专区| 少妇裸体淫交视频免费看高清| 波野结衣二区三区在线| 麻豆成人午夜福利视频| 亚洲精品,欧美精品| 九九爱精品视频在线观看| 亚洲18禁久久av| 国产成人午夜福利电影在线观看| 亚洲欧美日韩卡通动漫| 国产一级毛片七仙女欲春2| 精品无人区乱码1区二区| av国产免费在线观看| 国产综合懂色| 亚洲最大成人av| 国产精品.久久久| 99久久精品国产国产毛片| 日韩精品青青久久久久久| 欧美成人免费av一区二区三区| 久久99精品国语久久久| 丰满人妻一区二区三区视频av| 久久精品熟女亚洲av麻豆精品 | 嫩草影院入口| 国产高潮美女av| 99热这里只有是精品在线观看| 亚洲av成人精品一二三区| 成人综合一区亚洲| 午夜亚洲福利在线播放| 欧美日韩一区二区视频在线观看视频在线 | 国产三级中文精品| 成年av动漫网址| 国产精品国产三级国产av玫瑰| 中文字幕av在线有码专区| 久久久精品欧美日韩精品| 国产精品.久久久| 99在线视频只有这里精品首页| 只有这里有精品99| 天堂影院成人在线观看| 久久久久久大精品| 三级经典国产精品| 在线免费十八禁| 日本午夜av视频| 国产成人精品一,二区| 亚洲av电影在线观看一区二区三区 | 女的被弄到高潮叫床怎么办| 国产男人的电影天堂91| 天天一区二区日本电影三级| 99久国产av精品国产电影| 亚洲欧美精品专区久久| 真实男女啪啪啪动态图| 成人漫画全彩无遮挡| av天堂中文字幕网| 国产中年淑女户外野战色| 久久这里只有精品中国| 少妇的逼水好多| 69av精品久久久久久| 三级国产精品欧美在线观看| 久热久热在线精品观看| 国产亚洲91精品色在线| 久久鲁丝午夜福利片| 亚洲欧美日韩高清专用| 精品久久久久久久久亚洲| 夜夜爽夜夜爽视频| av在线播放精品| 成人毛片60女人毛片免费| 99久国产av精品| 又粗又硬又长又爽又黄的视频| 天天一区二区日本电影三级| 久久久久网色| 久久精品久久久久久噜噜老黄 | av在线播放精品| 午夜福利网站1000一区二区三区| 老司机福利观看| 亚洲18禁久久av| 一个人看视频在线观看www免费| 大香蕉97超碰在线| 97人妻精品一区二区三区麻豆| 亚洲在线观看片| 最近中文字幕高清免费大全6| 日本-黄色视频高清免费观看| 日本黄色片子视频| 少妇丰满av| 国产在线一区二区三区精 | 国内少妇人妻偷人精品xxx网站| 一区二区三区免费毛片| 亚洲电影在线观看av| 毛片女人毛片| 久久久久国产网址| 97在线视频观看| 秋霞伦理黄片| 亚洲国产欧美人成| 中文在线观看免费www的网站| 深夜a级毛片| 亚洲人成网站在线播| 免费不卡的大黄色大毛片视频在线观看 | 国产色爽女视频免费观看| 一级毛片aaaaaa免费看小| 丰满乱子伦码专区| 欧美+日韩+精品| 久久韩国三级中文字幕| 国产精品一区二区三区四区免费观看| 在线免费观看的www视频| 国产又色又爽无遮挡免| 岛国在线免费视频观看| 亚洲中文字幕一区二区三区有码在线看| 免费在线观看成人毛片| 天天一区二区日本电影三级| 男插女下体视频免费在线播放| 久久精品人妻少妇| 91精品国产九色| 日韩欧美三级三区| 看黄色毛片网站| 亚洲aⅴ乱码一区二区在线播放| 国产av码专区亚洲av| 男插女下体视频免费在线播放| 精品人妻偷拍中文字幕| 日韩高清综合在线| 欧美又色又爽又黄视频| 久久午夜福利片| 国产乱人视频| 婷婷色av中文字幕| 热99在线观看视频| 成人一区二区视频在线观看| 美女xxoo啪啪120秒动态图| 久久久久免费精品人妻一区二区| 一边摸一边抽搐一进一小说| 久久热精品热| 久久久久久久国产电影| 高清av免费在线| 少妇熟女aⅴ在线视频| 午夜精品在线福利| 村上凉子中文字幕在线| 国产单亲对白刺激| 我的女老师完整版在线观看| 午夜免费男女啪啪视频观看| 毛片女人毛片| av在线蜜桃| 青春草国产在线视频| 欧美日韩精品成人综合77777| 亚洲天堂国产精品一区在线| 精品久久国产蜜桃| 国产伦一二天堂av在线观看| 欧美激情在线99| 国产成人精品久久久久久| 51国产日韩欧美| 看非洲黑人一级黄片| 精品久久久久久久久久久久久| 亚洲欧洲日产国产| 97超碰精品成人国产| av卡一久久| 国内少妇人妻偷人精品xxx网站|