• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Eあects of Correlation between Network Structure and Dynamics of Oscillators on Synchronization Transition in a Kuramoto Model on Scale-Free Networks?

    2014-03-12 08:44:12YUDan于丹andYANGJunZhong楊俊忠
    Communications in Theoretical Physics 2014年2期
    關(guān)鍵詞:楊俊

    YU Dan(于丹)and YANG Jun-Zhong(楊俊忠)

    School of Science,Beijing University of Posts and Telecommunications,Beijing 100876,China

    1 Introduction

    Synchronization,an emergent property in systems consisting of a large number of elementary unites with their own dynamics,is ubiquitous in physical systems,chemical systems,social systems,and biological systems.[1?7]A powerful approach on analyzing synchronization in these systems is to model elementary units as phase oscillators when the interaction among them is weak.Along this line,the Kuramoto model is the most representative one.[7?9]The original Kuramoto model assumes that the phase oscillators are coupled globally and their natural frequencies follow a given distribution.The theoretical analysis shows that there exists a critical coupling strength above which the coupled phase oscillators transit from an incoherent state to a partial synchronous state.Further increasing the coupling strength may eventually lead to a global synchronization in which all phase oscillators rotate with a common frequency.

    Recently,the Kuramoto model on complex networks in which each phase oscillator only interacts with its nearest neighbors has drawn great attentions.[10]It has been found that the topological properties of complex networks have strong impacts on the critical coupling strength for the onset of synchronization and on the scenarios of the transition to synchronization.[11?14]Nevertheless,the synchronization transitions on diあerent networks are always continuous one(or the second order ones).

    It is a well-known fact that the roles of an elementary unit on collective dynamics in coupled systems depend not only on its own dynamical characteristics but also on its position on the network.[15]Recently,motivated by the abrupt percolation transition on complex networks,[16?18]Garde?nes et al.introduced a microscopic correlation between the structural and the dynamical properties of the system[19]by setting the natural frequency of a phase oscillator to be the degree of the node it sits on.They found an explosive synchronization in which the synchronization transition becomes a discontinuous one(or a f i rst-order transition)and the incoherent state may coexist with the global synchronization in a certain range of the coupling strength.Furthermore,the explosive synchronization on scale-free networks is also found when phase oscillators are replaced by chaotic R¨ossler oscillators.[20]However,how the explosive synchronization depends on the correlation between the structural and the dynamical properties of the system is still an open problem,which is the goal in this work.

    In this work,we f i rst consider the frequency distribution following the degree distribution of networks.We introduce a correlation factor β accounting for the correlation between the structural and the dynamical properties of the system.Then we show that the critical coupling strength has strong dependence on the correlation factor β and that the transition to synchronization may be either the second-order or the f i rst-order one depending on the correlation factor β.For proper β,we f i nd that the explosive synchronization transition may occur between the incoherent state and partially synchronized states.Finally,we show that the dependence of the synchronization transition on the correlation factor can also be found when the natural frequency follows other types of distributions such as a Lorentzian probability distribution.

    2 Model

    Let us consider a network of N coupled phase oscillators.Each phase oscillator is characterized by a phase θ(t).The motion equation of the systems is given by the Kuramoto model:[7]

    ωiis the natural frequency of the oscillator i and is taken from a probability distribution g(ω).λ stands for the coupling strength among oscillators.Aijare the elements of an N×N adjacency matrix A,so that Aij=1 when the oscillators i and j are connected while Aij=0 otherwise.Aijgives rise to the degree kiof the node the oscillator i sits on.In this work,we consider scale-free networks whose degree distribution P(k)follows a power law.

    To introduce the correlation factor β,we assume that phase oscillators have sit on networks but with unknown natural frequencies.We f i rst sort the phase oscillators by the degrees of the nodes they sit on and have a structural sequence{k1,k2,...,kN}in which k1≥ k2≥ ···≥ kN.In this notation,the label kidenotes the i-th phase oscillator,which has the degree ki.Then we sort the natural frequencies to be assigned and have a dynamical sequence{ω1,ω2,...,ωN}in which ω1≤ ω2≤ ···≤ ωN.In this notation,the label ωidenotes the i-th natural frequency.For the case that g(ω)has the same form as P(k),the relation between two sequences lies at ωi=kN?i+1.To be stressed,the numbers in the subscript of ωiare just for index and are not related to phase oscillators.

    To establish the correlation between the structural and the dynamical properties in the model,we introduce the correlation factor β (β ∈ [1,N])as follows.The natural frequency ω1is assigned to the β-th oscillator in the structural sequence.Then,the natural frequency ω2is assigned to the(β+1)-th oscillator with the probability(N ? β)/(N?1)or to the(β ?1)-th oscillator otherwise.By repeating the above procedure,every phase oscillator in the structural sequence will be assigned a natural frequency in the dynamical sequence.We call the system with the correlation factor β=N the one with positive correlation between the structural and the dynamical properties,which is the case in the work by Garde?nes et al.[19]Correspondingly,we call the system with β=1 the one with negative correlation.With the increase of β,more and more phase oscillators with higher degrees acquire large natural frequencies,which changes the correlation between the topological and the dynamical properties in the model.Therefore,we may build up arbitrary intermediate correlation between positive and negative ones through this way.

    In the rest of work,we will see that the correlation between the structural and the dynamical properties has strong impacts on the critical coupling strengthes such as λffor the onset of synchronization and λbfor the oあset of synchronization.Moreover,we will f i nd that the correlation factor might aあect the type of the synchronization transition.

    3 Results and Analysis

    We simulate the Kuramoto model on Barab′asi–Albert(BA)networks[21?22]by using the fourth order Runge–Kutta algorithm.The size of the network is N=5000 and the mean degree 〈k〉=6.

    To investigate the transition to synchronization in the system of Eq.(1),we consider the complex order parameter,which is def i ned as

    Ψ(t)is the average phase of the collective dynamics of the system and the modulus r(t)∈[0,1]represents the degree of synchronization among oscillators.r=1 when all oscillators get synchronized to Ψ(t).On the other hand,r=0 indicates the incoherent state where the phases of oscillators are evenly distributed in[0,2π].In simulations,for a given λ,the modulus of the order parameter is averaged over a long time interval after transient.

    To explore the synchronization transition,we compute two synchronization diagrams r(λ),labelled as the forward and the backward continuations,for diあerent β.Figure 1(a)shows the results for β=1 the case with negative correlation between the topological and the dynamical properties.From the f i gure,it is clear that both the forward continuation diagram and the backward continuation diagram give rise to the same dependence of r on λ,which refers to a continuous synchronization transition.Several features in the f i gure should be addressed.Firstly,the modulus of the order parameter r has a much high value even when the coupling is extremely weak.The feature is related to the distribution of the natural frequency,which only allows a few of diあerent values and a large amount of oscillators such as those with the lowest natural frequency have already formed synchronous clusters accidently.In this situation,we treat the onset of synchronization as an event that oscillators with diあerent natural frequencies get trapped and,consequently,the critical coupling strength is identif i ed by the discontinuity in the slope of r(λ)(Here,the onset of synchronization lies at around λ ? 0.2).The second feature in Fig.1(a)is that the increase of r with λ is not in a smooth way after the onset of synchronization and there exist several coupling strengthes λ at which the slope of r(λ)is not continuous.As shown below,these discontinuities account for the transitions between diあerent partially synchronized states.

    However,the continuous synchronization transition can be observed only at small β.Figure 1(b)shows the results for β=800 where the forward continuation diagram shows a sharp jump from the incoherent state with r? 0 to a state with r? 0.6 at λf? 0.58 while the transition from a synchronous state back to the incoherent one occurs at λb? 0.43 in the backward continuation diagram.Further increasing β leads the discontinuous characteristics of the synchronization transition to be more clearer.As shown by Figs.1(c)and 1(d),increasing β postpones the onset of synchronization in the forward continuation diagram and the oあset of the synchronized states in the backward continuation diagram to stronger coupling strengthes and the range of the coupling strength for the coexistence of the incoherent state and the synchronous states may be widened.The results in Fig.1 show that the correlation between the structural and the dynamical properties in the model is crucial for the characteristics of the synchronization transition and the synchronization is diきcult to achieve for high correlation factor β.

    To get deep insights on synchronization transition at diあerent β,we compute the eあective frequency of phase oscillators in the forward continuation of λ.For a phase oscillator i,its eあective frequency is de fi ned as ωieあ=〈θ˙i〉where 〈·〉is the time average over a long time interval after transient.The results are presented in Fig.2 in which diあerent colors are used to distinguish oscillators with diあerent degrees.Figure 2(a)shows the scenario how the continuous synchronization transition is proceeded at β =1.The transition at λ ? 0.2 is characterized by the event that part of oscillators with natural frequencies ω=4 and ω=3 get synchronized.With the increase of the coupling strength,the global synchronization among oscillators with ω =3 and with ω =4 are built gradually.After that,the partial synchronization and the global synchronization among oscillators with larger natural frequencies and those already in synchronization happen at larger coupling strength successively.The occurrence of each partial synchronization accompanies a discontinuity in the curve of r(λ)as observed in Fig.1(a).In the case of β =1,the oscillators with high degrees such as ki> 6 have their natural frequencies less than ω=4.

    The synchronization among oscillators in Fig.2(a)actually has two-folded implications. On the one hand,the f i gure indicates that the oscillators with highest degrees get synchronized f i rstly,which is in agreement with the observations on scale-free networks[we call it network-assisted-synchronization-mechanism(NASM)].On the other hand,the f i gure indicates that the oscillators got f i rst synchronized are those whose natural frequencies are most probable,which is also in agreement with the observations in original Kuramoto model[We call it the frequency-assisted-synchronization mechanism(FASM)].To be noted,due to the power law distribution of the natural frequency,the common frequency among the synchronized oscillators is not equal to ? = 〈k〉=6 before the global synchronization among all oscillators is built up.

    Increasing the correlation factor β will break up the coincidence between NASM and FASM at β=1,which may lead the type of synchronization transition to change from a continuous to a discontinuous one. As shown in Figs.2(b)–2(d),the oscillators with high degrees become more impossible to adopt probable natural frequencies with the increase of the correlation factor β.Resultantly,NASM and FASM can not be realized simultaneously,which means that oscillators with high degrees are not favored by FASM or oscillators with probable natural frequencies are not favored by NASM,and the competition between NASM and FASM leads to a discontinuous synchronization transition.In Figs.2(b)(β=800),(c)(β =3500),and(d)(β =5000),the synchronization transition becomes discontinuous and,generally,the critical coupling strength λfincreases with β.Interestingly,we f i nd that,for intermediate β,the discontinuous synchronization transition may occur between the incoherent state and a partial synchronous state for intermediate correlation factors[see Figs.2(b)and 2(c)],which is found in a second order Kuramoto model on scale-free networks recently.[23]There are still a large amount of oscillators with high natural frequencies are outside of the synchronous clusters after the onset of synchronization.Beyond λf,there exist several successive transitions between diあerent partial synchronous states(or global synchronous state)and these transitions are types of continuous ones.Figures 2(b)and 2(c)reveal another feature at the discontinuous transition between the incoherent state and a certain partial synchronous state:Right at λf,the distribution of the eあective frequency becomes narrow suddenly for oscillators outside synchronous clusters,which is not observed in a continuous synchronization transition.For positive correlation with β=N,the discontinuous synchronization transition occurs between the incoherent state and the global synchronous state in which all phase oscillators have a same eあective frequency ? = 〈k〉=6 beyond the onset of synchronization as shown in Fig.2(d).

    Fig.2 (Color online)The eあective frequencies of oscillators are plotted against the coupling strength in the forward continuation diagram in Fig.1 for diあerent correlation factors β (a)β =1,(b)β =800,(c) β =3500,(d) β =5000.Diあerent colors stand for the oscillators with diあerent degrees.

    The impacts of the correlation factor β on the synchronization transition can be summarized in Fig.3 where the onset of synchronization λfin the forward continuation diagram and the oあset of synchronization λbin the backward continuation diagram are presented against β.For each β,we present data for ten realizations of the correlation between the structural and the dynamical properties.Figure 3 shows that the synchronization transition is a continuous one for β < 300 where λf= λbwhile a discontinuous one otherwise.From the f i gure,we f i nd that,for diあerent realizations of correlation,λfand λbf l uctuate greatly and that both λfand λbtend to go up with β when synchronization transition is a discontinuous one.Figure 3 also shows that λbreaches a saturated value earlier than λbwith the increase of β and the range of the coupling strength for the coexistence of the incoherent state and the synchronous state is enlarged with β.

    In the above investigations,the probability distribution of the natural frequencies follows the degree distribution of the underlying networks,which only consists of a few of diあerent natural frequencies.However,the dependence of synchronization transition on correlation between the structural and the dynamical properties is not limited to this special distribution of natural frequencies.Here we consider a widely used distribution for natural frequencies,the Lorentzian distribution which follows g(ω)= γ/(ω2+ γ2)π. The width γ is set to be γ=0.1.The N natural frequencies are randomly drawn from the Lorentzian distribution and are sorted according to the probabilities they appear. Therefore,we have a dynamical sequence{ω1,ω2,...,ωN}such that g(ω1)≤ g(ω2)≤ ···≤ g(ωN).Then we introduce the correlation factor β and assign each oscillators with a natural frequency by following the procedure in the model section.Figure 4 shows the results of r against λ for diあerent β.Similar to Fig.1,whether the synchronization transition is a continuous one or a discontinuous one depends on the value of β.Figure 4 also shows that the critical coupling strengthes λfand λbincrease with β in an overall trend.

    Fig.3(Color online)The coupling strengthes λfin the forward continuation diagram and λbin the backward continuation diagram are plotted against the correlation factor β for ten realizations.The distribution of natural frequency follows the degree distribution of the underlying networks.N=5000 and 〈k〉=6.

    Fig.4(Color online)The synchronization diagrams r(λ)at diあerent correlation factors β for a Kuramoto model on BA networks.g(ω)follows a Lorentzian distribution with γ =0.1 and 〈ω〉=0.(a) β =1;(b)β =1800;(c)β =4000;(d)β =5000.These plots show both forward and backward continuations in λ with the increment of λ at 0.01.N=5000 and 〈k〉=6.

    4 Conclusions

    In conclusion,we numerically investigate the synchronization transition in a Kuramoto model on scale-free networks.We have introduced a quantity β,the correlation factor,to characterize the correlation between the structural and the dynamical properties in the model.We found that the synchronization transition may be a continuous one for low correlation factor β and a discontinuous one(or explosive synchronization)otherwise.We also found that the critical coupling strengthes for the onset of synchronization out of the incoherent state and for the oあset of synchronization to the incoherent state depend on the correlation factor β.These two critical coupling strengthes and the range of coupling strength for the coexistence of the incoherent state and synchronous states increase with β in an overall way.We also found that the dependence of synchronization transition on the correlation factor can be found in the case that other types of probability distributions of natural frequencies such as Lorentzian distribution are adopted.

    [1]N.Wiener,Nonlinear Problems in Random Theory,MIT Press,Cambridge,MA(1958).

    [2]S.H.Strogatz,Nonlinear Dynamics and Chaos:With Applications to Physics,Biology,Chemistry,and Engineering,Persus,New York(1994).

    [3]A.Arenas,A.D′?az-Guilera,J.Kurths,Y.Moreno,and C.Zhou,Phys.Rep.469(2008)93.

    [4]J.A.Acebr′on,L.L.Bonilla,C.J.P.Vicente,F.Ritort,and R.Spigler,Rev.Mod.Phys.77(2005)137.

    [5]N.A.M.Ara′ujo,H.Seybold,R.M.Baram,H.J.Herrmann,and J.S.Andrade,Phys.Rev.Lett.110(2013)064106.

    [6]M.Rohden,A.Sorge,M.Timme,and D.Witthaut,Phys.Rev.Lett.109(2012)064101.

    [7]Y.Kuramoto,Chemical Oscillations,Waves and Turbulence,Springer,New York(1984).

    [8]D.Yuan and J.Z.Yang,Commun.Theor.Phys.59(2013)684.

    [9]H.Y.Yang,S.Zhang,and G.D.Zong,Commun.Theor.Phys.55(2011)185.

    [10]F.E.N.Hassan,M.Paulsamy,F.F.Fernando,and H.A.Cerdeira,Chaos 19(2009)013103.

    [11]Y.Moreno and A.F.Pacheco,Europhys.Lett.68(2004)603.

    [12]A.Arenas,A.D′?az-Guilera,and C.J.Perez-Vicente,Phys.Rev.Lett.96(2006)114102.

    [13]C.Zhou and J.Kurths,Chaos 16(2006)015104.

    [14]J.G′omez-Garde?nes,Y.Moreno,and A.Arenas,Phys.Rev.Lett.98(2007)034101.

    [15]Y.Liu,J.J.Slotine,and A.L.Barab′asi,Nature(London)473(2011)167.

    [16]D.Achlioptas,R.M.D’Souza,and J.Spencer,Science 323(2009)1453.

    [17]F.Radicchi and S.Fortunato,Phys.Rev.Lett.103(2009)168701.

    [18]Y.S.Cho,J.S.Kim,J.Park,B.Kahng,and D.Kim,Phys.Rev.Lett.103(2009)135702.

    [19]J.G′omez-Garde?nes,S.G′omez,A.Arenas,and Y.Moreno,Phys.Rev.Lett.106(2011)128701.

    [20]I.Leyva,R.Sevilla-Escoboza,J.M.Buld′u,I.Sendi?na-Nadal,J.G′omez-Garde?nes,A.Arenas,Y.Moreno,S.G′omez,R.Jaimes-Re′ategui,and S.Boccaletti,Phys.Rev.Lett.108(2012)168702.

    [21]A.L.Barab′asi and R.Albert,Science 286(1999)509.

    [22]J.G′omez-Garde?nes and Y.Moreno,Phys.Rev.E 73(2006)056124.

    [23]P.Ji,T.K.DM.Peron,P.J.Menck,F.A.Rodrigues,and J.Kurths,Phys.Rev.Lett.110(2013)218701.

    猜你喜歡
    楊俊
    Tailoring topological corner states in photonic crystals by near-and far-field coupling effects
    Topological states switching and group velocity control in two-dimensional non-reciprocal Hermitian photonic lattice
    Topological resonators based on hexagonal-star valley photonic crystals
    楊俊德:農(nóng)業(yè)豐收的“守護(hù)神”
    DYNAMICS ANALYSIS OF A DELAYED HIV INFECTION MODEL WITH CTL IMMUNE RESPONSE AND ANTIBODY IMMUNE RESPONSE?
    Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica*
    執(zhí)著
    詩潮(2019年11期)2019-11-23 12:20:12
    追愛五十天,這是浪漫的開始嗎?
    追愛五十天,這是浪漫的開始嗎?
    李泊城 隋邦平 楊俊顯 王綠竹 作品
    大眾文藝(2019年3期)2019-01-24 13:39:44
    大片电影免费在线观看免费| 人人妻人人添人人爽欧美一区卜| 黄色怎么调成土黄色| 九色亚洲精品在线播放| tube8黄色片| 国产探花极品一区二区| 日本av免费视频播放| 黑人猛操日本美女一级片| 一级毛片我不卡| 亚洲精品中文字幕在线视频| 黄片小视频在线播放| 久久久久久久久久久久大奶| 最近最新中文字幕免费大全7| 一二三四中文在线观看免费高清| 免费看av在线观看网站| 亚洲在久久综合| 亚洲av中文av极速乱| 国产亚洲欧美精品永久| a 毛片基地| 搡老岳熟女国产| 性高湖久久久久久久久免费观看| av福利片在线| 99久久综合免费| 欧美成人精品欧美一级黄| 宅男免费午夜| 国产一区二区三区av在线| 国产日韩一区二区三区精品不卡| 亚洲成人一二三区av| 亚洲视频免费观看视频| 国产精品偷伦视频观看了| 丰满乱子伦码专区| 亚洲三区欧美一区| 欧美老熟妇乱子伦牲交| 日本色播在线视频| 中文字幕高清在线视频| 丝瓜视频免费看黄片| 老汉色av国产亚洲站长工具| 国产欧美日韩综合在线一区二区| 咕卡用的链子| 老熟女久久久| 亚洲第一区二区三区不卡| 色婷婷av一区二区三区视频| 国产精品嫩草影院av在线观看| 精品亚洲成国产av| 亚洲一码二码三码区别大吗| √禁漫天堂资源中文www| 国产老妇伦熟女老妇高清| 国产精品麻豆人妻色哟哟久久| 99精国产麻豆久久婷婷| 国产精品免费大片| 亚洲欧美精品综合一区二区三区| 亚洲男人天堂网一区| 一区二区三区精品91| av天堂久久9| 免费黄色在线免费观看| 亚洲欧美成人精品一区二区| 免费高清在线观看视频在线观看| 国产av国产精品国产| 亚洲国产欧美日韩在线播放| 亚洲av电影在线进入| 成人国产麻豆网| 日日摸夜夜添夜夜爱| 女人被躁到高潮嗷嗷叫费观| 国产欧美亚洲国产| 日韩伦理黄色片| 久久97久久精品| 中文字幕制服av| 国产成人精品福利久久| 成人国产av品久久久| 国产日韩欧美亚洲二区| 亚洲av日韩在线播放| 亚洲综合色网址| 成年人午夜在线观看视频| 国产xxxxx性猛交| 亚洲av日韩在线播放| 国产男女内射视频| 国产无遮挡羞羞视频在线观看| 国产成人一区二区在线| 亚洲国产av影院在线观看| 国产免费一区二区三区四区乱码| 日本欧美视频一区| 永久免费av网站大全| 欧美日韩亚洲国产一区二区在线观看 | 午夜免费鲁丝| 97在线人人人人妻| 国产精品 国内视频| 国产激情久久老熟女| 一二三四在线观看免费中文在| 80岁老熟妇乱子伦牲交| 汤姆久久久久久久影院中文字幕| 啦啦啦视频在线资源免费观看| 久久久久久久国产电影| 色94色欧美一区二区| 色婷婷av一区二区三区视频| 亚洲欧美一区二区三区国产| 九草在线视频观看| 精品午夜福利在线看| 美女国产高潮福利片在线看| 高清视频免费观看一区二区| 免费在线观看黄色视频的| 美女福利国产在线| 国产精品香港三级国产av潘金莲 | av一本久久久久| 青春草国产在线视频| 国产精品二区激情视频| 美女主播在线视频| 精品久久久精品久久久| 两个人免费观看高清视频| 麻豆av在线久日| 久久久久人妻精品一区果冻| 嫩草影视91久久| 亚洲第一区二区三区不卡| 亚洲国产中文字幕在线视频| 在线免费观看不下载黄p国产| 宅男免费午夜| 久久这里只有精品19| 欧美人与性动交α欧美软件| 亚洲第一青青草原| 亚洲伊人久久精品综合| 午夜激情av网站| 亚洲男人天堂网一区| 国产极品粉嫩免费观看在线| 黄色毛片三级朝国网站| 天堂俺去俺来也www色官网| 亚洲国产精品国产精品| 黄色一级大片看看| 成人国产av品久久久| 少妇被粗大的猛进出69影院| 男女无遮挡免费网站观看| 亚洲第一青青草原| videosex国产| 男女边摸边吃奶| 久久精品久久久久久噜噜老黄| av一本久久久久| 一区二区三区乱码不卡18| 丰满饥渴人妻一区二区三| 97在线人人人人妻| 国产成人一区二区在线| 国产福利在线免费观看视频| 观看av在线不卡| 国产精品免费大片| 久久精品久久精品一区二区三区| 女性被躁到高潮视频| 在线亚洲精品国产二区图片欧美| 黄色视频不卡| 一本—道久久a久久精品蜜桃钙片| av女优亚洲男人天堂| 尾随美女入室| 国产一区亚洲一区在线观看| 亚洲精品中文字幕在线视频| 永久免费av网站大全| 欧美久久黑人一区二区| 一个人免费看片子| 香蕉国产在线看| 色播在线永久视频| 久久精品aⅴ一区二区三区四区| av在线观看视频网站免费| 一区二区三区四区激情视频| 精品视频人人做人人爽| 国产一区二区三区av在线| 99九九在线精品视频| 久久婷婷青草| 亚洲国产av影院在线观看| 曰老女人黄片| 日韩,欧美,国产一区二区三区| 色婷婷av一区二区三区视频| 久久久久久免费高清国产稀缺| 在线天堂中文资源库| 18禁裸乳无遮挡动漫免费视频| av电影中文网址| 日韩中文字幕欧美一区二区 | 国产精品无大码| 国产精品三级大全| 亚洲欧美中文字幕日韩二区| 国产又爽黄色视频| 亚洲一码二码三码区别大吗| 91精品伊人久久大香线蕉| 日韩视频在线欧美| 看非洲黑人一级黄片| 高清欧美精品videossex| 亚洲精品久久成人aⅴ小说| 日本av免费视频播放| 亚洲精品国产av成人精品| 1024香蕉在线观看| xxx大片免费视频| 国产精品一二三区在线看| 成人亚洲精品一区在线观看| 中文字幕最新亚洲高清| 日日啪夜夜爽| 亚洲色图 男人天堂 中文字幕| 无限看片的www在线观看| a级片在线免费高清观看视频| 国产国语露脸激情在线看| www日本在线高清视频| 亚洲国产精品999| 国产97色在线日韩免费| 天堂俺去俺来也www色官网| 亚洲成人av在线免费| svipshipincom国产片| 中文字幕制服av| 亚洲精品aⅴ在线观看| 黄色怎么调成土黄色| 搡老岳熟女国产| 制服诱惑二区| 日韩 亚洲 欧美在线| 女性生殖器流出的白浆| 久久ye,这里只有精品| 九九爱精品视频在线观看| 欧美精品一区二区大全| 王馨瑶露胸无遮挡在线观看| 欧美人与善性xxx| 成人国产av品久久久| 欧美日韩成人在线一区二区| 中文字幕精品免费在线观看视频| 19禁男女啪啪无遮挡网站| 大片电影免费在线观看免费| 国产日韩欧美亚洲二区| 久久精品久久久久久噜噜老黄| 丝袜脚勾引网站| 成人亚洲精品一区在线观看| 久久久久久久久免费视频了| 80岁老熟妇乱子伦牲交| xxx大片免费视频| 悠悠久久av| 国产福利在线免费观看视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美成人精品一区二区| 午夜久久久在线观看| 在线亚洲精品国产二区图片欧美| 国产精品成人在线| 97人妻天天添夜夜摸| 亚洲av电影在线进入| 制服人妻中文乱码| 美女中出高潮动态图| 成人国产麻豆网| 久久人人爽人人片av| 人体艺术视频欧美日本| 国产精品女同一区二区软件| 久久毛片免费看一区二区三区| 精品久久久久久电影网| 18禁动态无遮挡网站| 日韩一本色道免费dvd| 天天躁日日躁夜夜躁夜夜| kizo精华| 国产精品欧美亚洲77777| 丰满饥渴人妻一区二区三| www.av在线官网国产| 国产精品三级大全| 免费少妇av软件| 欧美日韩福利视频一区二区| 亚洲三区欧美一区| 亚洲激情五月婷婷啪啪| 成年人午夜在线观看视频| 国产免费现黄频在线看| 午夜免费鲁丝| 午夜福利,免费看| 亚洲综合色网址| 韩国精品一区二区三区| av福利片在线| 亚洲国产欧美日韩在线播放| 久久精品亚洲av国产电影网| 狂野欧美激情性bbbbbb| 国产av码专区亚洲av| 看免费av毛片| 久久av网站| 免费久久久久久久精品成人欧美视频| videos熟女内射| 一区在线观看完整版| 欧美日韩精品网址| 男女下面插进去视频免费观看| 亚洲婷婷狠狠爱综合网| 国产在线免费精品| 亚洲精品国产色婷婷电影| 亚洲成人免费av在线播放| 男人操女人黄网站| 男女床上黄色一级片免费看| 丝袜喷水一区| 国产免费福利视频在线观看| 日韩av免费高清视频| 黄网站色视频无遮挡免费观看| 在线天堂中文资源库| 国产精品成人在线| 久久久久久久精品精品| 欧美成人午夜精品| 亚洲男人天堂网一区| 日本午夜av视频| 大片电影免费在线观看免费| 韩国av在线不卡| 人妻一区二区av| 永久免费av网站大全| 国产片内射在线| 亚洲精品国产区一区二| av有码第一页| 中国三级夫妇交换| 美国免费a级毛片| 日本欧美视频一区| 午夜日本视频在线| 91老司机精品| 18禁观看日本| 久久久国产精品麻豆| 可以免费在线观看a视频的电影网站 | 韩国精品一区二区三区| 亚洲欧美成人综合另类久久久| 国产乱来视频区| 老鸭窝网址在线观看| 日本欧美国产在线视频| 国产成人精品久久久久久| 亚洲欧美一区二区三区久久| 大陆偷拍与自拍| 啦啦啦中文免费视频观看日本| 国产一卡二卡三卡精品 | 高清在线视频一区二区三区| 久久精品久久久久久噜噜老黄| 在线观看www视频免费| 一级片免费观看大全| 老司机深夜福利视频在线观看 | 久久久久精品人妻al黑| 国产精品欧美亚洲77777| 国产xxxxx性猛交| 日韩大片免费观看网站| 国产亚洲精品第一综合不卡| 日本vs欧美在线观看视频| 午夜激情av网站| 老汉色av国产亚洲站长工具| 久久精品久久精品一区二区三区| 国产毛片在线视频| 日韩成人av中文字幕在线观看| 欧美变态另类bdsm刘玥| 精品一区在线观看国产| 亚洲欧美成人精品一区二区| 国产精品女同一区二区软件| 99re6热这里在线精品视频| 国产片内射在线| 80岁老熟妇乱子伦牲交| 国产人伦9x9x在线观看| 亚洲,欧美精品.| 久久久精品94久久精品| 考比视频在线观看| 在线观看国产h片| 久热这里只有精品99| 大码成人一级视频| 欧美在线黄色| 午夜激情久久久久久久| 亚洲欧美色中文字幕在线| 一级毛片 在线播放| 精品亚洲乱码少妇综合久久| 少妇人妻久久综合中文| 波多野结衣av一区二区av| 色婷婷av一区二区三区视频| 久久久国产欧美日韩av| 少妇的丰满在线观看| 国产亚洲av片在线观看秒播厂| 亚洲国产av新网站| 精品亚洲成a人片在线观看| 一区二区av电影网| 精品亚洲成a人片在线观看| 99热网站在线观看| 波多野结衣av一区二区av| 成人国语在线视频| 亚洲欧美色中文字幕在线| 亚洲精品乱久久久久久| 青春草视频在线免费观看| 久久久久国产一级毛片高清牌| 精品亚洲成国产av| 国产男人的电影天堂91| 午夜免费观看性视频| 高清av免费在线| 国产又爽黄色视频| 又粗又硬又长又爽又黄的视频| 亚洲第一av免费看| 2018国产大陆天天弄谢| 热99久久久久精品小说推荐| 久久久久久久久免费视频了| 19禁男女啪啪无遮挡网站| 日日爽夜夜爽网站| 久久久久久久久久久免费av| 人妻人人澡人人爽人人| 亚洲欧美一区二区三区黑人| av女优亚洲男人天堂| 美女大奶头黄色视频| 午夜激情av网站| 日韩av在线免费看完整版不卡| 一级a爱视频在线免费观看| a级毛片在线看网站| 在线免费观看不下载黄p国产| 丝袜人妻中文字幕| 亚洲精品在线美女| 久久久久精品久久久久真实原创| 高清在线视频一区二区三区| 精品午夜福利在线看| 美女中出高潮动态图| 日本猛色少妇xxxxx猛交久久| 精品人妻在线不人妻| svipshipincom国产片| 久久久欧美国产精品| av天堂久久9| 欧美黑人欧美精品刺激| 看免费av毛片| 亚洲成人av在线免费| 夜夜骑夜夜射夜夜干| 亚洲欧美精品自产自拍| 午夜激情av网站| 18在线观看网站| 另类精品久久| 日韩精品有码人妻一区| videos熟女内射| 大码成人一级视频| 久久久欧美国产精品| 黄片播放在线免费| 看十八女毛片水多多多| 亚洲综合精品二区| 一级片免费观看大全| 亚洲欧美激情在线| 波多野结衣一区麻豆| 999久久久国产精品视频| 亚洲美女视频黄频| 免费黄频网站在线观看国产| 亚洲国产中文字幕在线视频| 午夜福利,免费看| 久久97久久精品| 老司机影院毛片| 99久国产av精品国产电影| 久久久久久久久久久久大奶| 妹子高潮喷水视频| 亚洲欧洲国产日韩| 搡老岳熟女国产| svipshipincom国产片| 尾随美女入室| 中文字幕高清在线视频| 亚洲国产精品一区二区三区在线| 欧美成人午夜精品| 99热国产这里只有精品6| 伊人久久国产一区二区| 日韩av免费高清视频| 18禁国产床啪视频网站| 亚洲色图综合在线观看| 欧美日韩亚洲综合一区二区三区_| 成年人午夜在线观看视频| 婷婷色麻豆天堂久久| 热re99久久精品国产66热6| 哪个播放器可以免费观看大片| 狠狠精品人妻久久久久久综合| 菩萨蛮人人尽说江南好唐韦庄| 免费少妇av软件| 伦理电影免费视频| www.av在线官网国产| 日韩欧美精品免费久久| 老鸭窝网址在线观看| 亚洲精品在线美女| 国产成人91sexporn| 欧美在线黄色| 天堂8中文在线网| 久久久久久久久久久免费av| 国产老妇伦熟女老妇高清| 18在线观看网站| 中文字幕制服av| 亚洲一级一片aⅴ在线观看| 午夜福利乱码中文字幕| 最近中文字幕高清免费大全6| 久久国产精品大桥未久av| 婷婷色综合www| 久久久亚洲精品成人影院| 亚洲精品国产区一区二| 女人精品久久久久毛片| 少妇被粗大的猛进出69影院| 国产99久久九九免费精品| 国产高清不卡午夜福利| 亚洲国产精品成人久久小说| 日本av免费视频播放| 亚洲精品一区蜜桃| √禁漫天堂资源中文www| 久久精品国产亚洲av涩爱| 日本av手机在线免费观看| 黄片小视频在线播放| 国产人伦9x9x在线观看| 国产一区有黄有色的免费视频| 亚洲av电影在线观看一区二区三区| 女人被躁到高潮嗷嗷叫费观| 日本av免费视频播放| 免费看av在线观看网站| 在线观看免费日韩欧美大片| 免费黄色在线免费观看| a级毛片在线看网站| a 毛片基地| 国产精品久久久久久人妻精品电影 | 中文字幕av电影在线播放| 99re6热这里在线精品视频| 9色porny在线观看| 亚洲欧美成人精品一区二区| 国产精品三级大全| 男女床上黄色一级片免费看| 精品久久久精品久久久| 汤姆久久久久久久影院中文字幕| 黑人巨大精品欧美一区二区蜜桃| av网站在线播放免费| 中文字幕人妻丝袜一区二区 | 日韩一本色道免费dvd| 欧美成人精品欧美一级黄| 爱豆传媒免费全集在线观看| 欧美黄色片欧美黄色片| 99九九在线精品视频| 久久久亚洲精品成人影院| 在线亚洲精品国产二区图片欧美| 久久久国产一区二区| 亚洲,欧美,日韩| 欧美日韩国产mv在线观看视频| 天天操日日干夜夜撸| 悠悠久久av| 精品午夜福利在线看| 国产精品二区激情视频| 无限看片的www在线观看| 欧美亚洲 丝袜 人妻 在线| 丝瓜视频免费看黄片| 国产精品三级大全| 伦理电影大哥的女人| 久久av网站| 高清不卡的av网站| 伊人亚洲综合成人网| 欧美日韩亚洲高清精品| 精品午夜福利在线看| 亚洲久久久国产精品| 亚洲自偷自拍图片 自拍| 国产极品天堂在线| 亚洲精品一区蜜桃| 成人影院久久| 人体艺术视频欧美日本| 建设人人有责人人尽责人人享有的| 美女主播在线视频| 在线观看免费视频网站a站| 国产精品女同一区二区软件| 男女之事视频高清在线观看 | 久久久国产欧美日韩av| 天堂8中文在线网| 男女之事视频高清在线观看 | 亚洲国产毛片av蜜桃av| 我的亚洲天堂| 亚洲第一区二区三区不卡| 另类精品久久| 成人三级做爰电影| 国产在线视频一区二区| 亚洲国产精品成人久久小说| 久久久久精品久久久久真实原创| 精品人妻在线不人妻| 大片免费播放器 马上看| 亚洲av国产av综合av卡| 乱人伦中国视频| av天堂久久9| 香蕉丝袜av| 亚洲精品中文字幕在线视频| 又粗又硬又长又爽又黄的视频| 19禁男女啪啪无遮挡网站| a 毛片基地| 久久久精品国产亚洲av高清涩受| 国产又色又爽无遮挡免| 亚洲综合精品二区| 如日韩欧美国产精品一区二区三区| 无遮挡黄片免费观看| 我的亚洲天堂| 天天操日日干夜夜撸| 日韩制服丝袜自拍偷拍| 激情五月婷婷亚洲| 国产有黄有色有爽视频| 国产无遮挡羞羞视频在线观看| 国产男人的电影天堂91| 美女高潮到喷水免费观看| 狂野欧美激情性bbbbbb| 操美女的视频在线观看| 一本一本久久a久久精品综合妖精| 高清欧美精品videossex| 波多野结衣一区麻豆| 久久精品熟女亚洲av麻豆精品| 国产成人a∨麻豆精品| 这个男人来自地球电影免费观看 | 中国国产av一级| 精品免费久久久久久久清纯 | 亚洲av日韩精品久久久久久密 | 极品少妇高潮喷水抽搐| 精品第一国产精品| 在线看a的网站| 亚洲美女搞黄在线观看| 国产日韩一区二区三区精品不卡| 黄频高清免费视频| 亚洲成人一二三区av| 一边亲一边摸免费视频| 久久久久久久久久久免费av| 亚洲三区欧美一区| 色综合欧美亚洲国产小说| 黄色一级大片看看| 99热全是精品| 亚洲国产欧美在线一区| 国产在线免费精品| 国产日韩欧美视频二区| 少妇的丰满在线观看| 亚洲中文av在线| 日韩一区二区三区影片| 自拍欧美九色日韩亚洲蝌蚪91| www.av在线官网国产| 亚洲精品成人av观看孕妇| 日韩中文字幕视频在线看片| 黄色视频不卡| 精品少妇一区二区三区视频日本电影 | 中文字幕高清在线视频| 视频在线观看一区二区三区| 国产亚洲av片在线观看秒播厂| av国产精品久久久久影院| 亚洲av中文av极速乱| 在线观看一区二区三区激情| 91精品伊人久久大香线蕉| 国产精品成人在线| 欧美黑人精品巨大| 夜夜骑夜夜射夜夜干| 久久久久精品久久久久真实原创| 黄片小视频在线播放| 久久久久精品性色| 精品一区二区免费观看|