• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analytical and Numerical Studies of Quantum Plateau State in One Alternating Heisenberg Chain?

    2014-03-12 08:44:27JIANGJianJun蔣建軍LIUYongJun劉擁軍TANGFei唐菲YANGCuiHong楊翠紅andSHENGYuBo宇波
    Communications in Theoretical Physics 2014年2期
    關(guān)鍵詞:建軍

    JIANG Jian-Jun(蔣建軍),LIU Yong-Jun(劉擁軍),TANG Fei(唐菲),YANG Cui-Hong(楊翠紅), and SHENG Yu-Bo(宇波)

    1Department of Physics,Sanjiang College,Nanjing 210012,China

    2School of Physics Science and Technology,Yangzhou University,Yangzhou 225002,China

    3Department of Electronic and Information Engineering,Yangzhou Polytechnic Institute,Yangzhou 225127,China

    4School of Physics and Optoelectroic Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China

    5Institute of Signal Processing Transmission,Nanjing University of Postsand Telecommunications,Nanjing 210003,China

    1 Introduction

    Research relating to one-dimensional quantum antiferromagnetic spin chains has been an attractive f i eld in low-dimensional quantum magnetism.Usually,there are two kinds of uniform antiferromagnetic Heisenberg chains.One case is given by the spin chain with half integer spin,and another case is given by the spin chain with integer spin.The classical magnetic long-range order of these two chains disappears as a result of the strong quantum f l uctuations due to the low dimensionality.The half integer spin chain has a gapless spectrum and a power-law decay correlation function.By contrast,Haldane proposed in 1983 there is a gap between the ground state and the f i rst excited state for the integer spin chain and that the correlation function decays exponentially.[1]There are many theoretical studies that have subsequently validated Haldane’s conjecture.For example,the research on the AKLT model shows that each s=1 spin in the ground state can be viewed as two s=1/2 spins in the symmetric triplet state.[2]In Ref.[3],den Nijs and Rommelse proposed that,although the ground state of the integer spin chain is disordered,it possesses a hidden antiferromagnetic order,which can be measured by the string order parameter.It was pointed out by Kennedy and Tasaki that the hidden order is a discrete Z2×Z2symmetry.[4]Numerical results indicate that the spin gap in the s=1 spin chain is about 0.41J,where J is the strength of the antiferromagnetic interaction.[5]In addition to this evidence provided by theoretical calculations,the experimental evidence is that the m=0(m is the magnetization per site)magnetization plateau found in the compound[Ni(en)2(NO2)]ClO4,also shows the spin gap of the s=1 spin chain does exist.[6]

    The magnetization plateau in the magnetization process,which is caused by the spin gap,is a very interesting quantum phenomenon in the spin chain.In 1997,Oshikawa,Yamanaka,and Aラeck pointed out that the necessary condition for the appearance of the magnetization plateau is

    where n is the period of the ground state.[7]One typical example that satisf i es the above condition is the mixed spin chain.For example,the mixed spin(1,1/2)Heisenberg chain possesses the m=1/4 plateau state and it can be used to describe the properties of the actual oxamato compound NiCu(pba)(D2O)32D2O.[8?9]Another example is the bond alternating Heisenberg chain.Due to the diあerent spatial structures,diあerent alternating Heisenberg chains possess various magnetization plateaus.[10?16]For instance,the spin-1/2 tetrameric Heisenberg chain with alternating coupling ferromagnetic-ferromagneticantiferromagnetic-antiferromagnetic,which has been realized in the compound Cu(3-Clpy)2(N3)2,has the m=1/4 magnetization plateau.[11]

    In the present paper,we study the behaviour of the magnetization plateau of an alternating Heisenberg spin chain by using the analytical coupled cluster method(CCM)and numerical density matrix renormalization group(DMRG)method.[5]The model is shown in Fig.1 and the Hamiltonian is

    where S4i+j(j= ?3,?2,?1,0,and 1)is a spin-1/2 operator.J and αJ(α ≥ 1)denote the antiferromagnetic couplings.When α=1,the model(2)reduces to the isotropic Heisenberg chain in an external magnetic f i eld.In that case,the phase diagram of the model is exactly known and it only possesses the classical saturation plateau.[17]When α/=1,according to Eq.(1),model(2)may exhibit the m=0 and m=1/4 plateau states besides the m=1/2 plateau state.In the following discussion,our main goal is to study the eあect of modulating parameter α on the properties of the m=0 and m=1/4 plateau states that are caused by quantum f l uctuations.We now assume,without losing generality,that J=1 throughout the rest of this paper.

    We now describe the organization of this paper.In the next section,the details of the application of CCM formalism to model(2)are described.In Sec.3,the application of the DMRG to the alternating chain is given.In Sec.4,the results of CCM and DMRG are presented.A summary is given in the f i nal section.

    2 The Coupled Cluster Method Applied to the Alternating Heisenberg Chain

    In recent years,a quite new method called CCM has been successfully applied to diあerent quantum spin chains.[18?30]Detailed descriptions of the CCM applied to quantum spin systems have been given in papers.[18,20?21]

    We just focus on the application of CCM to m=0 plateau state of the alternating Heisenberg chain.When m=0,Hamiltonian(2)is equivalent to the following Hamiltonian

    The critical f i eld hc1of model(2),at which the m=0 plateau state disappears,equals to the spin gap of Hamiltonian(3).So,we can use Hamiltonian(3)to investigate the properties of the m=0 plateau state.The starting point of any CCM calculation is to choose a model state|φ〉and this is often a classical spin state.So we choose the Neel state(···↑↓↑↓ ···)as the model state for model(3).Then we perform a rotation of the local axes of the“up” spins by 180°about the y-axis such that all spins in the model state align along the negative z-axis.After this rotation,the CCM parameterization of the ket ground state of model(3)is given by[20?21]

    The CCM formalism is exact if all spin con fi gurations in the S correlation operator are considered,but it is impossible in practice.In this paper,a quite general approximation scheme called LSUBn is used to truncate the expansion of the operator S.[20?21]In the LSUBn approximation,only the con fi gurations including n or fewer correlated spins which span a range of no more than n contiguous lattice sites are retained.The fundamental confi gurations contained in the LSUBn approximation can be reduced by using the lattice symmetries and furthermore by the imposing that restriction that=0.We note that the ground state of model(3)lies in the subspace Stzol=0.The number of LSUBn con fi gurations is given in Table 1.

    Table 1 Numberoffundamentalcon fi gurations of the LSUBn approximation with n={10,12,14}NFdenotes the number of the fundenmental con fi gurations for the ground state with Stzol=0,NFedenotes the number of the fundenmental con fi gurations for the excited state with Stzol=1.

    Once the correlation coeきcients contained in the operator S have been found then one can use|ψ〉to calculate the ground state energy Egof Hamiltonian(3)by using the following formula

    To obtain the correlation coeきcients contained in the operator S,one needs to solve the ket-state equations,which are given by[20?21]

    After these coupled equations are solved,the correlation coeきcients retained in the LSUBn approximation can be obtained.We can use the CCM ket-state correlation coeffi cients to calculate the ground state energy using formula(5).As the derivation of the coupled equations for higher orders of approximation is extremely tedious,we have developed our own programme by using Matlab to automate this process according to the method discussed in Ref.[21].The Matlab code with double precision was performed on a private computer.

    Then,by applying an excitation operator Xelinearly to the ket-state wave function(4),an excited state wave function|ψe〉of model(3)can be obtained[20]

    Analogously to the ground state,we also use the LSUBn approximation scheme to truncate the expansion of the operator Xe.One can fi nd the fundamental excited state con fi gurations retained in the LSUBn approximation by using the lattice symmetry and the restricted condition Stzol=+1 or?1.Table 1 also gives the number of such fundamental con fi gurations.

    To get the excitation energy εe(εeis the diあerence between the excited state energy and the ground state energy),one can use the method introduced in Ref.[20]to obtain the LSUBn eigenvalue equations.Those equations with eigenvalues εeand corresponding eigenvectorsare as follows

    The excitation energy gap Δ can be obtained from the lowest eigenvalue of Eq.(8).

    Since the LSUBn approximation becomes exact in the limit n→∞,we need to extrapolate the LSUBn results to the limit n → ∞.[20?21]For the ground state energy,we use the following well-tested formula

    For the gap of the lowest-lying excitations,we use a matrix given by

    where k+l+1=p and the extrapolated value of Δnis given by a0.In this paper,we use n={10,12,14}for both extrapolation schemes described above.

    3 The Application of the Density Matrix Renormalization Group to the Alternating Heisenberg Chain

    In this section,we brief l y describe how to treat the alternating Heisenberg chain with the method of DMRG.Similar to the DMRG treatment of the dimerized spin chain,[31]the superblock of Hamiltonian(2)in our DMRG calculation is composed of four blocks S?a?E?b,where S and E are the“system”and “environment”blocks,while a and b denote the elementary blocks respectively added to S and E in each DMRG iteration.Blocks S and b are linked because we use periodic boundary condition in this paper.In the f i rst iteration of the DMRG calculation,both the system and environment blocks only contain one unit cell(4 sites).After one iteration,the system size of the superblock grows by 8 sites as we take one unit cell as the elementary block.1~4 sweeps were done to obtain accurate results.The DMRG programme code was also written in the Matlab environment and performed on a private computer.The number of the state kept per block is 180~240 and the highest errors are in the order of 10?7.

    4 Results

    4.1 The Magnetization Curve of the Alternating Heisenberg Chain

    To f i nd the plateau state of model(2),we calculate the magnetization curve of that model by employing DMRG.Figure 2 displays the magnetization curve for a system size N=64 when α=1.5.Using the method introduced in Ref.[32],we also present the magnetization curve in the thermodynamic limit in Fig.2.It can be seen that,besides the m=0 plateau state in the parameter regime h≤hc1,a f i nite plateau appears at m=1/4.In the following discussion,we focus on the properties of the above two quantum plateau states.

    Fig.1 The structure of the alternating Heisenberg spin chain.

    Fig.2 The magnetization m as a function of h when α=1.5.The line with circles represents the magnetization curve for the f i nite chain of N=64.The bold line is the result for the inf i nite chain.

    4.2 The m=0 Plateau State

    In this section,we discuss the behaviour of the m=0 plateau state,which is caused by the spin gap of Hamiltonian(3).The width of that state equals to the value of the critical f i eld hc1and it is given by

    where E1and Egare the energies of the lowest-lying state with Stzol=1 and Stzol=0.When α=1,the spectrum of Hamiltonian(3)is gapless.Thus,model(2)does not possess the m=0 plateau state.In the case of large α or small α,the m=0 plateau state belongs to the dimerized state because the spin pairs S4i?3and S4i?2and the spin pairs S4i?1and S4itend to form singlet dimmers under that condition.One can reasonably predict that a quantum phase transition at a critical point αcbetween the gapless spin-liquid state and the gapped dimerized state occurs in Hamiltonian(3).As the m=0 plateau state only appears in the dimerized state parameter regime,we should f i nd the critical point αc.

    Fig.3 The GS energy per site e versus α using CCM and DMRG.

    Fig.4 The second derivative of e,?d2e/dα2as a function of α.

    Fig.5 The spin gap Δ versus α using CCM and DMRG.

    It is known that the ground state energy density e or its derivative may exhibit special property at the critical point.[33]We search f i rstly for quantum phase transition existing in the alternating chain by using the ground state energy of Hamiltonian(3).Figure 3 shows the ground state energy per site e=Eg/N obtained from CCM and DMRG.The energies calculated by DMRG are extrapolated to the thermodynamic limit by using the following formula with N=32,40,48,56,and 64 spins[34]

    where p=2.When α=1,the energies per site obtained from DMRG and CCM are?0.443 146 and?0.443 138 respectively. They are both close to the exact result?0.443 147.[20]As shown in Fig.3,the ground state energy decreases as a result of increasing α and the results given by DMRG and CCM are in good agreement with each other.Since e changes continuously when α varies,its derivative is calculated.Figure 4 presents the second derivative of e obtained from DMRG.As is apparent in this f i gure,?d2e/dα2,all of the results for various lattice sizes,N,display a peak near α=1.Indeed,we see that the location of the peak moves nearer to α=1 and that the peak gets higher and shaper as N increases.Therefore,the second derivative of e can be used to detect the quantum phase transition in the alternating chain.

    Fig.6 Finite size scaling of the spin gap Δ for lengths:N=48,56,64.

    Next,the spin gap of the alternating chain Δ was also calculated by DMRG and CCM because the existence of a spin gap is an indication of a dimerized state.In order to extrapolate the results of DMRG,we use formula(12)with p=1.Figure 5 shows the results of the spin gap Δ as a function of α.From this graph,one can see the results of CCM are in qualitative agreement with those of DMRG.Moreover,the spin gap Δ increases as the parameter α increases,corresponding to the singlet dimer ground state.As shown in Fig.6,we plot ΔNβ1for diあerent chain sizes N as a function of α in order to determine the critical point αcprecisely.We use numerical results obtained from DMRG and we f i nd that all the curves cross at α =1,with the choice of a suitable exponent β1.This phenomenon means that the critical point of the alternating chain extracted from the operator Δ is αc=1.[35]

    From the above analysis,one can conclude that the ground state of Hamiltonian(3)evolves from a spin-liquid state to a dimerized state when the parameter α changes across the critical point αc.Therefore,it possesses an m=0 plateau state with width Δ in the presence of a magnetic f i eld when α/=1.A similar phenomenon can also be observed in the dimerized spin chain.[36]

    4.3 The m=1/4 Plateau State

    We now discuss the eあect of the parameter α on the properties of the m=1/4 plateau state by using DMRG.That state occurs between two critical magnetic f i elds hc2and hc3.The critical f i elds hc2and hc3are respectively given by

    where E(N,Stzol)is the lowest energy in the subspace Stzol.

    Fig.7 The critical magnetic f i elds hc2,hc3and the width of the plateau D obtained from DMRG as a function of α.

    Fig.8 The scaled gap ND as a function of α.

    Once these two critical fi elds have been calculated,the width of the plateau may be determined by using:D=hc3?hc2.We have calculated the above two critical fi elds for system sizes of N=32,40,48,56,and 64 by using DMRG.By using formula(12)with p=1,the bulk limit of the fi nite size results is obtained.The numerical results of the critical fi eld and the width of the plateau are plotted in Fig.7.As can be seen from this fi gure,the critical fi eld hc2decreases as α increases.By contrast,the critical fi eld hc3increases as α also increases.One sees also that the plateau occurs only when this parameter exceeds 1.To fi nd the critical point at which the plateau emerges precisely,we display the scaled gap ND of fi nite systems(N=40~64)in Fig.8.It is apparent that a fi nite plateau exists in the in fi nite system when α>1 because ND increases with increasing N in this parameter region.[37]

    Fig.9 The expectation values 〈Szi〉for N=64 spins when α=10.

    Fig.10 ln f+(lnf?)is plotted versus lnN.

    To understand the mechanism for the m=1/4 plateau of the alternating chain,it is instructive to examine the case of large α limit.In this limit,two nearest spins connected by the αJ1interaction form a singlet dimer and the other two spins in a unit cell linked by J1interaction form a triplet dimer in subspace Stzol=N/4.Thus,in the m=1/4 plateau state,the expectation values〈Siz〉should be

    To check this hypothesis,we present the expectation values 〈Szi〉,which are obtained by using DMRG for the N=64 system when α=10,in Fig.9.As is apparent in Fig.9,the behaviour of〈Szi〉obtained from DMRG favors the above mechanism for the m=1/4 plateau.

    Lastly,we investigate the interesting critical behavior of the magnetization at m=1/4.In the vicinity of the critical f i elds hc2and hc3,the behavior of the magnetization m has the form[38?39]

    where δ+and δ?are the critical exponents,which can be used to describe the universality class of the phase transition induced by the f i eld.One can estimate the critical exponents by using two quantities f+(N)and f?(N),which are def i ned as[39]

    Once f+and f?are obtained, δ+and δ?can be determined from the slope of the lnf+~lnN and lnf?~lnN plot respectively.To avoid the large fi nite size eあect in the vicinity of the critical point,we only calculate the critical exponents when α≥1.2.Figure 10 shows the results of lnf±versus lnN.From this fi gure,we see that the calculated points fi t to a line very well.Thus,by a numerical fi tting, δ+and δ?can be estimated.The results of δ+and δ?are presented in Fig.11.From this fi gure,one can reasonably draw the conclusion that δ+= δ?=2,as expected for conventional one-dimensional gapped spin chains.[38]

    Fig.11 The critical exponents δ+and δ? as a function of α.

    5 Conclusions

    In summary,we have investigated the properties of the quantum plateau state of the alternating Heisenberg chain by using CCM and DMRG methods.As the m=0 plateau state of Hamiltonian(2)is caused by the spin gap existing in Hamiltonian(3),we f i rst study the critical behaviour of Hamiltonian(3).The results for the second derivative of ground state energy per site obtained from DMRG show that a second order quantum phase transition happens at a critical point αc≈1.The results of the spin gap drawn from CCM and DMRG both indicate that the spin gap of Hamiltonian(3)opens up when the parameter α exceeds αc.By analyzing the scaling behavior of the spin gap,we f i nd that the precise value of αcis 1.Thus,when αc> 1,there is an m=0 plateau state in the alternating Heisenberg chain.

    Due to its special spatial structure,the alternating Heisenberg chain also possesses an m=1/4 quantum plateau state that appears between two critical f i elds.Similar to the m=0 plateau state,the m=1/4 plateau state also appears when α>1 and its width grows with the increase of α.By calculating the expectation values〈Szi〉using DMRG,we investigated the mechanism for the m=1/4 plateau state.The behavior of the magnetization m near the critical f i elds hc2and hc3exhibits a conventional critical behavior.

    Acknowledgment

    It is a pleasure to thank Dr.Damain Farnell for his careful reading of the manuscript and his valuable suggestions.

    [1]F.D.M.Haldane,Phys.Rev.Lett.50(1983)1153.

    [2]I.Aラeck,T.Kennedy,E.H.Lieb,and H.Tasaki,Phys.Rev.Lett.59(1987)799.

    [3]M.den Nijs and K.Rommelse,Phys.Rev.B 40(1989)4709.

    [4]T.Kennedy and H.Tasaki,Phys.Rev.B 45(1992)304.

    [5]S.R.White,Phys.Rev.Lett.69(1992)2863.

    [6]M.Yamashita,T.Ishii,and H.Matsuzaka,Coord.Chem.Rev.198(2000)347.

    [7]M.Oshikawa,M.Yamanaka,and I.Aラeck,Phys.Rev.Lett.78(1997)1984.

    [8]T.Sakai and S.Yamamoto,Phys.Rev.B 60(1999)4053.

    [9]J.J.Jiang,Y.J.Liu,F.Tang,and C.H.Yang,Physica B 406(2011)781.

    [10]W.Chen,K.Hida,and H.Nakano,J.Phys.Soc.Jpn.68(1999)625.

    [11]H.T.Lu,Y.H.Su,L.Q.Sun,J.Chang,C.S.Liu,H.G.Luo,and T.Xiang,Phys.Rev.B 71(2005)144426.

    [12]B.Gu,G.Su,and S.Gao,J.Phys.:Condens.Matter 17(2005)6081.

    [13]S.S.Gong and G.Su,Phys.Rev.B 78(2008)104416.

    [14]S.S.Gong,S.Gao,and G.Su,Phys.Rev.B 80(2009)014413.

    [15]S.Mahdavifar and J.Abouie,J.Phys.:Condens.Matter 23(2011)246002.

    [16]M.S.Naseri,G.I.Japaridze,S.Mahdavifar,and S.F.Shayesteh,J.Phys.:Condens.Matter 24(2012)116002.

    [17]D.V.Dmitriev,V.Y.Krivnov,and A.A.Ovchinnikov,Phys.Rev.B 65(2002)172409.

    [18]R.F.Bishop,J.B.Parkinson,and Y.Xian,Phys.Rev.B 44(1991)9425.

    [19]R.F.Bishop,D.J.J.Farnell,and J.B.Parkinson,Phys.Rev.B 58(1998)6394.

    [20]R.F.Bishop,D.J.J.Farnell,S.E.Kr¨uger,J.B.Parkinson,J.Richter,and C.Zeng,J.Phys.:Condens.Matter 12(2000)6887.

    [21]D.J.J.Farnell,R.F.Bishop,and K.A.Gernoth,J.Stat.Phys.108(2002)401.

    [22]D.J.J.Farnell,J.Schulenburg,J.Richter,and K.A.Gernoth,Phys.Rev.B 72(2005)172408.

    [23]R.Darradi,J.Richter,K.A.Gernoth,and D.J.J.Farnell,Phys.Rev.B 72(2005)104425.

    [24]D.Schmalfu?,R.Darradi,J.Richter,J.Schulenburg,and D.Ihle,Phys.Rev.Lett.97(2006)157201.

    [25]R.F.Bishop,P.H.Y.Li,D.J.J.Farnell,and C.E.Campbell,Phys.Rev.B 79(2009)174405.

    [26]D.J.J.Farnell,R.Zinke,J.Schulenburg,and J.Richter,J.Phys.:Condens.Matter 21(2009)406002.

    [27]J.Richter,R.Darradi,J.Schulenburg,D.J.J.Farnell,and H.Rosner,Phys.Rev.B 81(2010)174429.

    [28]D.J.J.Farnell,R.Darradi,R.Schmidt,and J.Richter,Phys.Rev.B 84(2011)104406.

    [29]O.Goetze,D.J.J.Farnell,R.F.Bishop,P.H.Y.Li,and J.Richter,Phys.Rev.B 84(2011)224428.

    [30]P.H.Y.Li,R.F.Bishop,D.J.J.Farnell,J.Richter,and C.E.Campbell,Phys.Rev.B 85(2012)085115.

    [31]T.Papenbrock,T.Barnes,D.J.Dean,M.V.Stoitsov,and M.R.Strayer,Phys.Rev.B 68(2003)024416.

    [32]K.Okamoto,T.Tonegawa,and M.Kaburagi,J.Phys.:Condens.Matter 15(2003)5979.

    [33]Y.C.Tzeng,H.H.Hung,Y.C.Chen,and M.F.Yang,Phys.Rev.A 77(2008)062321.

    [34]T.Barnes,E.Dagotto,J.Riera,and E.S.Swanson,Phys.Rev.B 47(1993)3196.

    [35]G.De.Chiara,M.Lewenstein,and A.Sanpera,Phys.Rev.B 84(2011)054451.

    [36]J.J.Jiang and Y.J.Liu,Physica B 403(2008)3498.

    [37]N.Okazaki,J.Miyoshi,and T.Sakai,J.Phys.Soc.Jpn.69(2000)37.

    [38]T.Sakai and M.Takahashi,Phys.Rev.B 57(1998)R8091.

    [39]T.Sakai and H.Nakano,Phys.Rev.B 83(2011)100405(R).

    猜你喜歡
    建軍
    慶祝建軍95周年
    Ergodic stationary distribution of a stochastic rumor propagation model with general incidence function
    GENERALIZED CES`ARO OPERATORS ON DIRICHLET-TYPE SPACES*
    Spatio-temporal evolution characteristics and pattern formation of a gas–liquid interfacial AC current argon discharge plasma with a deionized water electrode
    古建軍
    無論等多久
    建軍90周年有感
    中華魂(2017年8期)2017-11-22 12:21:09
    建軍90周年
    綠色中國(2017年15期)2017-01-25 08:55:36
    Experimental investigation of velocity fluctuations in a radial diffuser pump*
    Totally laparoscopic Billroth Ⅱ gastrectomy without intracorporeal hand-sewn sutures
    菩萨蛮人人尽说江南好唐韦庄 | 亚洲欧美日韩东京热| 男女那种视频在线观看| 国产伦一二天堂av在线观看| 九草在线视频观看| 久久久午夜欧美精品| 中文欧美无线码| 91aial.com中文字幕在线观看| 最新中文字幕久久久久| 亚洲国产欧美在线一区| 婷婷亚洲欧美| 国产亚洲5aaaaa淫片| 国产精品av视频在线免费观看| 久久久久久伊人网av| 国产一区二区在线av高清观看| av又黄又爽大尺度在线免费看 | 一边亲一边摸免费视频| 亚洲无线在线观看| 成人无遮挡网站| 亚洲欧美中文字幕日韩二区| 午夜激情福利司机影院| 国产乱人偷精品视频| 国产探花极品一区二区| 一进一出抽搐gif免费好疼| 村上凉子中文字幕在线| 国产高清视频在线观看网站| 青青草视频在线视频观看| 欧美成人一区二区免费高清观看| 日韩一区二区三区影片| 亚洲国产精品久久男人天堂| 中文字幕久久专区| 大香蕉久久网| ponron亚洲| 日韩欧美精品v在线| 国产精品一及| 免费大片18禁| 在线观看午夜福利视频| 青春草国产在线视频 | 成年女人看的毛片在线观看| 只有这里有精品99| 国产一区亚洲一区在线观看| 色吧在线观看| 国产成人一区二区在线| 国产精品福利在线免费观看| 夜夜爽天天搞| 热99在线观看视频| 日韩精品青青久久久久久| 高清毛片免费看| 日韩 亚洲 欧美在线| 国产成人精品婷婷| 精品欧美国产一区二区三| 免费观看在线日韩| 国产午夜精品论理片| 内射极品少妇av片p| 中文字幕av成人在线电影| 亚洲国产日韩欧美精品在线观看| 一卡2卡三卡四卡精品乱码亚洲| 插阴视频在线观看视频| 淫秽高清视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产日本99.免费观看| 国产成人福利小说| 黄片wwwwww| 日韩av不卡免费在线播放| 三级国产精品欧美在线观看| 成人国产麻豆网| 色哟哟·www| 深爱激情五月婷婷| 亚洲欧美中文字幕日韩二区| 国产大屁股一区二区在线视频| 久久精品国产鲁丝片午夜精品| 免费一级毛片在线播放高清视频| 国产精品乱码一区二三区的特点| 亚洲第一电影网av| 免费人成在线观看视频色| 午夜久久久久精精品| 欧美最新免费一区二区三区| 99久久久亚洲精品蜜臀av| 97人妻精品一区二区三区麻豆| 国产成年人精品一区二区| 日本一二三区视频观看| 亚洲av电影不卡..在线观看| 久久久久久久久中文| 一级黄色大片毛片| 国产精品久久久久久亚洲av鲁大| 校园人妻丝袜中文字幕| 美女 人体艺术 gogo| 午夜久久久久精精品| 插逼视频在线观看| 哪个播放器可以免费观看大片| 91麻豆精品激情在线观看国产| 青春草亚洲视频在线观看| 午夜老司机福利剧场| 桃色一区二区三区在线观看| 亚洲在线观看片| 国产精品99久久久久久久久| 国产精品久久久久久亚洲av鲁大| 久久久久久大精品| 男人和女人高潮做爰伦理| 国产v大片淫在线免费观看| 日韩一区二区三区影片| 国产白丝娇喘喷水9色精品| 高清午夜精品一区二区三区 | 午夜亚洲福利在线播放| av在线播放精品| 一级毛片我不卡| 午夜爱爱视频在线播放| 尤物成人国产欧美一区二区三区| 成年版毛片免费区| 精华霜和精华液先用哪个| 国产国拍精品亚洲av在线观看| 国产亚洲精品久久久com| 中文字幕制服av| 免费观看精品视频网站| av天堂中文字幕网| 久久国产乱子免费精品| 两个人视频免费观看高清| 亚洲成人久久爱视频| 又爽又黄a免费视频| 亚洲,欧美,日韩| 老师上课跳d突然被开到最大视频| 欧美高清成人免费视频www| 午夜免费男女啪啪视频观看| 欧美一区二区精品小视频在线| 国产成人91sexporn| 国产精品国产三级国产av玫瑰| 我要搜黄色片| 久久精品夜色国产| 波多野结衣巨乳人妻| 国模一区二区三区四区视频| 久久久色成人| 尾随美女入室| av在线观看视频网站免费| 五月玫瑰六月丁香| 99久国产av精品国产电影| 日本三级黄在线观看| 国产伦在线观看视频一区| 1000部很黄的大片| 波多野结衣高清作品| 夜夜爽天天搞| 亚洲美女搞黄在线观看| 久久久久久久久久久免费av| 男人舔奶头视频| 免费观看a级毛片全部| 亚洲中文字幕一区二区三区有码在线看| 欧美一区二区亚洲| www.色视频.com| 99久久精品热视频| 久久99热这里只有精品18| 精品久久久久久久久亚洲| 日日啪夜夜撸| av天堂在线播放| 国产亚洲5aaaaa淫片| 深夜a级毛片| www日本黄色视频网| 日本色播在线视频| 亚洲精品日韩在线中文字幕 | 亚洲国产日韩欧美精品在线观看| 欧美一区二区精品小视频在线| 欧美人与善性xxx| av福利片在线观看| 国产综合懂色| 深夜a级毛片| 欧美+亚洲+日韩+国产| 久久欧美精品欧美久久欧美| 三级男女做爰猛烈吃奶摸视频| 国内精品久久久久精免费| 精品人妻熟女av久视频| 久久久成人免费电影| 国产男人的电影天堂91| 久久精品影院6| 亚洲av免费在线观看| 在线观看一区二区三区| 久久精品人妻少妇| 国产极品精品免费视频能看的| 色哟哟哟哟哟哟| 悠悠久久av| 国内精品美女久久久久久| 亚洲精品日韩在线中文字幕 | 日日撸夜夜添| 97在线视频观看| 狂野欧美激情性xxxx在线观看| 我要搜黄色片| 性色avwww在线观看| 久99久视频精品免费| 熟女人妻精品中文字幕| 91精品一卡2卡3卡4卡| 成人毛片a级毛片在线播放| 国产女主播在线喷水免费视频网站 | 中文字幕av在线有码专区| 国产精品三级大全| 国产精品,欧美在线| 国产精品av视频在线免费观看| 男人舔女人下体高潮全视频| 日韩一本色道免费dvd| 啦啦啦韩国在线观看视频| 内射极品少妇av片p| 日韩精品青青久久久久久| 高清日韩中文字幕在线| 一级二级三级毛片免费看| 深夜精品福利| 亚洲国产欧美在线一区| 在线观看美女被高潮喷水网站| 偷拍熟女少妇极品色| 青青草视频在线视频观看| 国产精品久久视频播放| 午夜福利视频1000在线观看| 一区二区三区四区激情视频 | 成年av动漫网址| 99久久人妻综合| 直男gayav资源| 精品久久久噜噜| 日韩,欧美,国产一区二区三区 | 免费在线观看成人毛片| 国产片特级美女逼逼视频| 春色校园在线视频观看| 六月丁香七月| 少妇裸体淫交视频免费看高清| 丰满人妻一区二区三区视频av| 国产精品福利在线免费观看| h日本视频在线播放| 精品少妇黑人巨大在线播放 | 大又大粗又爽又黄少妇毛片口| 国产日韩欧美在线精品| 亚洲七黄色美女视频| 男插女下体视频免费在线播放| 午夜激情福利司机影院| 九九爱精品视频在线观看| 国产午夜精品一二区理论片| 免费观看精品视频网站| 国产亚洲av片在线观看秒播厂 | videossex国产| 精品一区二区三区视频在线| 欧美色欧美亚洲另类二区| 久久久久性生活片| 啦啦啦韩国在线观看视频| 欧美日本视频| 三级男女做爰猛烈吃奶摸视频| 18禁黄网站禁片免费观看直播| 日韩欧美三级三区| 99国产精品一区二区蜜桃av| 午夜老司机福利剧场| 一级黄片播放器| 日韩视频在线欧美| 免费av不卡在线播放| 亚洲激情五月婷婷啪啪| 亚洲一级一片aⅴ在线观看| 青青草视频在线视频观看| 亚洲最大成人手机在线| 精品人妻一区二区三区麻豆| 国产午夜精品一二区理论片| 人妻制服诱惑在线中文字幕| 国产精品麻豆人妻色哟哟久久 | 99久久中文字幕三级久久日本| 97超视频在线观看视频| 在线免费观看的www视频| 一级毛片电影观看 | 人妻系列 视频| 免费无遮挡裸体视频| 少妇被粗大猛烈的视频| 亚洲无线在线观看| 午夜精品在线福利| 又爽又黄a免费视频| 亚洲丝袜综合中文字幕| 91精品一卡2卡3卡4卡| 免费av不卡在线播放| 自拍偷自拍亚洲精品老妇| 亚洲一级一片aⅴ在线观看| 国产一级毛片七仙女欲春2| 黄色日韩在线| 18禁黄网站禁片免费观看直播| 亚洲精品色激情综合| 一级二级三级毛片免费看| 午夜福利在线观看吧| 桃色一区二区三区在线观看| 国产精品蜜桃在线观看 | 亚洲欧美清纯卡通| 欧美一区二区国产精品久久精品| av卡一久久| 非洲黑人性xxxx精品又粗又长| 午夜爱爱视频在线播放| 亚洲人成网站在线播| 三级毛片av免费| 能在线免费看毛片的网站| АⅤ资源中文在线天堂| 国产男人的电影天堂91| 欧美性感艳星| 国产成人影院久久av| 99热全是精品| 嘟嘟电影网在线观看| 成人午夜精彩视频在线观看| 亚洲,欧美,日韩| 国产极品精品免费视频能看的| 村上凉子中文字幕在线| 丰满的人妻完整版| 一个人免费在线观看电影| 亚洲欧美日韩高清专用| 欧洲精品卡2卡3卡4卡5卡区| 国产精品野战在线观看| 免费无遮挡裸体视频| 白带黄色成豆腐渣| 永久网站在线| 五月伊人婷婷丁香| www日本黄色视频网| 国产老妇伦熟女老妇高清| 麻豆成人午夜福利视频| 国产av一区在线观看免费| 国产在线精品亚洲第一网站| 久久鲁丝午夜福利片| 欧美精品国产亚洲| 狠狠狠狠99中文字幕| 在线免费十八禁| 欧美高清性xxxxhd video| 天天一区二区日本电影三级| 国产极品天堂在线| 欧美在线一区亚洲| 日本欧美国产在线视频| 老师上课跳d突然被开到最大视频| 黄色一级大片看看| 国产一区二区在线观看日韩| 国产黄片视频在线免费观看| 精品一区二区三区视频在线| av黄色大香蕉| 身体一侧抽搐| 深夜精品福利| 美女cb高潮喷水在线观看| 午夜福利成人在线免费观看| av视频在线观看入口| 国产成人影院久久av| 中文字幕人妻熟人妻熟丝袜美| 日韩国内少妇激情av| 亚洲av中文av极速乱| 国产精品一区二区三区四区久久| 久久这里只有精品中国| 国内揄拍国产精品人妻在线| 最新中文字幕久久久久| 综合色av麻豆| 欧美xxxx性猛交bbbb| 十八禁国产超污无遮挡网站| 不卡视频在线观看欧美| 1024手机看黄色片| 国产精品一区www在线观看| 精品久久久久久成人av| 天堂网av新在线| 在线国产一区二区在线| 国产伦在线观看视频一区| 亚洲激情五月婷婷啪啪| АⅤ资源中文在线天堂| 夜夜爽天天搞| 中文字幕制服av| 久久久久免费精品人妻一区二区| 国产爱豆传媒在线观看| 久久久久久久久大av| 综合色丁香网| 成人鲁丝片一二三区免费| 日韩 亚洲 欧美在线| 久久人妻av系列| 国产精品国产高清国产av| 国产精品福利在线免费观看| 国产一区二区在线av高清观看| 日本黄色片子视频| 搞女人的毛片| 婷婷六月久久综合丁香| 精品人妻熟女av久视频| 看十八女毛片水多多多| 久久久精品94久久精品| 国产欧美日韩精品一区二区| 久久99精品国语久久久| 亚洲欧美日韩高清专用| 精品少妇黑人巨大在线播放 | 神马国产精品三级电影在线观看| 一边摸一边抽搐一进一小说| 欧美日本视频| 精品久久久久久久久av| 国产亚洲av片在线观看秒播厂 | 少妇丰满av| 免费在线观看成人毛片| 变态另类成人亚洲欧美熟女| 精品午夜福利在线看| 毛片女人毛片| 欧美日韩国产亚洲二区| 亚洲18禁久久av| 国产亚洲精品久久久com| 国产免费男女视频| 天堂√8在线中文| 可以在线观看毛片的网站| 久久精品夜夜夜夜夜久久蜜豆| 久久久国产成人免费| 欧美精品一区二区大全| 亚洲五月天丁香| 欧美日本视频| 少妇裸体淫交视频免费看高清| 国产精品电影一区二区三区| 99热网站在线观看| 在现免费观看毛片| 变态另类成人亚洲欧美熟女| 日本免费a在线| 色尼玛亚洲综合影院| 国产高清激情床上av| 夜夜夜夜夜久久久久| 九九在线视频观看精品| 欧美性猛交黑人性爽| 日本在线视频免费播放| 欧美不卡视频在线免费观看| 级片在线观看| 久久久久久久久久久免费av| 日韩一本色道免费dvd| 丰满人妻一区二区三区视频av| а√天堂www在线а√下载| 中文字幕免费在线视频6| 日本成人三级电影网站| 国产男人的电影天堂91| 国产视频内射| 亚洲性久久影院| 黄片无遮挡物在线观看| 在线免费十八禁| 赤兔流量卡办理| 3wmmmm亚洲av在线观看| 亚洲七黄色美女视频| 别揉我奶头 嗯啊视频| 成年女人看的毛片在线观看| 在线观看美女被高潮喷水网站| 18+在线观看网站| 久久中文看片网| 老司机福利观看| 国产亚洲5aaaaa淫片| 最近的中文字幕免费完整| 亚洲电影在线观看av| 美女内射精品一级片tv| 欧美日本视频| a级毛片a级免费在线| 日韩大尺度精品在线看网址| 草草在线视频免费看| 精品久久久久久成人av| 午夜福利在线在线| videossex国产| 欧美激情国产日韩精品一区| 床上黄色一级片| 久久草成人影院| 大型黄色视频在线免费观看| 亚洲精品久久国产高清桃花| av天堂中文字幕网| 午夜精品在线福利| 国产亚洲5aaaaa淫片| 又爽又黄无遮挡网站| 午夜福利在线在线| 久久国内精品自在自线图片| 日韩人妻高清精品专区| 99久久精品国产国产毛片| 国产精品乱码一区二三区的特点| 国产精品人妻久久久影院| 老司机福利观看| 免费看a级黄色片| 欧美成人一区二区免费高清观看| 97超碰精品成人国产| 亚洲av免费在线观看| 尤物成人国产欧美一区二区三区| avwww免费| av在线老鸭窝| 男女做爰动态图高潮gif福利片| 成年免费大片在线观看| 久久精品91蜜桃| 美女内射精品一级片tv| 黄色一级大片看看| 观看美女的网站| 国产精品乱码一区二三区的特点| 国产精品女同一区二区软件| 国产精品麻豆人妻色哟哟久久 | 爱豆传媒免费全集在线观看| 97超视频在线观看视频| 99九九线精品视频在线观看视频| 亚洲最大成人中文| 欧美日韩乱码在线| 中文字幕av在线有码专区| 日本爱情动作片www.在线观看| 久久久久免费精品人妻一区二区| 男女边吃奶边做爰视频| 欧美变态另类bdsm刘玥| a级毛片免费高清观看在线播放| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣高清作品| 一本精品99久久精品77| 久久精品久久久久久噜噜老黄 | 亚洲av男天堂| 成人美女网站在线观看视频| 免费电影在线观看免费观看| 国产69精品久久久久777片| 久久婷婷人人爽人人干人人爱| 日韩欧美精品免费久久| 看十八女毛片水多多多| 69av精品久久久久久| 91狼人影院| 日韩强制内射视频| 成人欧美大片| 美女xxoo啪啪120秒动态图| 一级毛片aaaaaa免费看小| 激情 狠狠 欧美| 91精品一卡2卡3卡4卡| 一边亲一边摸免费视频| 91狼人影院| 深爱激情五月婷婷| 日韩大尺度精品在线看网址| 一级毛片久久久久久久久女| 中文资源天堂在线| 精品久久国产蜜桃| 人妻制服诱惑在线中文字幕| 久久综合国产亚洲精品| 啦啦啦观看免费观看视频高清| 舔av片在线| a级一级毛片免费在线观看| 中文精品一卡2卡3卡4更新| 成人一区二区视频在线观看| 国产国拍精品亚洲av在线观看| 99热这里只有精品一区| 亚洲美女视频黄频| 亚洲va在线va天堂va国产| 国产三级中文精品| 国产精品美女特级片免费视频播放器| 亚洲一区二区三区色噜噜| 99热这里只有是精品在线观看| 男女啪啪激烈高潮av片| 成人鲁丝片一二三区免费| 久久精品人妻少妇| 国产精品一区www在线观看| 亚洲精华国产精华液的使用体验 | 色视频www国产| 日韩av不卡免费在线播放| 一级毛片我不卡| 精品熟女少妇av免费看| 亚洲四区av| 日本黄大片高清| 久久精品夜色国产| 2021天堂中文幕一二区在线观| 精品欧美国产一区二区三| 国产极品天堂在线| 国产麻豆成人av免费视频| 1000部很黄的大片| 国产一级毛片在线| 亚洲精品日韩av片在线观看| 熟女人妻精品中文字幕| 男人舔女人下体高潮全视频| 99久久人妻综合| 日韩中字成人| 亚洲欧美日韩高清在线视频| 国产国拍精品亚洲av在线观看| 久久久久久久亚洲中文字幕| 超碰av人人做人人爽久久| 伦精品一区二区三区| 欧美性猛交╳xxx乱大交人| 日本成人三级电影网站| 日本欧美国产在线视频| 精品熟女少妇av免费看| 91精品国产九色| 在线观看一区二区三区| 久久久国产成人精品二区| 久久人人精品亚洲av| 久久精品国产99精品国产亚洲性色| 国产精品免费一区二区三区在线| 简卡轻食公司| 国产高潮美女av| 最新中文字幕久久久久| 日本三级黄在线观看| 精品人妻视频免费看| 国产在线精品亚洲第一网站| 天堂√8在线中文| 中文字幕久久专区| 长腿黑丝高跟| 国产日韩欧美在线精品| 最近中文字幕高清免费大全6| 天天一区二区日本电影三级| 综合色丁香网| 亚洲经典国产精华液单| 色播亚洲综合网| 神马国产精品三级电影在线观看| 非洲黑人性xxxx精品又粗又长| 91麻豆精品激情在线观看国产| 国产精品麻豆人妻色哟哟久久 | 精品午夜福利在线看| 国产探花极品一区二区| 久久韩国三级中文字幕| 人妻制服诱惑在线中文字幕| 最近2019中文字幕mv第一页| 人人妻人人澡欧美一区二区| 国内精品宾馆在线| 亚洲成人中文字幕在线播放| 免费黄网站久久成人精品| 美女大奶头视频| 蜜桃久久精品国产亚洲av| 日日撸夜夜添| 久久亚洲国产成人精品v| 成人午夜高清在线视频| 亚洲欧美日韩东京热| 在线免费十八禁| 日日啪夜夜撸| 国内精品宾馆在线| 欧美最新免费一区二区三区| 日本撒尿小便嘘嘘汇集6| av免费观看日本| 久久九九热精品免费| av在线蜜桃| 午夜激情福利司机影院| 日本成人三级电影网站| 成人av在线播放网站| 白带黄色成豆腐渣| 亚洲欧美清纯卡通| 美女脱内裤让男人舔精品视频 | 亚洲av中文字字幕乱码综合| 久久精品综合一区二区三区| 婷婷亚洲欧美| 午夜老司机福利剧场| 亚洲经典国产精华液单| 欧美3d第一页| 久久精品久久久久久噜噜老黄 | 人妻少妇偷人精品九色| 人妻夜夜爽99麻豆av|