• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analytical and Numerical Studies of Quantum Plateau State in One Alternating Heisenberg Chain?

    2014-03-12 08:44:27JIANGJianJun蔣建軍LIUYongJun劉擁軍TANGFei唐菲YANGCuiHong楊翠紅andSHENGYuBo宇波
    Communications in Theoretical Physics 2014年2期
    關(guān)鍵詞:建軍

    JIANG Jian-Jun(蔣建軍),LIU Yong-Jun(劉擁軍),TANG Fei(唐菲),YANG Cui-Hong(楊翠紅), and SHENG Yu-Bo(宇波)

    1Department of Physics,Sanjiang College,Nanjing 210012,China

    2School of Physics Science and Technology,Yangzhou University,Yangzhou 225002,China

    3Department of Electronic and Information Engineering,Yangzhou Polytechnic Institute,Yangzhou 225127,China

    4School of Physics and Optoelectroic Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China

    5Institute of Signal Processing Transmission,Nanjing University of Postsand Telecommunications,Nanjing 210003,China

    1 Introduction

    Research relating to one-dimensional quantum antiferromagnetic spin chains has been an attractive f i eld in low-dimensional quantum magnetism.Usually,there are two kinds of uniform antiferromagnetic Heisenberg chains.One case is given by the spin chain with half integer spin,and another case is given by the spin chain with integer spin.The classical magnetic long-range order of these two chains disappears as a result of the strong quantum f l uctuations due to the low dimensionality.The half integer spin chain has a gapless spectrum and a power-law decay correlation function.By contrast,Haldane proposed in 1983 there is a gap between the ground state and the f i rst excited state for the integer spin chain and that the correlation function decays exponentially.[1]There are many theoretical studies that have subsequently validated Haldane’s conjecture.For example,the research on the AKLT model shows that each s=1 spin in the ground state can be viewed as two s=1/2 spins in the symmetric triplet state.[2]In Ref.[3],den Nijs and Rommelse proposed that,although the ground state of the integer spin chain is disordered,it possesses a hidden antiferromagnetic order,which can be measured by the string order parameter.It was pointed out by Kennedy and Tasaki that the hidden order is a discrete Z2×Z2symmetry.[4]Numerical results indicate that the spin gap in the s=1 spin chain is about 0.41J,where J is the strength of the antiferromagnetic interaction.[5]In addition to this evidence provided by theoretical calculations,the experimental evidence is that the m=0(m is the magnetization per site)magnetization plateau found in the compound[Ni(en)2(NO2)]ClO4,also shows the spin gap of the s=1 spin chain does exist.[6]

    The magnetization plateau in the magnetization process,which is caused by the spin gap,is a very interesting quantum phenomenon in the spin chain.In 1997,Oshikawa,Yamanaka,and Aラeck pointed out that the necessary condition for the appearance of the magnetization plateau is

    where n is the period of the ground state.[7]One typical example that satisf i es the above condition is the mixed spin chain.For example,the mixed spin(1,1/2)Heisenberg chain possesses the m=1/4 plateau state and it can be used to describe the properties of the actual oxamato compound NiCu(pba)(D2O)32D2O.[8?9]Another example is the bond alternating Heisenberg chain.Due to the diあerent spatial structures,diあerent alternating Heisenberg chains possess various magnetization plateaus.[10?16]For instance,the spin-1/2 tetrameric Heisenberg chain with alternating coupling ferromagnetic-ferromagneticantiferromagnetic-antiferromagnetic,which has been realized in the compound Cu(3-Clpy)2(N3)2,has the m=1/4 magnetization plateau.[11]

    In the present paper,we study the behaviour of the magnetization plateau of an alternating Heisenberg spin chain by using the analytical coupled cluster method(CCM)and numerical density matrix renormalization group(DMRG)method.[5]The model is shown in Fig.1 and the Hamiltonian is

    where S4i+j(j= ?3,?2,?1,0,and 1)is a spin-1/2 operator.J and αJ(α ≥ 1)denote the antiferromagnetic couplings.When α=1,the model(2)reduces to the isotropic Heisenberg chain in an external magnetic f i eld.In that case,the phase diagram of the model is exactly known and it only possesses the classical saturation plateau.[17]When α/=1,according to Eq.(1),model(2)may exhibit the m=0 and m=1/4 plateau states besides the m=1/2 plateau state.In the following discussion,our main goal is to study the eあect of modulating parameter α on the properties of the m=0 and m=1/4 plateau states that are caused by quantum f l uctuations.We now assume,without losing generality,that J=1 throughout the rest of this paper.

    We now describe the organization of this paper.In the next section,the details of the application of CCM formalism to model(2)are described.In Sec.3,the application of the DMRG to the alternating chain is given.In Sec.4,the results of CCM and DMRG are presented.A summary is given in the f i nal section.

    2 The Coupled Cluster Method Applied to the Alternating Heisenberg Chain

    In recent years,a quite new method called CCM has been successfully applied to diあerent quantum spin chains.[18?30]Detailed descriptions of the CCM applied to quantum spin systems have been given in papers.[18,20?21]

    We just focus on the application of CCM to m=0 plateau state of the alternating Heisenberg chain.When m=0,Hamiltonian(2)is equivalent to the following Hamiltonian

    The critical f i eld hc1of model(2),at which the m=0 plateau state disappears,equals to the spin gap of Hamiltonian(3).So,we can use Hamiltonian(3)to investigate the properties of the m=0 plateau state.The starting point of any CCM calculation is to choose a model state|φ〉and this is often a classical spin state.So we choose the Neel state(···↑↓↑↓ ···)as the model state for model(3).Then we perform a rotation of the local axes of the“up” spins by 180°about the y-axis such that all spins in the model state align along the negative z-axis.After this rotation,the CCM parameterization of the ket ground state of model(3)is given by[20?21]

    The CCM formalism is exact if all spin con fi gurations in the S correlation operator are considered,but it is impossible in practice.In this paper,a quite general approximation scheme called LSUBn is used to truncate the expansion of the operator S.[20?21]In the LSUBn approximation,only the con fi gurations including n or fewer correlated spins which span a range of no more than n contiguous lattice sites are retained.The fundamental confi gurations contained in the LSUBn approximation can be reduced by using the lattice symmetries and furthermore by the imposing that restriction that=0.We note that the ground state of model(3)lies in the subspace Stzol=0.The number of LSUBn con fi gurations is given in Table 1.

    Table 1 Numberoffundamentalcon fi gurations of the LSUBn approximation with n={10,12,14}NFdenotes the number of the fundenmental con fi gurations for the ground state with Stzol=0,NFedenotes the number of the fundenmental con fi gurations for the excited state with Stzol=1.

    Once the correlation coeきcients contained in the operator S have been found then one can use|ψ〉to calculate the ground state energy Egof Hamiltonian(3)by using the following formula

    To obtain the correlation coeきcients contained in the operator S,one needs to solve the ket-state equations,which are given by[20?21]

    After these coupled equations are solved,the correlation coeきcients retained in the LSUBn approximation can be obtained.We can use the CCM ket-state correlation coeffi cients to calculate the ground state energy using formula(5).As the derivation of the coupled equations for higher orders of approximation is extremely tedious,we have developed our own programme by using Matlab to automate this process according to the method discussed in Ref.[21].The Matlab code with double precision was performed on a private computer.

    Then,by applying an excitation operator Xelinearly to the ket-state wave function(4),an excited state wave function|ψe〉of model(3)can be obtained[20]

    Analogously to the ground state,we also use the LSUBn approximation scheme to truncate the expansion of the operator Xe.One can fi nd the fundamental excited state con fi gurations retained in the LSUBn approximation by using the lattice symmetry and the restricted condition Stzol=+1 or?1.Table 1 also gives the number of such fundamental con fi gurations.

    To get the excitation energy εe(εeis the diあerence between the excited state energy and the ground state energy),one can use the method introduced in Ref.[20]to obtain the LSUBn eigenvalue equations.Those equations with eigenvalues εeand corresponding eigenvectorsare as follows

    The excitation energy gap Δ can be obtained from the lowest eigenvalue of Eq.(8).

    Since the LSUBn approximation becomes exact in the limit n→∞,we need to extrapolate the LSUBn results to the limit n → ∞.[20?21]For the ground state energy,we use the following well-tested formula

    For the gap of the lowest-lying excitations,we use a matrix given by

    where k+l+1=p and the extrapolated value of Δnis given by a0.In this paper,we use n={10,12,14}for both extrapolation schemes described above.

    3 The Application of the Density Matrix Renormalization Group to the Alternating Heisenberg Chain

    In this section,we brief l y describe how to treat the alternating Heisenberg chain with the method of DMRG.Similar to the DMRG treatment of the dimerized spin chain,[31]the superblock of Hamiltonian(2)in our DMRG calculation is composed of four blocks S?a?E?b,where S and E are the“system”and “environment”blocks,while a and b denote the elementary blocks respectively added to S and E in each DMRG iteration.Blocks S and b are linked because we use periodic boundary condition in this paper.In the f i rst iteration of the DMRG calculation,both the system and environment blocks only contain one unit cell(4 sites).After one iteration,the system size of the superblock grows by 8 sites as we take one unit cell as the elementary block.1~4 sweeps were done to obtain accurate results.The DMRG programme code was also written in the Matlab environment and performed on a private computer.The number of the state kept per block is 180~240 and the highest errors are in the order of 10?7.

    4 Results

    4.1 The Magnetization Curve of the Alternating Heisenberg Chain

    To f i nd the plateau state of model(2),we calculate the magnetization curve of that model by employing DMRG.Figure 2 displays the magnetization curve for a system size N=64 when α=1.5.Using the method introduced in Ref.[32],we also present the magnetization curve in the thermodynamic limit in Fig.2.It can be seen that,besides the m=0 plateau state in the parameter regime h≤hc1,a f i nite plateau appears at m=1/4.In the following discussion,we focus on the properties of the above two quantum plateau states.

    Fig.1 The structure of the alternating Heisenberg spin chain.

    Fig.2 The magnetization m as a function of h when α=1.5.The line with circles represents the magnetization curve for the f i nite chain of N=64.The bold line is the result for the inf i nite chain.

    4.2 The m=0 Plateau State

    In this section,we discuss the behaviour of the m=0 plateau state,which is caused by the spin gap of Hamiltonian(3).The width of that state equals to the value of the critical f i eld hc1and it is given by

    where E1and Egare the energies of the lowest-lying state with Stzol=1 and Stzol=0.When α=1,the spectrum of Hamiltonian(3)is gapless.Thus,model(2)does not possess the m=0 plateau state.In the case of large α or small α,the m=0 plateau state belongs to the dimerized state because the spin pairs S4i?3and S4i?2and the spin pairs S4i?1and S4itend to form singlet dimmers under that condition.One can reasonably predict that a quantum phase transition at a critical point αcbetween the gapless spin-liquid state and the gapped dimerized state occurs in Hamiltonian(3).As the m=0 plateau state only appears in the dimerized state parameter regime,we should f i nd the critical point αc.

    Fig.3 The GS energy per site e versus α using CCM and DMRG.

    Fig.4 The second derivative of e,?d2e/dα2as a function of α.

    Fig.5 The spin gap Δ versus α using CCM and DMRG.

    It is known that the ground state energy density e or its derivative may exhibit special property at the critical point.[33]We search f i rstly for quantum phase transition existing in the alternating chain by using the ground state energy of Hamiltonian(3).Figure 3 shows the ground state energy per site e=Eg/N obtained from CCM and DMRG.The energies calculated by DMRG are extrapolated to the thermodynamic limit by using the following formula with N=32,40,48,56,and 64 spins[34]

    where p=2.When α=1,the energies per site obtained from DMRG and CCM are?0.443 146 and?0.443 138 respectively. They are both close to the exact result?0.443 147.[20]As shown in Fig.3,the ground state energy decreases as a result of increasing α and the results given by DMRG and CCM are in good agreement with each other.Since e changes continuously when α varies,its derivative is calculated.Figure 4 presents the second derivative of e obtained from DMRG.As is apparent in this f i gure,?d2e/dα2,all of the results for various lattice sizes,N,display a peak near α=1.Indeed,we see that the location of the peak moves nearer to α=1 and that the peak gets higher and shaper as N increases.Therefore,the second derivative of e can be used to detect the quantum phase transition in the alternating chain.

    Fig.6 Finite size scaling of the spin gap Δ for lengths:N=48,56,64.

    Next,the spin gap of the alternating chain Δ was also calculated by DMRG and CCM because the existence of a spin gap is an indication of a dimerized state.In order to extrapolate the results of DMRG,we use formula(12)with p=1.Figure 5 shows the results of the spin gap Δ as a function of α.From this graph,one can see the results of CCM are in qualitative agreement with those of DMRG.Moreover,the spin gap Δ increases as the parameter α increases,corresponding to the singlet dimer ground state.As shown in Fig.6,we plot ΔNβ1for diあerent chain sizes N as a function of α in order to determine the critical point αcprecisely.We use numerical results obtained from DMRG and we f i nd that all the curves cross at α =1,with the choice of a suitable exponent β1.This phenomenon means that the critical point of the alternating chain extracted from the operator Δ is αc=1.[35]

    From the above analysis,one can conclude that the ground state of Hamiltonian(3)evolves from a spin-liquid state to a dimerized state when the parameter α changes across the critical point αc.Therefore,it possesses an m=0 plateau state with width Δ in the presence of a magnetic f i eld when α/=1.A similar phenomenon can also be observed in the dimerized spin chain.[36]

    4.3 The m=1/4 Plateau State

    We now discuss the eあect of the parameter α on the properties of the m=1/4 plateau state by using DMRG.That state occurs between two critical magnetic f i elds hc2and hc3.The critical f i elds hc2and hc3are respectively given by

    where E(N,Stzol)is the lowest energy in the subspace Stzol.

    Fig.7 The critical magnetic f i elds hc2,hc3and the width of the plateau D obtained from DMRG as a function of α.

    Fig.8 The scaled gap ND as a function of α.

    Once these two critical fi elds have been calculated,the width of the plateau may be determined by using:D=hc3?hc2.We have calculated the above two critical fi elds for system sizes of N=32,40,48,56,and 64 by using DMRG.By using formula(12)with p=1,the bulk limit of the fi nite size results is obtained.The numerical results of the critical fi eld and the width of the plateau are plotted in Fig.7.As can be seen from this fi gure,the critical fi eld hc2decreases as α increases.By contrast,the critical fi eld hc3increases as α also increases.One sees also that the plateau occurs only when this parameter exceeds 1.To fi nd the critical point at which the plateau emerges precisely,we display the scaled gap ND of fi nite systems(N=40~64)in Fig.8.It is apparent that a fi nite plateau exists in the in fi nite system when α>1 because ND increases with increasing N in this parameter region.[37]

    Fig.9 The expectation values 〈Szi〉for N=64 spins when α=10.

    Fig.10 ln f+(lnf?)is plotted versus lnN.

    To understand the mechanism for the m=1/4 plateau of the alternating chain,it is instructive to examine the case of large α limit.In this limit,two nearest spins connected by the αJ1interaction form a singlet dimer and the other two spins in a unit cell linked by J1interaction form a triplet dimer in subspace Stzol=N/4.Thus,in the m=1/4 plateau state,the expectation values〈Siz〉should be

    To check this hypothesis,we present the expectation values 〈Szi〉,which are obtained by using DMRG for the N=64 system when α=10,in Fig.9.As is apparent in Fig.9,the behaviour of〈Szi〉obtained from DMRG favors the above mechanism for the m=1/4 plateau.

    Lastly,we investigate the interesting critical behavior of the magnetization at m=1/4.In the vicinity of the critical f i elds hc2and hc3,the behavior of the magnetization m has the form[38?39]

    where δ+and δ?are the critical exponents,which can be used to describe the universality class of the phase transition induced by the f i eld.One can estimate the critical exponents by using two quantities f+(N)and f?(N),which are def i ned as[39]

    Once f+and f?are obtained, δ+and δ?can be determined from the slope of the lnf+~lnN and lnf?~lnN plot respectively.To avoid the large fi nite size eあect in the vicinity of the critical point,we only calculate the critical exponents when α≥1.2.Figure 10 shows the results of lnf±versus lnN.From this fi gure,we see that the calculated points fi t to a line very well.Thus,by a numerical fi tting, δ+and δ?can be estimated.The results of δ+and δ?are presented in Fig.11.From this fi gure,one can reasonably draw the conclusion that δ+= δ?=2,as expected for conventional one-dimensional gapped spin chains.[38]

    Fig.11 The critical exponents δ+and δ? as a function of α.

    5 Conclusions

    In summary,we have investigated the properties of the quantum plateau state of the alternating Heisenberg chain by using CCM and DMRG methods.As the m=0 plateau state of Hamiltonian(2)is caused by the spin gap existing in Hamiltonian(3),we f i rst study the critical behaviour of Hamiltonian(3).The results for the second derivative of ground state energy per site obtained from DMRG show that a second order quantum phase transition happens at a critical point αc≈1.The results of the spin gap drawn from CCM and DMRG both indicate that the spin gap of Hamiltonian(3)opens up when the parameter α exceeds αc.By analyzing the scaling behavior of the spin gap,we f i nd that the precise value of αcis 1.Thus,when αc> 1,there is an m=0 plateau state in the alternating Heisenberg chain.

    Due to its special spatial structure,the alternating Heisenberg chain also possesses an m=1/4 quantum plateau state that appears between two critical f i elds.Similar to the m=0 plateau state,the m=1/4 plateau state also appears when α>1 and its width grows with the increase of α.By calculating the expectation values〈Szi〉using DMRG,we investigated the mechanism for the m=1/4 plateau state.The behavior of the magnetization m near the critical f i elds hc2and hc3exhibits a conventional critical behavior.

    Acknowledgment

    It is a pleasure to thank Dr.Damain Farnell for his careful reading of the manuscript and his valuable suggestions.

    [1]F.D.M.Haldane,Phys.Rev.Lett.50(1983)1153.

    [2]I.Aラeck,T.Kennedy,E.H.Lieb,and H.Tasaki,Phys.Rev.Lett.59(1987)799.

    [3]M.den Nijs and K.Rommelse,Phys.Rev.B 40(1989)4709.

    [4]T.Kennedy and H.Tasaki,Phys.Rev.B 45(1992)304.

    [5]S.R.White,Phys.Rev.Lett.69(1992)2863.

    [6]M.Yamashita,T.Ishii,and H.Matsuzaka,Coord.Chem.Rev.198(2000)347.

    [7]M.Oshikawa,M.Yamanaka,and I.Aラeck,Phys.Rev.Lett.78(1997)1984.

    [8]T.Sakai and S.Yamamoto,Phys.Rev.B 60(1999)4053.

    [9]J.J.Jiang,Y.J.Liu,F.Tang,and C.H.Yang,Physica B 406(2011)781.

    [10]W.Chen,K.Hida,and H.Nakano,J.Phys.Soc.Jpn.68(1999)625.

    [11]H.T.Lu,Y.H.Su,L.Q.Sun,J.Chang,C.S.Liu,H.G.Luo,and T.Xiang,Phys.Rev.B 71(2005)144426.

    [12]B.Gu,G.Su,and S.Gao,J.Phys.:Condens.Matter 17(2005)6081.

    [13]S.S.Gong and G.Su,Phys.Rev.B 78(2008)104416.

    [14]S.S.Gong,S.Gao,and G.Su,Phys.Rev.B 80(2009)014413.

    [15]S.Mahdavifar and J.Abouie,J.Phys.:Condens.Matter 23(2011)246002.

    [16]M.S.Naseri,G.I.Japaridze,S.Mahdavifar,and S.F.Shayesteh,J.Phys.:Condens.Matter 24(2012)116002.

    [17]D.V.Dmitriev,V.Y.Krivnov,and A.A.Ovchinnikov,Phys.Rev.B 65(2002)172409.

    [18]R.F.Bishop,J.B.Parkinson,and Y.Xian,Phys.Rev.B 44(1991)9425.

    [19]R.F.Bishop,D.J.J.Farnell,and J.B.Parkinson,Phys.Rev.B 58(1998)6394.

    [20]R.F.Bishop,D.J.J.Farnell,S.E.Kr¨uger,J.B.Parkinson,J.Richter,and C.Zeng,J.Phys.:Condens.Matter 12(2000)6887.

    [21]D.J.J.Farnell,R.F.Bishop,and K.A.Gernoth,J.Stat.Phys.108(2002)401.

    [22]D.J.J.Farnell,J.Schulenburg,J.Richter,and K.A.Gernoth,Phys.Rev.B 72(2005)172408.

    [23]R.Darradi,J.Richter,K.A.Gernoth,and D.J.J.Farnell,Phys.Rev.B 72(2005)104425.

    [24]D.Schmalfu?,R.Darradi,J.Richter,J.Schulenburg,and D.Ihle,Phys.Rev.Lett.97(2006)157201.

    [25]R.F.Bishop,P.H.Y.Li,D.J.J.Farnell,and C.E.Campbell,Phys.Rev.B 79(2009)174405.

    [26]D.J.J.Farnell,R.Zinke,J.Schulenburg,and J.Richter,J.Phys.:Condens.Matter 21(2009)406002.

    [27]J.Richter,R.Darradi,J.Schulenburg,D.J.J.Farnell,and H.Rosner,Phys.Rev.B 81(2010)174429.

    [28]D.J.J.Farnell,R.Darradi,R.Schmidt,and J.Richter,Phys.Rev.B 84(2011)104406.

    [29]O.Goetze,D.J.J.Farnell,R.F.Bishop,P.H.Y.Li,and J.Richter,Phys.Rev.B 84(2011)224428.

    [30]P.H.Y.Li,R.F.Bishop,D.J.J.Farnell,J.Richter,and C.E.Campbell,Phys.Rev.B 85(2012)085115.

    [31]T.Papenbrock,T.Barnes,D.J.Dean,M.V.Stoitsov,and M.R.Strayer,Phys.Rev.B 68(2003)024416.

    [32]K.Okamoto,T.Tonegawa,and M.Kaburagi,J.Phys.:Condens.Matter 15(2003)5979.

    [33]Y.C.Tzeng,H.H.Hung,Y.C.Chen,and M.F.Yang,Phys.Rev.A 77(2008)062321.

    [34]T.Barnes,E.Dagotto,J.Riera,and E.S.Swanson,Phys.Rev.B 47(1993)3196.

    [35]G.De.Chiara,M.Lewenstein,and A.Sanpera,Phys.Rev.B 84(2011)054451.

    [36]J.J.Jiang and Y.J.Liu,Physica B 403(2008)3498.

    [37]N.Okazaki,J.Miyoshi,and T.Sakai,J.Phys.Soc.Jpn.69(2000)37.

    [38]T.Sakai and M.Takahashi,Phys.Rev.B 57(1998)R8091.

    [39]T.Sakai and H.Nakano,Phys.Rev.B 83(2011)100405(R).

    猜你喜歡
    建軍
    慶祝建軍95周年
    Ergodic stationary distribution of a stochastic rumor propagation model with general incidence function
    GENERALIZED CES`ARO OPERATORS ON DIRICHLET-TYPE SPACES*
    Spatio-temporal evolution characteristics and pattern formation of a gas–liquid interfacial AC current argon discharge plasma with a deionized water electrode
    古建軍
    無論等多久
    建軍90周年有感
    中華魂(2017年8期)2017-11-22 12:21:09
    建軍90周年
    綠色中國(2017年15期)2017-01-25 08:55:36
    Experimental investigation of velocity fluctuations in a radial diffuser pump*
    Totally laparoscopic Billroth Ⅱ gastrectomy without intracorporeal hand-sewn sutures
    成人特级av手机在线观看| 欧美性感艳星| videossex国产| 美女高潮的动态| 欧美变态另类bdsm刘玥| 亚洲欧美一区二区三区黑人 | 在线精品无人区一区二区三 | 亚洲国产欧美在线一区| 亚洲av免费高清在线观看| 精品99又大又爽又粗少妇毛片| 看黄色毛片网站| 国产熟女欧美一区二区| 国产成年人精品一区二区| 日本爱情动作片www.在线观看| 久久久久精品性色| 99热这里只有是精品50| 夜夜看夜夜爽夜夜摸| 国产精品无大码| 丰满乱子伦码专区| 免费在线观看成人毛片| 伦精品一区二区三区| 日韩av在线免费看完整版不卡| 久久人人爽人人爽人人片va| 人妻少妇偷人精品九色| 波多野结衣巨乳人妻| 在线天堂最新版资源| 精品久久久久久电影网| 亚洲aⅴ乱码一区二区在线播放| 久久久久性生活片| 在线精品无人区一区二区三 | 精品久久国产蜜桃| 久久精品国产亚洲网站| 一个人看视频在线观看www免费| 国产女主播在线喷水免费视频网站| 日韩三级伦理在线观看| 美女cb高潮喷水在线观看| 亚洲图色成人| 肉色欧美久久久久久久蜜桃 | 欧美变态另类bdsm刘玥| 黄片无遮挡物在线观看| av在线播放精品| 久久精品国产亚洲网站| 成人高潮视频无遮挡免费网站| 亚洲自拍偷在线| 久久影院123| 亚洲精品第二区| 小蜜桃在线观看免费完整版高清| 黄片无遮挡物在线观看| 亚洲欧美日韩卡通动漫| 亚洲精品456在线播放app| 日韩在线高清观看一区二区三区| 精品人妻视频免费看| 夫妻性生交免费视频一级片| 国产伦精品一区二区三区视频9| 日日摸夜夜添夜夜爱| 国产精品久久久久久久久免| 国产黄片美女视频| 日韩大片免费观看网站| 人妻少妇偷人精品九色| 午夜免费男女啪啪视频观看| 深夜a级毛片| 精品少妇久久久久久888优播| 免费看av在线观看网站| 国产伦理片在线播放av一区| 欧美日韩视频精品一区| 国产成人免费无遮挡视频| 中文字幕制服av| 国产一区二区三区综合在线观看 | 日本爱情动作片www.在线观看| 蜜桃亚洲精品一区二区三区| 一个人看的www免费观看视频| 亚洲欧美成人综合另类久久久| 亚洲国产精品成人综合色| 亚洲久久久久久中文字幕| 成年版毛片免费区| 中国三级夫妇交换| 狂野欧美白嫩少妇大欣赏| 80岁老熟妇乱子伦牲交| 国产真实伦视频高清在线观看| 青青草视频在线视频观看| 超碰97精品在线观看| 免费看光身美女| 最新中文字幕久久久久| 男插女下体视频免费在线播放| 老女人水多毛片| 亚洲欧美精品自产自拍| 久久综合国产亚洲精品| 欧美日韩亚洲高清精品| 国产熟女欧美一区二区| 精品久久国产蜜桃| 欧美成人精品欧美一级黄| 国产欧美亚洲国产| 一区二区av电影网| 亚洲欧美清纯卡通| 91精品一卡2卡3卡4卡| 22中文网久久字幕| av在线播放精品| 欧美高清性xxxxhd video| 黄色日韩在线| 亚洲综合色惰| 最近的中文字幕免费完整| 国产精品人妻久久久久久| 国产黄色免费在线视频| 免费观看无遮挡的男女| 成人美女网站在线观看视频| 大话2 男鬼变身卡| 久久久国产一区二区| 2021少妇久久久久久久久久久| 精品久久久噜噜| 久久久久久九九精品二区国产| 亚洲最大成人av| 97精品久久久久久久久久精品| 亚洲av中文字字幕乱码综合| 久久99精品国语久久久| 91久久精品国产一区二区成人| 国产爽快片一区二区三区| 成人亚洲精品一区在线观看 | 三级国产精品欧美在线观看| 亚洲精品日韩在线中文字幕| 哪个播放器可以免费观看大片| 麻豆国产97在线/欧美| 欧美zozozo另类| 国产淫片久久久久久久久| 午夜爱爱视频在线播放| 久久精品国产亚洲av天美| 久久久欧美国产精品| 免费观看在线日韩| 日韩中字成人| 一级a做视频免费观看| 在线观看美女被高潮喷水网站| 能在线免费看毛片的网站| 日韩一区二区三区影片| 国产色爽女视频免费观看| 少妇的逼水好多| 三级国产精品欧美在线观看| 久久久久久久久大av| 丰满少妇做爰视频| 国产91av在线免费观看| 中文天堂在线官网| 91在线精品国自产拍蜜月| 国产欧美日韩一区二区三区在线 | av国产久精品久网站免费入址| 国产成人a区在线观看| 精品人妻偷拍中文字幕| 青春草亚洲视频在线观看| 亚洲精品中文字幕在线视频 | 99热这里只有是精品在线观看| 国产成人精品福利久久| 国产黄a三级三级三级人| 成年免费大片在线观看| 精品熟女少妇av免费看| 综合色丁香网| 欧美97在线视频| 亚洲精品,欧美精品| 国产黄片视频在线免费观看| 亚洲在线观看片| av在线观看视频网站免费| 国精品久久久久久国模美| 免费黄频网站在线观看国产| 婷婷色麻豆天堂久久| 久久6这里有精品| 观看免费一级毛片| av播播在线观看一区| 欧美成人a在线观看| 男人添女人高潮全过程视频| 国产精品无大码| 丰满少妇做爰视频| 欧美激情国产日韩精品一区| 精品午夜福利在线看| 久久久久国产精品人妻一区二区| 国产高清不卡午夜福利| 日韩强制内射视频| av在线老鸭窝| 精华霜和精华液先用哪个| 亚洲欧美清纯卡通| 免费看光身美女| 久久久久久久久大av| 国产成人aa在线观看| 色5月婷婷丁香| 街头女战士在线观看网站| 久久久国产一区二区| 啦啦啦啦在线视频资源| 日韩在线高清观看一区二区三区| 日本午夜av视频| 国产亚洲精品久久久com| 简卡轻食公司| 欧美最新免费一区二区三区| a级毛片免费高清观看在线播放| 91精品国产九色| 成年女人看的毛片在线观看| 一区二区三区四区激情视频| 精品视频人人做人人爽| 国内揄拍国产精品人妻在线| av女优亚洲男人天堂| 内射极品少妇av片p| av免费在线看不卡| 蜜桃亚洲精品一区二区三区| 日韩一本色道免费dvd| 欧美zozozo另类| 男人添女人高潮全过程视频| 日本午夜av视频| 色婷婷久久久亚洲欧美| h日本视频在线播放| 国产男女内射视频| 又爽又黄a免费视频| 男女啪啪激烈高潮av片| 春色校园在线视频观看| 看免费成人av毛片| 国产视频首页在线观看| 国产一区有黄有色的免费视频| 只有这里有精品99| 简卡轻食公司| 肉色欧美久久久久久久蜜桃 | 99精国产麻豆久久婷婷| 美女xxoo啪啪120秒动态图| 精品人妻一区二区三区麻豆| 亚洲精品成人久久久久久| 久久久色成人| 三级男女做爰猛烈吃奶摸视频| 九色成人免费人妻av| 中文字幕制服av| 精品人妻偷拍中文字幕| 亚洲最大成人手机在线| 精品酒店卫生间| xxx大片免费视频| 亚洲国产精品成人久久小说| 午夜精品一区二区三区免费看| 全区人妻精品视频| 97超视频在线观看视频| 免费黄色在线免费观看| 欧美xxⅹ黑人| 久久午夜福利片| 免费人成在线观看视频色| 国产免费一级a男人的天堂| 少妇人妻 视频| 日本av手机在线免费观看| 久久精品久久久久久久性| 在线精品无人区一区二区三 | 日韩制服骚丝袜av| 亚洲婷婷狠狠爱综合网| 蜜桃亚洲精品一区二区三区| 国产精品人妻久久久久久| 国产精品偷伦视频观看了| 观看美女的网站| 国产欧美日韩一区二区三区在线 | 亚洲国产av新网站| 18禁裸乳无遮挡免费网站照片| 老师上课跳d突然被开到最大视频| 亚洲成人av在线免费| 亚洲国产精品专区欧美| 久久午夜福利片| 亚洲人成网站高清观看| 久久久久久九九精品二区国产| 国产精品精品国产色婷婷| 欧美 日韩 精品 国产| 欧美日韩综合久久久久久| av在线天堂中文字幕| 男女那种视频在线观看| 亚洲伊人久久精品综合| 国产v大片淫在线免费观看| 久久热精品热| 中文乱码字字幕精品一区二区三区| 网址你懂的国产日韩在线| 亚洲精品国产色婷婷电影| 国产日韩欧美亚洲二区| 亚洲精品成人久久久久久| 欧美xxxx性猛交bbbb| 在线a可以看的网站| 国产综合精华液| av专区在线播放| 精品一区二区免费观看| 蜜桃久久精品国产亚洲av| 久久99精品国语久久久| 亚洲欧美日韩另类电影网站 | 91aial.com中文字幕在线观看| 中文乱码字字幕精品一区二区三区| 三级经典国产精品| 国产黄片视频在线免费观看| 人妻一区二区av| 欧美精品国产亚洲| 国产一区有黄有色的免费视频| 在线观看一区二区三区| 久久精品国产亚洲网站| 男人舔奶头视频| 国内精品宾馆在线| 国产av码专区亚洲av| 免费观看性生交大片5| 80岁老熟妇乱子伦牲交| 国产亚洲午夜精品一区二区久久 | 激情 狠狠 欧美| 男人添女人高潮全过程视频| 精品午夜福利在线看| 国产在线一区二区三区精| 亚洲自拍偷在线| 狂野欧美白嫩少妇大欣赏| 亚洲欧美精品自产自拍| 久久国内精品自在自线图片| 99视频精品全部免费 在线| av在线播放精品| 亚洲国产精品999| 日韩av免费高清视频| 观看免费一级毛片| 丰满人妻一区二区三区视频av| 女的被弄到高潮叫床怎么办| 亚洲精品日韩av片在线观看| 亚洲精品中文字幕在线视频 | 熟女av电影| 2018国产大陆天天弄谢| 成人综合一区亚洲| 亚洲av福利一区| 97在线人人人人妻| av免费观看日本| 天堂俺去俺来也www色官网| 精品人妻偷拍中文字幕| 日韩 亚洲 欧美在线| 国产精品久久久久久久电影| 最近手机中文字幕大全| 夜夜看夜夜爽夜夜摸| 亚洲婷婷狠狠爱综合网| 色网站视频免费| 色播亚洲综合网| 亚洲在久久综合| 中国国产av一级| 久久久精品免费免费高清| av又黄又爽大尺度在线免费看| 别揉我奶头 嗯啊视频| 久久精品国产自在天天线| 色视频www国产| 男女边摸边吃奶| 亚洲国产色片| 在线观看av片永久免费下载| 在现免费观看毛片| 边亲边吃奶的免费视频| 男插女下体视频免费在线播放| 三级男女做爰猛烈吃奶摸视频| 国产免费视频播放在线视频| 免费大片黄手机在线观看| 欧美日韩视频高清一区二区三区二| 国产精品人妻久久久久久| 国国产精品蜜臀av免费| 国产成人午夜福利电影在线观看| 国产高清国产精品国产三级 | 汤姆久久久久久久影院中文字幕| 国产视频内射| 欧美日韩视频精品一区| 美女国产视频在线观看| 亚洲国产精品国产精品| 国内揄拍国产精品人妻在线| 国产中年淑女户外野战色| av天堂中文字幕网| 最近手机中文字幕大全| 久久亚洲国产成人精品v| 亚洲国产av新网站| 亚洲欧美日韩另类电影网站 | 男女那种视频在线观看| 日韩三级伦理在线观看| 成人综合一区亚洲| av又黄又爽大尺度在线免费看| 亚洲天堂国产精品一区在线| 一本色道久久久久久精品综合| 久久久久久久久久久丰满| 最新中文字幕久久久久| 国产乱人偷精品视频| 成人国产麻豆网| 九九爱精品视频在线观看| 亚洲欧美日韩无卡精品| 晚上一个人看的免费电影| 男女边摸边吃奶| 性插视频无遮挡在线免费观看| 久热这里只有精品99| 精品久久久久久久久亚洲| 人妻少妇偷人精品九色| 日韩av不卡免费在线播放| 国产黄色视频一区二区在线观看| 亚洲激情五月婷婷啪啪| 韩国高清视频一区二区三区| 免费观看a级毛片全部| 欧美 日韩 精品 国产| 3wmmmm亚洲av在线观看| 亚洲av在线观看美女高潮| 亚洲欧洲国产日韩| 又爽又黄a免费视频| 亚洲av.av天堂| 中文在线观看免费www的网站| 我的女老师完整版在线观看| 丝袜喷水一区| 精品久久久久久久久av| 国产精品不卡视频一区二区| 精品少妇久久久久久888优播| 日韩,欧美,国产一区二区三区| 国精品久久久久久国模美| 少妇高潮的动态图| 18禁裸乳无遮挡免费网站照片| 夜夜看夜夜爽夜夜摸| 毛片女人毛片| 国产乱人视频| 干丝袜人妻中文字幕| 亚洲欧美日韩无卡精品| 免费黄网站久久成人精品| 亚洲国产av新网站| 国产成人精品一,二区| 又粗又硬又长又爽又黄的视频| 最近最新中文字幕大全电影3| 美女主播在线视频| 国产片特级美女逼逼视频| 欧美激情久久久久久爽电影| 亚洲精品国产色婷婷电影| 国产精品不卡视频一区二区| 亚洲欧美日韩卡通动漫| 熟女电影av网| 午夜爱爱视频在线播放| 国产精品福利在线免费观看| 久久久久久久大尺度免费视频| 成人国产麻豆网| 新久久久久国产一级毛片| 国产精品人妻久久久影院| 成年女人在线观看亚洲视频 | 五月开心婷婷网| 嫩草影院入口| 国内精品美女久久久久久| 国产精品99久久99久久久不卡 | 别揉我奶头 嗯啊视频| 精品久久久久久电影网| 日韩视频在线欧美| 我要看日韩黄色一级片| 国产欧美亚洲国产| 最近手机中文字幕大全| 在线观看av片永久免费下载| 婷婷色av中文字幕| 精品一区二区免费观看| 精品视频人人做人人爽| 久久人人爽av亚洲精品天堂 | 亚洲欧洲国产日韩| 又黄又爽又刺激的免费视频.| 少妇的逼好多水| 欧美老熟妇乱子伦牲交| 日本av手机在线免费观看| 国产白丝娇喘喷水9色精品| 欧美xxxx黑人xx丫x性爽| 欧美日韩一区二区视频在线观看视频在线 | 插阴视频在线观看视频| 日韩在线高清观看一区二区三区| 一区二区三区四区激情视频| 国产熟女欧美一区二区| 欧美xxxx性猛交bbbb| av播播在线观看一区| 狠狠精品人妻久久久久久综合| 国产成人91sexporn| 国产日韩欧美在线精品| 嫩草影院精品99| 九草在线视频观看| 高清欧美精品videossex| 国内少妇人妻偷人精品xxx网站| 青春草国产在线视频| 欧美日韩精品成人综合77777| av线在线观看网站| 少妇的逼好多水| 色5月婷婷丁香| 91精品伊人久久大香线蕉| 日本-黄色视频高清免费观看| 亚洲欧美一区二区三区国产| 亚洲成人中文字幕在线播放| 免费黄频网站在线观看国产| 国产亚洲最大av| 成人高潮视频无遮挡免费网站| 精品久久久精品久久久| 男女边摸边吃奶| 国产精品久久久久久久久免| 国产精品国产三级国产av玫瑰| 午夜视频国产福利| 嫩草影院新地址| 成人亚洲欧美一区二区av| 热99国产精品久久久久久7| 日日啪夜夜撸| 精品99又大又爽又粗少妇毛片| 亚州av有码| 亚洲av中文字字幕乱码综合| 欧美激情在线99| 美女脱内裤让男人舔精品视频| 黄色视频在线播放观看不卡| 深夜a级毛片| 新久久久久国产一级毛片| 亚洲国产欧美人成| 九草在线视频观看| 国产精品嫩草影院av在线观看| 久久久午夜欧美精品| 18禁动态无遮挡网站| 中国三级夫妇交换| 日韩在线高清观看一区二区三区| 六月丁香七月| 22中文网久久字幕| 99热这里只有是精品在线观看| 久久99精品国语久久久| 99热6这里只有精品| 91午夜精品亚洲一区二区三区| 精品一区二区三区视频在线| 亚洲精品视频女| 中文字幕免费在线视频6| 精品午夜福利在线看| 尾随美女入室| 国模一区二区三区四区视频| 午夜日本视频在线| 亚洲精品乱码久久久v下载方式| 国产国拍精品亚洲av在线观看| 伦精品一区二区三区| 精品久久久精品久久久| 亚洲精品久久久久久婷婷小说| 亚洲av不卡在线观看| 亚洲国产欧美在线一区| 亚洲在久久综合| 午夜福利视频1000在线观看| 国产精品福利在线免费观看| 国产 一区 欧美 日韩| 国产精品爽爽va在线观看网站| 亚洲色图av天堂| 下体分泌物呈黄色| eeuss影院久久| 亚洲三级黄色毛片| 一区二区三区四区激情视频| 人妻夜夜爽99麻豆av| 久久精品久久久久久久性| 亚洲av.av天堂| 在线播放无遮挡| 丰满少妇做爰视频| 免费高清在线观看视频在线观看| 成人亚洲精品av一区二区| 一级片'在线观看视频| 高清视频免费观看一区二区| 免费观看的影片在线观看| 精品人妻偷拍中文字幕| 亚洲美女搞黄在线观看| 激情五月婷婷亚洲| 在线a可以看的网站| 99热6这里只有精品| 久久久成人免费电影| 免费看不卡的av| 18禁在线无遮挡免费观看视频| 男女边摸边吃奶| 亚洲av在线观看美女高潮| 成人特级av手机在线观看| av福利片在线观看| 日韩一区二区三区影片| 最近最新中文字幕免费大全7| 中国美白少妇内射xxxbb| 午夜老司机福利剧场| 国产极品天堂在线| 大话2 男鬼变身卡| 国产精品伦人一区二区| 亚洲精品色激情综合| 色5月婷婷丁香| 婷婷色综合www| 亚洲欧美精品专区久久| 久久久久久久亚洲中文字幕| 久久久久久久精品精品| 纵有疾风起免费观看全集完整版| 亚洲人成网站在线播| 国国产精品蜜臀av免费| 久久久久久久久久人人人人人人| 国产精品福利在线免费观看| 韩国av在线不卡| 日日啪夜夜撸| 观看免费一级毛片| 日韩成人av中文字幕在线观看| 在线看a的网站| 美女高潮的动态| 大码成人一级视频| 黄色配什么色好看| 亚洲成人久久爱视频| 免费播放大片免费观看视频在线观看| 免费人成在线观看视频色| 男男h啪啪无遮挡| 亚洲精品久久久久久婷婷小说| 最近最新中文字幕大全电影3| 国产精品精品国产色婷婷| 成年女人看的毛片在线观看| 亚洲国产成人一精品久久久| 日本猛色少妇xxxxx猛交久久| 黄色配什么色好看| 色婷婷久久久亚洲欧美| 又大又黄又爽视频免费| 久久久精品免费免费高清| 欧美成人一区二区免费高清观看| 街头女战士在线观看网站| 精品一区二区三卡| 一个人观看的视频www高清免费观看| 中文字幕av成人在线电影| av在线app专区| 久久久精品欧美日韩精品| 日本-黄色视频高清免费观看| 韩国高清视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品99久久99久久久不卡 | 精品久久久久久久人妻蜜臀av| 亚洲婷婷狠狠爱综合网| 国产午夜精品久久久久久一区二区三区| 夜夜爽夜夜爽视频| 六月丁香七月| av播播在线观看一区| 国产探花在线观看一区二区| 我要看日韩黄色一级片| 九草在线视频观看| 亚洲综合精品二区| 两个人的视频大全免费| 国产精品一二三区在线看| 男女下面进入的视频免费午夜| 九九爱精品视频在线观看| 日韩大片免费观看网站| 精品久久久久久久人妻蜜臀av| 69人妻影院| 国产熟女欧美一区二区| 少妇人妻精品综合一区二区| 黄片wwwwww| 一级爰片在线观看| 我要看日韩黄色一级片| 欧美最新免费一区二区三区|