• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stark-Chirped Rapid Adiabatic Passage in Presence of Dissipation for Quantum Computation?

    2014-03-12 08:44:21SHIXuan石軒OhandWEILianFu韋聯(lián)福
    Communications in Theoretical Physics 2014年2期

    SHI Xuan(石軒),C.H.Oh, and WEI Lian-Fu(韋聯(lián)福),3,?

    1Quantum Optoelectronics Laboratory,School of Physics and Technology,Southwest Jiaotong University,Chengdu 610031,China

    2Centre for Quantum Technologies and Department of Physics,National University of Singapore,3 Science Drive 2,Singapore 117542,Singapore

    3State Key Laboratory of Optoelectronic Materials and Technologies,School of Physics Science and Engineering,Sun Yet-sen University,Guangzhou 510275,China

    1 Introduction

    Over recent years,quantum computation has attracted much attention partly because the discovery of quantum algorithm for specif i c problems provides a tremendous speedup in computation,compared to a classical computer.[1?2]A critical prerequisite for building a quantum computer is to perform the basic single-and twoqubit gates with high f i delity above certain threshold levels.[3?4]

    A typical ingredient in quantum computing is the coherent transfers of the population between the qubit states. Basically,there are two approaches to realize the population transfers between two selected quantum states;one makes use of the Rabi oscillations and the other is based on population passages.[5?7]For Rabi oscillations,the transfer eきciency is strongly dependent on the precisely-designed duration of the applied pulse.On the other hand,the logic gates implemented via population passage techniques,such as shortcut to adiabatic passage,[8]the stimulated Raman adiabatic passage(STIRAP)[9]and the Stark-chirped rapid adiabatic passage(SCRAP),[10]are evolution-time insensitive and thus robust against the imperfections of durations of the applied pulses.Until now,most of population passage schemes to implement the quantum computation are based on the pure quantum systems,but their practicallyexisting dissipative eあects(e.g.,spontaneous emissions,phase relaxations,and the outsides from the system)have not been exactly treated.The f i delities of the logic gates for the realistic quantum computing demonstrations are particularly important,therefore,it is necessary to investigate how the practically-existing dissipation inf l uences on the eきciencies of the population passages and consequently the f i delities of the relevant logic gates for quantum computing.

    Usually,the dynamics of an open quantum system can be described by two approaches:[11]the master equation for the reduced density matrix and the Heisenberg–Langevin equation by introducing environment noise operators.Additionally,a relatively-simple approach,i.e.,dissipative Schr¨odinger equation with a non-Hermitian Hamiltonian describing the damping,is also utilized.In this approach the environment eあects are considered simply by phenomenologically introducing certain non-Hermitian terms in the Hamiltonian of the system.Then,the dynamics of the treated open system can still be de-scribed by the usual Schr¨odinger equation.Indeed,this idea has been utilized to investigate the dissipative effects in the well-known STIRAP for three-state Λ atomic systems,[12]wherein the decay rate Υ of the intermediate state|2〉is served as the main source of the dissipation during the population transfers from the state|1〉to the target state|3〉.The damping of the transfer eきciency with Υ shows diあerent behaviors,i.e.,exponential at small Υ and polynomial at large Υ.This feature provides a realistic STIRAP scheme for three-state Λ atomic systems in the presence of decay of the intermediate state.For the present two-state system,the decay of the excited state is the dominant dissipative source,which mainly decreases the transfer eきciency of the SCRAP.[13]In this brief report,we examine how this dissipation inf l uences the f idelity of the SCRAP-based logic gates.For the simplicity,we treat the dissipation related to the excited state of the qubit by adding an imaginary part to the relevant diagonal term of the non-dissipative Hamiltonian.Our proposal is demonstrated specif i cally with the f l ux-biased Josephson qubits,but can also be applied to the other driven solid-state qubit systems.

    2 Def i nition of the Model

    Without loss of the generality,we assume that the twostate system is well prepared initially,at time t0=?∞,in the ground state|0〉.Our end is to maximize the f i nal population P1(∞)of the target state|1〉in the presence of the decay of|1〉.Originally,without dissipation of the twostate system the desired transfer can be precisely implemented by means of the standard SCRAP.[14?16]However,due to various practically-existing noises,such a transfer should be inf l uenced.

    As a simplif i ed model the state decay of a quantum system can be generically described by adding a loss rate Γ(> 0)to its non-lossy Hamiltonian,as a negative imaginary part to the corresponding diagonal term. As a consequence,the time evolution of the probability amplitudes for the dissipative driven two-level system can be expressed by the equation[17]

    Here,?(t)is the Rabi frequency coupling the levels of the two-state system,Δ(t)is relative to the pulse chirping the excited level and C0(t)and C1(t)are the probability amplitudes related to the states|0〉and|1〉,respectively.

    To analyze the progress of SCRAP in the presence of state decay,we de fi ne the adiabatic states|+〉=sinθ(t)|0〉+cosθ(t)|1〉and|?〉=cosθ(t)|0〉? sinθ(t)|1〉,which are the instantaneous eigenstates of the Hamiltonian in Eq.(1)with Γ =0.Here,the mixing angle θ(t)is de fi ned as θ(t)=arctan[?(t)/Δ(t)]/2.In the basis defi ned by the adiabatic vectors|+〉and|?〉,Eq.(1)can be written as

    Obviously,the oあ-diagonal elements in Eq.(2)result in the coupling between two adiabatic states|+〉and|?〉(i.e.,the passage paths for the desired population transfers).For the ideal case without state decay,i.e.,Γ=0,the desired adiabatic transfer can be implemented by properly designing the applied pulses to satisfy the condition:˙θ=0,i.e.,the adiabatic condition[18?19]

    However,the second term in Eq.(2)shows that the damping of SCRAP corresponds to two ways,one is the decay of the adiabatic passage paths described by the diagonal elements and the other is the transition damping described by the nonzero oあ-diagonal elements.

    For a counterintuitive pulse sequence with initial state|0〉(at time t= ?∞,θ=0,then θ= π/2 at t= ∞),the transfer progress(which transfers the population from state|0〉to state|1〉)goes along the adiabatic path|?〉with the decay rate Γsin2θ.Along this adiabatic passage,the f i nal population of state|1〉is

    while if the system is initially prepared at the state|1〉,then the population is transferred along the adiabatic passage|+〉(with the decay rate Γcos2θ)to the ground state|0〉.The f i nal population of the state|0〉reads

    Absolutely,the non-adiabatic transition between the states|?〉and|+〉may also lead to the losses of P1ciand P0ci.As the dissipation is irreversible,the population transfer may be signi fi cantly destroyed by the strong dissipation.

    3 Quantum Logic Gates in the Presence of Dissipation

    In what follows,we investigate specif i cally how the dissipation of system inf l uences the f i delity of the SCRAP-based quantum logic gates.Our discussion is based on the SCRAPs in f l ux-biased Josephson qubits,but can be easily generalized to other physical systems.For operational simplicity,here linear Stark pulses,rather than the previous gaussian Stark pulses,[19]are applied to the qubits.

    The quantum behavior of a f l ux-biased Josephson junction has been described in detail elsewhere.[20?21]The Hamiltonian of the system is

    Here,the pump pulse Iac= ξ(t)cos(ω10t)is used to couple the qubit states and the Stark pulse Idcis applied to chirp the qubit’s transition frequency ω10.Also,Φ0=h/2e is the f l ux quantum,EJ=I0Φ0/2π is the Josephson energy,and λ =2πI0L/Φ0,m=CJ[Φ0/(2π)]2,φb0=2πIφ0M/Φ0.Consequently,the Hamiltonian of the driven qubit(with decay rate Γ)in the interaction picture can be expressed as

    where δij= 〈i|δ|j〉,i,j=0,1, κ = ξ(t)/2,and Δ1(t)=MIdc(t)(δ11? δ00)/L.

    Fig.1 (Color online)The population transfer without dissipation for implementing the single-qubit gate with a f l uxbiased Josephson junction.In(a)the two pulses are designed with a linear forms Idc(t)=0.1t A and ξ(t)= ?1.88 nA(?3.5 ns ≤ t ≤ 3.5 ns,else where ξ(t)=0 V/m).With this pulse sequence,the population of the system initially prepared in the state|0〉completely transfers to the state|1〉.The corresponding adiabatic parameter is shown in(b).

    When Γ=0,i.e.,for the ideal system without dissipation,we show in Fig.1(a)that the single-qubit gate,i.e.,the qubit inversions,can be realized by using a linear pump pulse Iacand a Stark pulse Idcto implement the desirable population transfer between the qubit states.It is shown that,under the counterintuitive pulse sequence(the applied Stark pulse Idcprecedes the pump pulse but turns oあf i rst),the qubit inversion is realized along the adiabatic passage|?〉(with 100%probability).Figure 1(b)exhibits that the adiabatic parameter η is fairly smaller than 1.This implies that the above progress for population transfers is really conf i ned in the adiabatic region.Unlike the Gaussian pulse used to control the population transfer,[19]the maximum value of the adiabatic parameter reaches 120,thus it is not the adiabatic progress.Note that the desired population inversions are f i nished within a relatively-short time interval,i.e.,τ1=20 ns,which is really rapid compared to the typical decoherence time(e.g.,0.3μs[22]).

    Now,let us consider how the dissipation of the system inf l uences the above qubit inversions.The decay rate Γ is meaningless unless it is related to a real physical variation,such as the characteristic width of the driving pulses T.For the convenience,we introduce a dimensionless decay rate γ = ΓT[12]to illustrate the dissipation of our model.Then,the dissipation of the system can be divided into three regions;(i)weak dissipation(γ ? 1),(ii)strong dissipation(γ ~ 1)and(iii)very strong dissipation(γ ? 1).In Fig.2 we show how the population probability of the target state varies with the decay rate γ and the evolution time t for the applied counterintuitive sequence pulses.Specif i cally,Figs.2(a)and 2(b)illustrate the population passage from the initial state|0〉to the target state|1〉along the adiabatic passage|?〉;while Figs.2(c)and 2(d)are relative to the population transfer from the state|1〉to the state|0〉along the adiabatic passage|+〉.The time-dependent population probabilities of the target state are calculated by Eqs.(4),(5).As a comparison,we also provide the relevant results by directly solving the Schr¨odinger equation with Hamiltonian(7).Here,we assume the qubit is in the initial state at time t0=?10 ns,the passage transfer is f i nished at time tf=10 ns,and the system is in the superposition state during the time tb=?3.5 ns to tm=3.5 ns.It is shown that the adiabatic approximation made for delivering Eqs.(4)and(5)works well.The above numerical results show clearly that:(i)in the weak dissipation region,i.e.,γ?1,the dissipation can be really neglected,and the eきciency of the population transfer is suきciently high(almost 100%);in the strong dissipation,i.e.,γ~1,the population eきciency is lower than 1;the f i nal population may be completely destroyed with a very strong dissipation γ ? 1.(ii)For the population passage from the state|0〉to the state|1〉,the transfer probability de-creases as an exponential function exp[?2Γ(t? tm)]after the passage region t>tm;while,for the passage from the state|1〉to the state|0〉,the loss of the population can still be described by an exponential function exp[?2Γ(t? tb)]before the passage region t<tb.(iii)The non-adiabatic transition weakly inf l uences the population transfer,and the dissipation of the system is mainly from the decay of the adiabatic passage paths.

    Fig.2 (Color online)Population transfer with diあerent decay rate for single-qubit gate.The pulses used to implement the adiabatic passage are the same linear pulses with the counterintuitive sequence for single-qubit gate discussed without dissipation.The population probability with initial state|0〉at time t0= ?10 ns varies with γ = ΓT(T=2× 10?8)described by(a),while(c)is relative to the initial state|1〉.The red lines both in(a)and(c)are obtained by numerical solution of the Shr¨odinger equation related to Eq.(7),and the dashed green line in(a)and(c)is the analytical results from Eq.(4)and Eq.(5)respectively.Finally,(b)and(d)give the dynamics of the population marked with diあerent colors for the varied γ and the evolution time t with initial state|0〉and|1〉,respectively.

    To be more thorough,we investigate how the dissipation inf l uences the SCRAP-based two-qubit gate with two capacitively-coupled f l ux-biased Josephson qubits. For the simplicity,here the two junctions are assumed to be identical and thus two qubits possess the same energy structure.Originally,the two-qubit gate can be implemented also by the adiabatic population passages[10]via applying a controllable dc current I(2)dcto chirp the second qubit.Considering the practically-existing decay of the excited state of the qubits(with the same decay rate Γ for simplicity),the Hamiltonian of such a driven two-qubit system can be simply expressed as

    with

    whereCˉm=CJ(1+ζ)/ζ(ζ is the eあective coupling coeffi cient)represents the interaction between two qubits and

    Still,one can easily check that the populations of|00〉and|11〉of the present two-qubit system are always unchanged,and the population transfer only occurs between the states|01〉and|10〉.So the dynamics of the two qubits can be limited to a 2×2 subspace generated by the states|01〉and|10〉.In absence of the dissipation,i.e.,Γ =0,Figure 3(a)shows that the population transfer can be easily achieved between the states|01〉and|10〉.Figure 3(b)displays that the maximum value of the adiabatic parameter η during such a passage is about 0.14.Thus,the usual i-SWAP gate has been realized by the adiabatic SCRAP technique.

    In Figs.3(c)we investigate how the dissipation inf l uences the population transfer from the state|01〉to|10〉for a def i ned passage time interval τ2=400 ns.It is shown that results by numerically solving the Schr¨odinger equation with the Hamiltonian(8),and those by analytically solving the evolution within the subspace with the reduced Hamiltonian(def i ned by the adiabatic vectors|+〉and|?〉)

    with

    are consistent.Obviously,the dissipation of the two-qubit operation is not relative to the non-adiabatic transition between the two passage paths|+〉and|?〉.Moreover,the dissipation of the SCRAP-based two-qubit gate can be also divided into three regions.The eきciency of the population transfer is suきciently high in the weak dissipation region γ ? 1,but it is decreasing when the system is in the strong(γ ~ 1)and very strong dissipation(γ ? 1)regions.In Fig.3(d)we depict how the transfer probability depends on the dissipation parameter γ and the evolution time t.We can see from the f i gure that,for the suきciently-weak dissipation(typically for γ < 0.1)the passage time could be set as a suきciently-long interval,e.g.,2μs(if it is still shorter than the decoherence time of the system).However,for the strong dissipations,γ~1 and γ ? 1,the population transfer should be achieved within suきciently-short time interval.

    Fig.3 (Color online)Population transfer for the two-qubit gate with a Stark pulse Id(2c)=?3.5t.(a)population transfers between the two-qubit states|01〉and|10〉,and(b)the corresponding adiabatic parameter during the passages.(c)The fi nal population of the state|10〉at a de fi ned time t=200 ns varies with the dissipation γ = ΓT(with T=4 × 10?7).The red line in(c)is obtained by numerical solution to the Schr¨odinger equation related to the Hamiltonian(8)and the dotted blue line is the analytic solution to the dynamics for the reduced Hamiltonian(9).(d)Probability of transfer from the states|01〉to|10〉varies with the dissipation parameter γ and the evolution time t.Colorbar implies the variation of probability.

    4 Conclusion

    In summary we have investigated the Stark-chirped rapid adiabatic passage(SCRAP)of a driven dissipative two-level system.As a simplif i ed model,we describe the dissipation of the system by adding a phenomenal parameter Γ to the chirped excited state of the system.Then,by solving the relevant Schr¨odinger equation we then discuss how the practically-existing dissipation inf l uences the population transfer between the two selected levels of the system.We have found that the desired SCRAP probability is related to the eあective dissipative parameter γ = ΓT(with T being the time interval of population passage),and consequently we can divide the dissipation into three regions;(i)weak dissipation(γ ? 1),(ii)strong dissipation(γ ~ 1)and(iii)very strong dissipation(γ ? 1).In the weak dissipation region(γ ? 1),the interaction between the quantum system and the environment is really small,thus the inf l uence from the environment is suき-ciently weak.As a consequence,the population transfer from the initial state to the target state can be robustly implemented.As the interaction between the quantum system and the environment increases(γ ~ 1),the leakage of the quantum system increases,such that the population probability is decreasing.When the coupling between the quantum system and environment is very strong(γ ? 1),the situation is more complex:(i)If the qubit is initially prepared at its ground state,the eあect of the large decay rate makes the quantum system decouple from the control-ling pulses(pump pulse and Stark pulse),then the qubit will not be excited to its excited state and is still in its initial ground state;(ii)If the qubit is initially prepared at the excited state,the relevant population will decay quickly to the environment and the system could not be excited again.Our numerical results clearly show that,in the weak dissipation regime,the SCRAP-based quantum computing scheme still works well;while in the strong dissipation regime the f i delity of quantum gate implemented by the SCRAP technique decreases manifestly.Certainly,if the system works in the very strong dissipation regime,then the SCRAP technique can not be utilized to implement quantum computing.

    Our generic discussion has been demonstrated with a typical quantum computing system,i.e.,the f l ux-biased Josephson qubits.In this specif i c model we have found that the loss of the transfer eきciency of the SCRAP is related to both the non-adiabatic transitions between the adiabatic passage paths and the decay of the adiabatic passage paths.During the passage for implementing the single-qubit gate,we f i nd that the loss owing to dissipation-induced transition between two adiabatic passage paths is really small and thus negligible.For the twoqubit gate,we f i nd that the dissipation-induced transition between two adiabatic passage paths vanish,and only the decay of the adiabatic passage paths exists.Based on this analysis we have delivered a proper approach to implement the quantum logic gates in such a system in the presence of dissipation.Our results provide quantitative estimates of the population losses during the SCRAPs,and thus should be useful for the realistic qubit operations.

    [1]P.W.Shor,Proceedings of the 35th Annual Symposium on Foundations of Computer Science,IEEE Computer Press,Los Alamitos(1994)124.

    [2]L.K.Grover,Phys.Rev.Lett.79(1997)325.

    [3]Jerry M.Chow,Jay M.Gambetta,A.D.C′orcoles,et al.,Phys.Rev.Lett.109(2012)060501.

    [4]Norbert Schuch and Jens Siewert,Phys.Rev.A 67(2003)032301.

    [5]M.Fleischhauer,R.Unanyan,B.W.Shore,and K.Bergmann,Phys.Rev.A 52(1995)R2493.

    [6]B.W.Shore,K.Bergmann,A.Kuhn,S.Schiemann,and J.Oreg,Phys.Rev.A 45(1992)5297.

    [7]Mei Lu,Yan Xia,Jie Song,and He-Shan Song,J.Phys.B:At.Mol.Opt.Phys.46(2013)015502.

    [8]MeiLu,Li-Tuo Shen,Yan Xia,and JieSong,arXiv:1305.5458(2013).

    [9]K.Bergmann,H.Theuer,and B.W.Shore,Rev.Mod.Phys.70(1998)1003.

    [10]L.F.Wei,J.R.Johansson,L.X.Cen,S.Ashhab,and Franco Nori,Phys.Rev.Lett.100(2008)113601.

    [11]Marlan O.Scully and M.Suhail Zubairy,Quantum Optics,Cambridge University Press,Cambridge(1997).

    [12]N.V.Vitanov and S.Stenholm,Phys.Rev.A 56(1997)1463.

    [13]G.Dridi,S.Gu′erin,H.R.Jauslin,D.Viennot,and G.Jolicard,Phys.Rev.A 82(2010)022109.

    [14]T.Rickes,L.P.Yatsenko,S.Steuerwald,T.Hlfmann,B.W.Shore,N.V.Vitanov,and K.Bergmann,J.Chem.Phys.113(2000)534.

    [15]A.A.Rangelov,N.V.Vitanov,L.P.Yatsenko,B.W.Shore,T.Halfmann,and K.Bergmann,Phys.Rev.A 72(2005)053403.

    [16]L.P.Yatsenko,N.V.Vitanov,B.W.Shore,T.Rickes,and K.Bergmann,Opt.Commun.204(2002)413.

    [17]N.V.Vitanov and S.Stenholm,Phys.Rev.A 55(1997)2982.

    [18]X.Shi,M.Zhang,and L.F.Wei,Phys.Rev.A 84(2011)062310.

    [19]W.Nie,J.S.Huang,X.Shi,and L.F.Wei,Phys.Rev.A 82(2010)032319.

    [20]J.Clarke,A.N.Cleland,M.H.Devoret,D.Esteve,and J.M.Martinis,Science 239(1988)992.

    [21]J.M.Martinis,M.H.Devoret,and J.Clarke,Phys.Rev.B 35(1987)4682.

    [22]J.Clarke and F.K.Wilhelm,Nature(London)453(2008)1031.

    久久人妻av系列| 久久精品国产清高在天天线| 久久精品国产亚洲av天美| 中文字幕熟女人妻在线| 男人舔奶头视频| 熟女电影av网| 直男gayav资源| 久久6这里有精品| 亚洲片人在线观看| 国产老妇女一区| 国产欧美日韩精品一区二区| 首页视频小说图片口味搜索| 亚洲精品久久国产高清桃花| 波多野结衣高清作品| 白带黄色成豆腐渣| 中文字幕久久专区| 亚洲人成网站在线播| 亚洲性夜色夜夜综合| 欧美+亚洲+日韩+国产| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | or卡值多少钱| 亚洲中文字幕一区二区三区有码在线看| 色av中文字幕| 欧美成人一区二区免费高清观看| 国产三级黄色录像| 又粗又爽又猛毛片免费看| 久久久久久久久久成人| 国产精品永久免费网站| 毛片女人毛片| 舔av片在线| 他把我摸到了高潮在线观看| 国内少妇人妻偷人精品xxx网站| 中文资源天堂在线| 内地一区二区视频在线| 亚洲最大成人手机在线| 露出奶头的视频| 午夜福利欧美成人| 日本黄大片高清| 欧美日韩国产亚洲二区| 久久草成人影院| 99riav亚洲国产免费| 国产精品自产拍在线观看55亚洲| av中文乱码字幕在线| 色5月婷婷丁香| 午夜久久久久精精品| 久久久国产成人免费| 久久这里只有精品中国| 国产高清视频在线播放一区| 国产白丝娇喘喷水9色精品| 97超级碰碰碰精品色视频在线观看| 91久久精品国产一区二区成人| www日本黄色视频网| 午夜福利在线观看免费完整高清在 | 国产毛片a区久久久久| 黄色丝袜av网址大全| 亚洲成av人片免费观看| 免费大片18禁| 久久国产乱子伦精品免费另类| 麻豆久久精品国产亚洲av| 看十八女毛片水多多多| av黄色大香蕉| aaaaa片日本免费| 成人无遮挡网站| 国产精品日韩av在线免费观看| 美女免费视频网站| 欧美一区二区精品小视频在线| 亚洲一区二区三区不卡视频| 久久人妻av系列| 国内精品久久久久久久电影| 亚洲成av人片免费观看| 美女xxoo啪啪120秒动态图 | 国模一区二区三区四区视频| 九九热线精品视视频播放| www日本黄色视频网| 两个人的视频大全免费| 国产精品人妻久久久久久| 欧美一级a爱片免费观看看| 亚洲成人久久爱视频| 精品久久久久久久末码| 黄色视频,在线免费观看| 亚洲av免费在线观看| 婷婷色综合大香蕉| av中文乱码字幕在线| 一进一出抽搐gif免费好疼| 欧美日韩瑟瑟在线播放| 精品人妻熟女av久视频| 禁无遮挡网站| 国产成人影院久久av| 哪里可以看免费的av片| 波多野结衣高清无吗| 少妇高潮的动态图| 窝窝影院91人妻| 欧美日韩亚洲国产一区二区在线观看| 国产真实乱freesex| 欧美日韩乱码在线| 亚洲自偷自拍三级| 欧美午夜高清在线| 欧美日韩综合久久久久久 | 观看美女的网站| 免费高清视频大片| 97人妻精品一区二区三区麻豆| 成人毛片a级毛片在线播放| 国产亚洲欧美在线一区二区| 日韩欧美精品v在线| 国产乱人视频| 久久久久免费精品人妻一区二区| 脱女人内裤的视频| 国产精品嫩草影院av在线观看 | 又黄又爽又免费观看的视频| 如何舔出高潮| 18禁裸乳无遮挡免费网站照片| 琪琪午夜伦伦电影理论片6080| 欧美日本亚洲视频在线播放| 国产乱人伦免费视频| 国产色爽女视频免费观看| 18禁黄网站禁片午夜丰满| 久久午夜福利片| 偷拍熟女少妇极品色| 精品一区二区免费观看| 91字幕亚洲| 亚洲,欧美,日韩| 麻豆一二三区av精品| 日本一本二区三区精品| 久久草成人影院| 久久久久性生活片| 简卡轻食公司| 精品欧美国产一区二区三| 在线观看午夜福利视频| 亚洲黑人精品在线| 亚洲av一区综合| 99国产综合亚洲精品| 哪里可以看免费的av片| 深夜精品福利| 深夜精品福利| 亚洲av美国av| 99久久精品热视频| 久久亚洲精品不卡| 精华霜和精华液先用哪个| 午夜福利在线在线| 在线观看av片永久免费下载| 欧美日韩黄片免| 三级男女做爰猛烈吃奶摸视频| 欧美色欧美亚洲另类二区| 长腿黑丝高跟| 亚洲综合色惰| 日本 av在线| 一区二区三区高清视频在线| 日本黄大片高清| .国产精品久久| 国产成人啪精品午夜网站| 91麻豆av在线| 亚洲第一欧美日韩一区二区三区| 深爱激情五月婷婷| АⅤ资源中文在线天堂| 好男人电影高清在线观看| 午夜日韩欧美国产| 一本综合久久免费| 成人精品一区二区免费| 麻豆一二三区av精品| 免费av观看视频| 又爽又黄a免费视频| 日本三级黄在线观看| 欧美中文日本在线观看视频| 日本黄色片子视频| 99热这里只有是精品在线观看 | 国产成人a区在线观看| 亚洲av不卡在线观看| 日本黄色片子视频| 亚洲精品乱码久久久v下载方式| 别揉我奶头 嗯啊视频| 特大巨黑吊av在线直播| 免费在线观看成人毛片| 18禁黄网站禁片午夜丰满| 亚洲成人久久爱视频| 别揉我奶头~嗯~啊~动态视频| 给我免费播放毛片高清在线观看| 十八禁人妻一区二区| 久久久久九九精品影院| 高清毛片免费观看视频网站| 嫁个100分男人电影在线观看| 桃红色精品国产亚洲av| 俺也久久电影网| 国产视频内射| 最新在线观看一区二区三区| 一区二区三区免费毛片| 18美女黄网站色大片免费观看| 国产麻豆成人av免费视频| 男人和女人高潮做爰伦理| 国产精品精品国产色婷婷| 少妇裸体淫交视频免费看高清| 91在线精品国自产拍蜜月| 国产精品精品国产色婷婷| 国产一区二区三区在线臀色熟女| 日本免费a在线| 露出奶头的视频| 噜噜噜噜噜久久久久久91| 国产精品精品国产色婷婷| a级毛片免费高清观看在线播放| 九色成人免费人妻av| 色综合亚洲欧美另类图片| avwww免费| 日韩成人在线观看一区二区三区| 久久精品国产自在天天线| 精华霜和精华液先用哪个| 无遮挡黄片免费观看| 精品国产三级普通话版| 欧美黄色片欧美黄色片| 亚洲自偷自拍三级| 色综合站精品国产| 国产精品精品国产色婷婷| 制服丝袜大香蕉在线| 久久亚洲真实| 高清毛片免费观看视频网站| 亚洲国产色片| 99热这里只有是精品在线观看 | 成人特级黄色片久久久久久久| 全区人妻精品视频| 亚洲成人久久性| 此物有八面人人有两片| 又粗又爽又猛毛片免费看| 亚洲国产精品999在线| 黄色女人牲交| 国产精品一区二区三区四区久久| 欧美日韩中文字幕国产精品一区二区三区| 免费看美女性在线毛片视频| 岛国在线免费视频观看| 一边摸一边抽搐一进一小说| 久久午夜亚洲精品久久| 欧美日韩福利视频一区二区| 精品99又大又爽又粗少妇毛片 | 日本免费a在线| 欧美成人一区二区免费高清观看| 久久精品国产99精品国产亚洲性色| 色av中文字幕| 久久久精品大字幕| 久久久精品大字幕| 亚洲午夜理论影院| 一级黄色大片毛片| 精品人妻偷拍中文字幕| 午夜a级毛片| 99在线人妻在线中文字幕| 一个人免费在线观看电影| 国产真实乱freesex| 色综合欧美亚洲国产小说| 99久久成人亚洲精品观看| 99久久99久久久精品蜜桃| 日本成人三级电影网站| 成人国产一区最新在线观看| 日本五十路高清| 在线观看一区二区三区| 色吧在线观看| 嫩草影院精品99| 欧美一区二区国产精品久久精品| 噜噜噜噜噜久久久久久91| 在线观看美女被高潮喷水网站 | 久久午夜亚洲精品久久| 精品午夜福利视频在线观看一区| 亚洲天堂国产精品一区在线| 熟妇人妻久久中文字幕3abv| 亚洲人成网站在线播放欧美日韩| 人人妻,人人澡人人爽秒播| 一级a爱片免费观看的视频| 日韩欧美三级三区| 偷拍熟女少妇极品色| 午夜免费激情av| 色视频www国产| 午夜久久久久精精品| 9191精品国产免费久久| 婷婷精品国产亚洲av| 欧美+亚洲+日韩+国产| 日本 av在线| 久久久久久久午夜电影| 亚洲五月天丁香| 18禁黄网站禁片午夜丰满| 国产成人啪精品午夜网站| 天堂av国产一区二区熟女人妻| 日韩精品中文字幕看吧| 老熟妇仑乱视频hdxx| 五月伊人婷婷丁香| 精品久久国产蜜桃| 欧美黑人巨大hd| 非洲黑人性xxxx精品又粗又长| www.熟女人妻精品国产| 国产精品不卡视频一区二区 | 我要搜黄色片| 午夜精品在线福利| 特大巨黑吊av在线直播| 免费人成在线观看视频色| 在线天堂最新版资源| 日韩欧美国产一区二区入口| 宅男免费午夜| 欧美日韩乱码在线| 熟女人妻精品中文字幕| 九色国产91popny在线| 亚洲中文日韩欧美视频| 婷婷精品国产亚洲av| 成人毛片a级毛片在线播放| 国产精品,欧美在线| 99久久无色码亚洲精品果冻| www.www免费av| 男人的好看免费观看在线视频| 久久精品国产99精品国产亚洲性色| 国产 一区 欧美 日韩| 伊人久久精品亚洲午夜| 人妻夜夜爽99麻豆av| 日本 av在线| 男女下面进入的视频免费午夜| 在线免费观看的www视频| 国产伦人伦偷精品视频| 99在线视频只有这里精品首页| 亚洲久久久久久中文字幕| 看片在线看免费视频| 三级国产精品欧美在线观看| 最新中文字幕久久久久| 琪琪午夜伦伦电影理论片6080| 在线观看午夜福利视频| 欧洲精品卡2卡3卡4卡5卡区| 在线十欧美十亚洲十日本专区| 三级国产精品欧美在线观看| 国产精品久久久久久精品电影| 最近中文字幕高清免费大全6 | 亚洲片人在线观看| 亚洲性夜色夜夜综合| 亚洲人成电影免费在线| 最近最新中文字幕大全电影3| 黄色配什么色好看| 国产av在哪里看| 国产一区二区在线av高清观看| 午夜免费激情av| 别揉我奶头 嗯啊视频| 伊人久久精品亚洲午夜| 精品人妻1区二区| 欧美性猛交╳xxx乱大交人| 亚洲一区高清亚洲精品| 91九色精品人成在线观看| 两个人的视频大全免费| 男女床上黄色一级片免费看| 午夜免费激情av| av专区在线播放| 成人特级黄色片久久久久久久| 亚洲国产精品sss在线观看| av在线天堂中文字幕| 亚洲人成电影免费在线| 精品国内亚洲2022精品成人| 国产一级毛片七仙女欲春2| 久久久久久久久久黄片| 亚洲欧美清纯卡通| 久久国产精品人妻蜜桃| 国产亚洲精品久久久久久毛片| 国产精品一及| 国产精品爽爽va在线观看网站| 精品熟女少妇八av免费久了| 丁香六月欧美| 久久热精品热| 国产精品一区二区三区四区久久| 国产高清有码在线观看视频| 性欧美人与动物交配| 国产亚洲精品综合一区在线观看| 波野结衣二区三区在线| 日本黄大片高清| 1000部很黄的大片| 日本免费一区二区三区高清不卡| 免费看a级黄色片| 亚洲成人精品中文字幕电影| 五月伊人婷婷丁香| 他把我摸到了高潮在线观看| АⅤ资源中文在线天堂| 综合色av麻豆| 极品教师在线免费播放| 欧美日韩乱码在线| 欧美黑人巨大hd| 麻豆国产av国片精品| 久久性视频一级片| 国产欧美日韩一区二区精品| 精品人妻熟女av久视频| 日本撒尿小便嘘嘘汇集6| 老司机午夜十八禁免费视频| 成年免费大片在线观看| 一卡2卡三卡四卡精品乱码亚洲| 蜜桃久久精品国产亚洲av| 真实男女啪啪啪动态图| 天堂网av新在线| 久久久久免费精品人妻一区二区| 亚洲最大成人中文| 无遮挡黄片免费观看| 少妇裸体淫交视频免费看高清| 色视频www国产| 国产成+人综合+亚洲专区| 日韩人妻高清精品专区| 国产欧美日韩精品亚洲av| 国产欧美日韩一区二区精品| 人妻丰满熟妇av一区二区三区| 身体一侧抽搐| 床上黄色一级片| 国产精品美女特级片免费视频播放器| 成人一区二区视频在线观看| 老熟妇仑乱视频hdxx| 久久久久久国产a免费观看| 无人区码免费观看不卡| 亚洲av中文字字幕乱码综合| 日本免费一区二区三区高清不卡| 欧美性感艳星| 女人被狂操c到高潮| 黄色一级大片看看| 中文字幕人成人乱码亚洲影| 亚洲狠狠婷婷综合久久图片| 一级黄片播放器| 国产精品国产高清国产av| 国产成年人精品一区二区| 国产人妻一区二区三区在| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品在线美女| 露出奶头的视频| 99久国产av精品| 内射极品少妇av片p| 在线观看一区二区三区| 亚洲国产精品成人综合色| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 午夜激情福利司机影院| 亚洲午夜理论影院| 成人三级黄色视频| 久久6这里有精品| 国产av一区在线观看免费| 欧美三级亚洲精品| 亚洲精品粉嫩美女一区| 亚洲人成伊人成综合网2020| 欧美+日韩+精品| 日本 av在线| 免费观看的影片在线观看| av专区在线播放| 午夜免费成人在线视频| 国产高清有码在线观看视频| 亚洲avbb在线观看| 亚洲成人久久性| 天美传媒精品一区二区| 亚洲天堂国产精品一区在线| 国产爱豆传媒在线观看| 久久久久久国产a免费观看| 欧美中文日本在线观看视频| 变态另类成人亚洲欧美熟女| 综合色av麻豆| 欧美另类亚洲清纯唯美| 久久国产精品影院| 亚洲国产欧美人成| 最新在线观看一区二区三区| 国产毛片a区久久久久| 国产伦精品一区二区三区视频9| 国产伦人伦偷精品视频| bbb黄色大片| 天堂影院成人在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 日本免费一区二区三区高清不卡| 12—13女人毛片做爰片一| 波多野结衣高清作品| 热99re8久久精品国产| 亚洲va日本ⅴa欧美va伊人久久| www.色视频.com| 狂野欧美白嫩少妇大欣赏| 精品福利观看| 国产一区二区在线av高清观看| 女人被狂操c到高潮| 在线观看免费视频日本深夜| 亚洲国产欧美人成| 男人狂女人下面高潮的视频| 国产精品亚洲一级av第二区| 久久久久久大精品| 国产精品久久电影中文字幕| 国产免费一级a男人的天堂| 国产成人影院久久av| 成人高潮视频无遮挡免费网站| 久久精品综合一区二区三区| 别揉我奶头 嗯啊视频| 人人妻,人人澡人人爽秒播| 亚洲精华国产精华精| 亚洲国产日韩欧美精品在线观看| 男女做爰动态图高潮gif福利片| 午夜激情欧美在线| 国产精品1区2区在线观看.| 俄罗斯特黄特色一大片| 日韩大尺度精品在线看网址| 美女大奶头视频| 国产欧美日韩一区二区精品| 亚洲va日本ⅴa欧美va伊人久久| www.999成人在线观看| 精品日产1卡2卡| 日韩人妻高清精品专区| 色精品久久人妻99蜜桃| 中文字幕高清在线视频| 国产免费av片在线观看野外av| 亚洲成人久久爱视频| 婷婷精品国产亚洲av| 色综合站精品国产| 在线播放国产精品三级| 人人妻,人人澡人人爽秒播| 99riav亚洲国产免费| 韩国av一区二区三区四区| 香蕉av资源在线| 欧美丝袜亚洲另类 | 国产成人a区在线观看| 精华霜和精华液先用哪个| 一级作爱视频免费观看| 日韩国内少妇激情av| 国产国拍精品亚洲av在线观看| 精品99又大又爽又粗少妇毛片 | 在线a可以看的网站| 亚洲狠狠婷婷综合久久图片| 淫妇啪啪啪对白视频| 色噜噜av男人的天堂激情| 亚洲人成伊人成综合网2020| 女同久久另类99精品国产91| 俄罗斯特黄特色一大片| 淫妇啪啪啪对白视频| 午夜福利欧美成人| x7x7x7水蜜桃| 午夜福利在线观看免费完整高清在 | 成年版毛片免费区| 噜噜噜噜噜久久久久久91| 精品久久久久久久久久免费视频| 18禁黄网站禁片免费观看直播| 99久久精品国产亚洲精品| 一区二区三区激情视频| 69人妻影院| 久久久久久久久中文| 五月玫瑰六月丁香| 欧洲精品卡2卡3卡4卡5卡区| 99久久九九国产精品国产免费| 国产精品精品国产色婷婷| 日日夜夜操网爽| 日韩欧美三级三区| 亚洲美女搞黄在线观看 | 能在线免费观看的黄片| 中文亚洲av片在线观看爽| 丝袜美腿在线中文| 日韩国内少妇激情av| 90打野战视频偷拍视频| 淫妇啪啪啪对白视频| 久久久成人免费电影| 中出人妻视频一区二区| 午夜福利在线在线| 麻豆成人午夜福利视频| 午夜两性在线视频| 亚洲精品影视一区二区三区av| 一本综合久久免费| 一级黄片播放器| 99久久九九国产精品国产免费| 嫩草影院精品99| 日日摸夜夜添夜夜添小说| 亚洲综合色惰| 欧美极品一区二区三区四区| 亚洲乱码一区二区免费版| 日韩 亚洲 欧美在线| 免费在线观看影片大全网站| 嫁个100分男人电影在线观看| 免费无遮挡裸体视频| 嫩草影院新地址| 91在线观看av| 琪琪午夜伦伦电影理论片6080| 午夜精品一区二区三区免费看| 精品一区二区免费观看| 校园春色视频在线观看| 亚洲国产精品sss在线观看| aaaaa片日本免费| 久久精品人妻少妇| 久久久国产成人免费| 日本黄色视频三级网站网址| 欧美成人一区二区免费高清观看| 日韩精品中文字幕看吧| 午夜亚洲福利在线播放| 中文资源天堂在线| 中文字幕熟女人妻在线| 成人精品一区二区免费| 床上黄色一级片| 免费观看精品视频网站| 亚洲18禁久久av| 99热这里只有是精品50| 亚洲综合色惰| www.熟女人妻精品国产| 婷婷六月久久综合丁香| 直男gayav资源| 国产91精品成人一区二区三区| 99久久成人亚洲精品观看| 男女做爰动态图高潮gif福利片| 亚洲男人的天堂狠狠| 五月伊人婷婷丁香| 人妻久久中文字幕网| av国产免费在线观看| 婷婷丁香在线五月| 男女下面进入的视频免费午夜| 内地一区二区视频在线| 国产主播在线观看一区二区| 国产v大片淫在线免费观看| 精品久久久久久,| 国产精品伦人一区二区| 搡老岳熟女国产| 极品教师在线视频| 少妇被粗大猛烈的视频| 亚洲av不卡在线观看| 中文字幕人成人乱码亚洲影| 亚洲欧美精品综合久久99| 午夜影院日韩av| 亚洲av免费高清在线观看| 伦理电影大哥的女人| 日韩av在线大香蕉| 日本熟妇午夜| 成人午夜高清在线视频| 欧美日韩瑟瑟在线播放| 床上黄色一级片| 免费黄网站久久成人精品 | 一个人免费在线观看电影| 久久久精品大字幕| 深夜精品福利| 啦啦啦观看免费观看视频高清| 波多野结衣高清作品| 亚洲三级黄色毛片| 国产一区二区在线av高清观看|