• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamical Properties of a Diluted Dipolar-Interaction Heisenberg Spin Glass?

    2014-03-12 08:44:26ZHANGKaiCheng張開成LIUYong劉永andCHIFeng遲鋒
    Communications in Theoretical Physics 2014年2期
    關(guān)鍵詞:張開

    ZHANG Kai-Cheng(張開成), LIU Yong(劉永),and CHI Feng(遲鋒)

    1College of Mathematics and Physics,Bohai University,Jinzhou 121013,China

    2State Key Laboratory of Metastable Materials Science&Technology and College of Science,Yanshan University,Qinhuangdao 066004,China

    3College of Engineering,Bohai University,Jinzhou 121013,China

    1 Introduction

    Spin glass(SG)has long attracted much attention for its fascinating properties as well as the rich physics.[1]It is believed that the SG study can help people to better understand the glass state.Generally,when the frustrated system is cooled below certain freezing temperature,an SG transition occurs,accompanied by a series of slow relaxation phenomena.Much work has been done to understand the phase transition as well as the dynamical properties of SG.Up to now,theoretical understanding on SG properties mainly relies on the mean-f i eld solution based on replica symmetry breaking,[2]The meanfi eld solution predicted the system underwent a breaking of symmetry when the temperature was below the transition temperature,[2]which was manifested by recent numerical simulations.[3]However,the mean-f i eld method is only valid for the system with dimension d≥6,[4]which is not suitable for real SGs.For d<6,a phenomenological droplet theory[5]based on domain growth gave some proper explanations on the dynamical properties of SG.However,it remains still unclear which theory can properly describe canonical SGs.It is found that canonical SGs can be better described by Heisenberg spins than Ising spins due to the large magnetic moments and weak anisotropy of spins in them.Numerical simulations have given the consistent critical values for the Ising and Heisenberg SGs respectively.[6?7]Surprisingly,the critical values measured from canonical SGs match neither of them.[8]It was suggested that the puzzles were caused by another hidden parameter-the chirality,which only arose in Heisenberg SG and represented the handedness caused by frustration among multiple neighbor spins.[9]The chirality in Heisenberg SG is interesting to study because it may or may not have the transition temperature coinciding with that of SG phase.Recently,much attention has been paid to the phase transitions in the three-dimensional Edward-Anderson(EA)Heisenberg SG.[11?13]Recent numerical simulations revealed that the chiral-glass(CG)phase did decouple from the SG phase at slightly higher temperature.[14?15]So far,the chirality is mainly studied in the EA Heisenberg model without any realistic analogy to real SGs,which possess both the site and bond disorder.For real SGs the site disorder brings a big trouble to the chirality due to the absence of translation invariance.So a new chirality must be def i ned and the underlying physics needs further clarif i cation.

    One typical disordered SG is the doped LiHoxY1?xF4,where the host insulator LiHoF4shows ferromagnetism at low temperature due to dipolar interaction.As the nonmagnetic ions Y3+gradually substitute the magnetic ions Ho3+,the site disorder is introduced and the transition temperature of ferromagnetism continues to decrease until x?0.25.[16]Below it,the doped system was reported to undergo the transition from paramagnetic phase to SG phase.[17?18]Although earlier simulations gave negative reports on the existence of SG transition for the doped system with x<0.25,[16]recent simulation revealed that an SG transition occurred for x=0.0625 and 0.125 by fi nite-size scaling analysis.[19]One may wonder whether the chirality exists in such dipolar SGs.According to the chirality theory,[11,20?21]the three-dimensional isotropic Heisenberg SG has the Z2×SO(3)symmetry,where Z2denotes the spin-ref l ection symmetry and SO(3)denotes the symmetry of global spin rotation.When the temperature decreases,the Z2symmetry is breaking f i rst,and this leads to the occurrence of CG transition.As the temperature further decreases,the following SO(3)symmetry breaking leads to SG transition.This is generally referred to as the spin-chirality decoupling.For the Heisenberg SG with random magnetic anisotropy,the system possesses only the Z2symmetry due to the presence of magnetic anisotropy.The chirality recouples to the spins via magnetic anisotropy.When the Z2symmetry is breaking,both CG and SG transitions occur together and this is called spin-chirality recoupling.[21]Therefore,if the chirality exists in the diluted dipolar SG,which has magnetic anisotropy due to dipolar interaction,a common transition temperature can be expected for both phases.

    In this paper we investigate the nonequilibrium properties of both SG and CG phases in the diluted dipolar system by heat bath method.We intend to inspect whether the chirality has the same dynamical properties as the spins.If so,it means the chirality does recouple to the spins via magnetic anisotropy,otherwise,a spin-chirality decoupling occurs.By def i ning the chirality,we study the aging eあect as well as the time-dependent overlap correlation for both the spins and the chirality from dynamical perspective.By scaling,we f i nd that both phases have the same aging behavior and domain growth process,and their f i tting parameters are very closer.This means that a common transition temperature can be expected in the system.

    2 Model,Method and Quantities

    2.1 Model and Method

    In much diluted spin glass,the system properties do not depend on the lattice type.Thus we consider a simple cubic(SC)lattice with size L×L×L,where spins randomly occupy the sites according to a probability p.To study the nonequilibrium properties,the system size should be large to avoid the global rotation of spins.[22]This generally brings no trouble to the short-range EA SG and the system size can reach as large as L=60.[23]However,the situation is much harder for the long-range dipolar SG.Due to the long-range interactions the whole computation increases proportionally to L6,which prohibits us to investigate large system.As we can reach,we set the parameters L=16 and p=0.125 in our simulation,which corresponds to a system with 512 spins.The Hamiltonian of the dipolar system can be written as[19,24]

    where εdis the energy scale of the dipolar interaction,εd= μ0μ2s/(4πa3), μsis the spin moment and a is the lattice constant.rijis the spin separation between the i-th spin and the j-th spin,rij=|ri?rj|. σμiis theμ(μ =x,y,z)component of the i-th unit spin vector. δμvis the Kronecker symbol,which equals to one ifμ=v otherwise zero.For simplicity,we set εd/kB=1 in the simulations and the temperature takes the unit of εd/kB.We use the periodic boundary conditions in the simulation.Due to the long-range interactions,the simulation system interacts with the array of its images replicated along the space dimensions.If the i-th spin interacts with the j-th spin,it interacts with all the images of the j-th spin arrayed along the space dimensions.In such conditions,the selected spin also interacts with the images of itself,which is called self-interaction.Therefore,it is convenient to write the coupling strength as a 3 by 3 matrix,Lij.The matrix element can be written as[24]

    where n is the lattice vector with n=L(kex+ley+mez).eμ(μ =x,y,z)is the unit vector along theμ axis and k,l,m are integers.The above summation is performed in the inf i nite space and it converges slowly and conditionally due to the dipolar interaction.To solve this problem,we use the Ewald summation technique[25]to calculate the coupling strength.The detailed summary of this technique can be found in Refs.[24,26].Note that the surface magnetization does not vanish in the thermodynamic limit and its contribution to the whole energy must be considered.[27]We use the metallic boundary conditions to erase the surface contribution.[24]This is equivalent to perform the summation in an inf i nite cylinder sample without considering the demagnetization eあect.[24]Consequently,the Hamiltonian of the interacting system can be simplif i ed as

    The above summation is only performed in the simulation box L3.The interactions outside the simulation box are absorbed into the coupling matrix Lijautomatically.We use the heat bath method to update the spin conf i gurations.[28]This method directly produces the spin directions relative to the local molecular f i eld according to the Boltzmann distribution and hence eあectively updates the spin states.In the dynamic simulation,time is measured as the Monte Carlo sweeps(MCS)through all the spins.To reduce the statistical errors,all the simulations are averaged over 500 disorder realizations.

    2.2 Quantities

    In the site-ordered SG,the chirality is def i ned as the mixed product of three spins arrayed sequentially along certain axis.[9]This def i nition,however,can not be directly applied to the disordered SG due to the breaking of translation invariance.We notice that if one omits the directions of chirality,which is not necessary for the sitediluted case,the chirality can still be def i ned as[29]

    where σi1and σi2are the nearest and next-nearest neighbors respectively with|ri1?ri|≤|ri2?ri|.If a spin has one more nearest neighbor,which is very rare for the case of low spin concentration,we randomly choose σi1and σi2from them.Due to the random spin occupations,the above triple spins are usually coplanar rather than collinear,therefore,the chirality def i ned above does not contain any f i xed direction.

    Experimentally,the aging eあectwasoften observed by measuring the thermoremanent magnetization(TRM).[30?31]In simulations the autocorrelation function is often calculated to investigate the aging eあect.[32]The SG and CG autocorrelations of the diluted system can be written as

    where N is the total number of spins.In the thermodynamic limits,the autocorrelation above is just the EA parameter,qEA=limt,tw,L→∞C(t+tw,tw).The angular brackets 〈···〉and the square brackets[···]mean the calculation takes thermal average and disorder average respectively.Furthermore,we calculate the overlap correlation function,which is also called four-point correlation,for both SG and CG phases.The SG and CG overlap correlation functions can be written as

    where α and β are the indices of the system replicas.In the diluted case,the lattice does not possess translation invariance and the spins do not have constant neighbors.Therefore,Nris distance-dependent and represents the average neighbor number.

    3 Results and Discussion

    We use the following protocol to observe the aging effect.The system is f i rst quenched from high temperature to the goal temperature T0,then it waits at T0for some time tw,after that the time-dependent autocorrelations are calculated as the spin conf i guration evolves relatively to the reference one at time tw.We set T0=0.06 and 0.03,and at each temperature twtakes the values 102,103,104,105Monte Carlo sweeps(MCS).The SG autocorrelations versus the time are shown in Fig.1.It is noticed that the autocorrelations increase as the temperature decreases.The larger the waiting time is,the slower the autocorrelation decays.The autocorrelations decay slowly for t<twwhile they decay fast for t>tw.According to the droplet theory,[5]SG domains grow to the size of R(tw)after the system relaxes for tw.For t<tw,spins mainly reverse in the domains and a quasi-equilibrium state can be observed.However,as the domains continue to grow,their sizes exceed R(tw)signif i cantly,and hence a nonequilibrium state is observed for t>tw.It is also noticed that as the temperature decreases the autocorrelations show a plateau,which manifests that the EA order parameter qEAcan exist for a long time at low temperature with tw→ ∞.This behavior is similar to those observed in the EA Heisenberg model[23]and Ising model.[32]It was reported that the autocorrelations became stationary for the simulations of EA Heisenberg model if the lattice size was too small.[22?23]In our simulations,we do not observe this phenomenon even for t>106MCS.This is because the dipolar interaction couples all the spins together and the system is more frustrated than the short-range EA model.The much hard relaxation was also observed in other simulations on dipolar systems.[19,24,29]

    Fig.1 (Color online)SG autocorrelations versus the time for the dipolar system.The temperature takes 0.06 and 0.03.At each temperature,the system waits for 102,103,104,and 105MCS respectively.The error bars are about the symbol size.

    Figure 2 presents the CG autocorrelations versus the time for diあerent temperatures.Due to the multi-spin product the CG autocorrelations are much smaller and usually one-order less than the SG ones,which is consistent with that of the EA Heisenberg model.[23]For t<tw,the spin excitations mainly occur in the droplet,thus a slow decay is observed.However,for t>tw,large droplets are excited and the autocorrelations decay much faster.For larger tw,the autocorrelations merge together and also show a plateau.The plateau is more obvious at lower temperature.This indicates the EA chiral order parameter exists for tw→∞.The larger the waiting time is,the slower the autocorrelation decays.These behaviors are similar to those of SG phase.

    Fig.2 (Color online)CG autocorrelations versus the time for two temperatures,T=0.06,0.03.At each temperature the system relaxes for 105,104,103,102MCS respectively.The error bars are about the symbol size.

    Since the chirality is another hidden degree of freedom,one may wonder whether it behaves distinctly from the SG phase.To obtain this information we try to scale the autocorrelations for both the spins and the chirality by the same scaling function.It was once suggested that the autocorrelations can be scaled by t/tw,[32?33]however,experiments often gave negative reports on this scaling method.[30]Alternatively,a combined aging method was proposed and widely used for the TRM scaling.[31,34]This method suggests that the decay can be combined by a stationary term A(τ0/t)αand an aging term f(λ/tμw).Thus the autocorrelation can be written as C(t+tw,tw)=A(τ0/t)α+f(λ/tμw),where A is a dimensionless constant and τ0is the microscopic f l ipping time;μ is the f i tting parameter.λ is theμ-dependent scaled variable which can be written as

    Fig.3(Color online)Scaling of the autocorrelations for both the spins(a)and the chirality(b).The error bars are about the symbol size.

    Figure 3 shows the scaling for both the SG and CG autocorrelations. It is noticed that after the subtraction of the stationary term,all the autocorrelations collapse into a single curve,indicating the existence of twindependent universal scaling function.As the argument λ/tμwis less than one,the scaling function keeps horizontal,which manifests a quasi-equilibrium state exists and spins are excited locally.As λ/tμw> 1,the scaling function decreases rapidly,which indicates the system enters a nonequilibrium regime and large-droplet excitations occur for t? tw.According to the f i tting parameterμ,the aging can be divided into two types:one is subaging withμ<1 and the other is superaging withμ>1.Our results reveal that the superaging only occurs at the temperature well below the transition temperature.[29]The scaling parameters for both the spins and the chirality are listed in Table 1.The parameter A decreases when temperature decreases,indicating a reducing thermal f l ipping process.It can be seen thatμincreases as the temperature decreases for both cases,which is consistent with the results of the experiments[31]and the simulations of Heisenberg SG.[23,34]According to the previous studies,[23,33]a transition is expected to occur at f i nite temperature asμincreases fromμ<1 toμ>1.In our simulation,the fi tting parametersμfor both phases are larger than one at low temperature,which indicates both phases coexist.Note that the parameterμfor the SG phase is very close to that of the CG phase,indicating the similar aging behaviors.This means that the chirality does couple to the spins in the diluted dipolar SG.The dipolar interaction is responsible for the spin-chirality recoupling.Since below percolation limit,isolated spin blocks are present in the system.The spin blocks would have rotated randomly if the interaction was short-range,which would lead to the spin-chirality decoupling.However,due to the dipolar interaction,spin blocks couple together and the same aging behavior arises for both phases.

    Table 1 The scaling parameters for both the SG and CG autocorrelations shown in Fig.3.

    Furthermore,we investigate the evolvements of the overlap correlations as a function of the waiting time for both SG and CG phases.The temperature is set to be 0.06 and 0.03,at which the system relaxes for tw=10,102,103,104,and 105MCS.Figure 4 shows both the SG and CG overlap correlations versus the time for T=0.06.The overlap correlations decay very fast and become nearly negligible as r≥4,which manifests the domain size in the diluted dipolar system is very short compared with those in the EA Heisenberg SG.[23]The logscaled SG correlations decay with downward curvatures while the CG ones decay almost linearly as the distance increases.The decay of the SG correlation is diあerent from those of isotropic EA Heisenberg SG for its downward curvature.[23]This may be caused by the anisotropy of dipolar interaction.However,due to the multi-spin product,the anisotropic eあect is weakened for the CG overlap,which leads to the linear decay.The overlap correlations are less sensitive to the time variance compared with those of EA Heisenberg SG.[23]It is suggested the decay of correlation length obeys approximately the exponential function Θ(r,tw)=Ae?r/ξ(tw),[32]where ξ(tw)is the tw-dependent correlation length.The correlation length can be obtained by integration of the overlap correlation,ξ(tw)=A?1∫∞0Θ(r,tw)dr.The SG and CG correlation lengths versus the waiting time are shown in Fig.5.

    Fig.4 (Color online)The overlap correlations of both the spins(a)and the chirality(b)as a function of the spin separation.The temperature T=0.06 and the system waits for tw=10,102,103,104,105MCS respectively.The vertical axis is log-scaled.

    Fig.5 (Color online)The SG(a)and CG(b)correlation lengths versus the log-scaled waiting time.The data are f i tted by power law.

    Note that,for both cases the correlation lengths are much less than those in the EA Heisenberg SG,[23]which indicates the domains in dipolar SG are quite small.According to the droplet theory,[5]the domain size grows as the relaxing time elapses as ξ(tw) ∝ (lntw)1/Ψ,where Ψ is the exponent to describe the free-energy barrier of the droplet.By f i tting the correlation lengths with power law,the exponent Ψ can be obtained.For T=0.06 and 0.03,it takes the values 2.43 and 2.67 respectively for the SG phase;2.57 and 2.71 for the CG phase.The CG exponents are closer to the SG ones,indicating a similar growing process of domains.It also means that the chirality recouples to the spins and as a result both phases are ordered at the same freezing temperature.Due to the lack of barrier exponent of the EA Heisenberg SG,we only compare our results with those of the EA Ising SG.Our results show the exponent Ψ is larger than those obtained in the 3D Ising SG.[32?33]We explain it as follows:(i)As the system dimension increases,Ψ also increases,as can be seen from the previous studies.[33]For the dipolar-interaction case,the corresponding dimension is larger than three,thus Ψ is larger than those short-range Ising case.(ii)The heat bath method is more eきcient to relax the spins than the Metropolis method,therefore,correlation length calculated by the heat bath method often approaches to saturation much faster than the Metropolis method,thus contributes larger Ψ.

    4 Conclusion

    By de fi ning the chirality in the site-diluted case,we investigate the dynamical properties of the chirality as well as the spins in the diluted dipolar system by simulation.By scaling the autocorrelations we fi nd the SG and CG phases have the same aging behavior and closer aging parameters.Moreover,both phases have the same domain growth process.This means that the chirality does recouple to the spins via magnetic anisotropy and both phases are ordered at the same freezing temperature.We hope our study could be helpful for future investigations on this fi eld.

    [1]K.Binderand and A.P.Young,Rev.Mod.Phys.58(1986)801.

    [2]G.Parisi,J.Phys.A 13(1980)1101.

    [3]L.Leuzzi,G.Parisi,F.Ricci-Tersenghi,and J.J Ruiz-Lorenzo,Phys.Rev.Lett.101(2008)107203.

    [4]H.G.Katzgraber,D.Larson,and A.P.Young,Phys.Rev.Lett.102(2009)177205.

    [5]D.J.Fisher and D.A.Huse,Phys.Rev.B 38(1988)373;Phys.Rev.B 38(1988)386.

    [6]I.A.Campbell,K.Hukushima,and H.Takayama,Phys.Rev.Lett.97(2006)117202.

    [7]L.A.Fernandez,V.Martin-Mayor,S.Perez-Gaviro,A.Tarancon,and A.P.Young,Phys.Rev.B 80(2009)024422.

    [8]L.P.Levy and A.T.Ogielsky,Phys.Rev.Lett.57(1986)3288.

    [9]H.Kawamura,Phys.Rev.Lett.68(1992)3785.

    [10]H.Kawamura and D.Imagawa,Phys.Rev.Lett.87(2001)207203.

    [11]D.Imagawa and H.Kawamura,Phys.Rev.Lett.92(2004)077204.

    [12]L.W.Lee and A.P.Young,Phys.Rev.Lett.90(2003)227203.

    [13]I.Campos,M.Cotallo-Aban,V.Martin-Mayor,S.Perez-Gaviro,and A.Tarancon,Phys.Rev.Lett.97(2006)217204.

    [14]D.X.Viet and H.Kawamura,Phys.Rev.B 80(2009)064418.

    [15]D.X.Viet and H.Kawamura,Phys.Rev.Lett.102(2009)027202.

    [16]A.Biltmo and P.Henelius,Phys.Rev.B 76(2007)054423;Phys.Rev.B 78(2008)054437.

    [17]C.Ancona-Torrres,D.M.Silevitch,G.Aeppli,and T.F.Rosenbaum,Phys.Rev.Lett.101(2008)057201.

    [18]W.Wu,D.Bitko,T.F.Rosenbaum,and G.Aeppli,Phys.Rev.Lett.71(1993)1919.

    [19]K.M.Tam and M.J.P.Gingras,Phys.Rev.Lett.103(2009)087202.

    [20]D.Imagawa and H.Kawamura,Phys.Rev.B 70(2004)144412.

    [21]H.Kawamura,J.Phys.Soc.Jpn.79(2010)011007.

    [22]F.Matsubara,T.Shirakura,and S.Endoh,Phys.Rev.B 64(2001)092412.

    [23]L.Berthier and A.P.Young,Phys.Rev.B 69(2004)184423.

    [24]P.Stasiak and M.J.P.Gingras,arXiv:0912.3469

    [25]P.Ewald,Ann.Phys.64(1921)253.

    [26]S.W.De Leeuw,J.W.Perram,and E.R.Smith,Proc.R.Soc.London A 373(1980)27.

    [27]Z.Wang and C.Holm,J.Chem.Phys.115(2001)6351.

    [28]Y.Miyatake,M.Yamamoto,J.J.Kim,M.Toyanaga,and O.Nagai,J.Phys.C 19(1986)2539.

    [29]K.C.Zhang,G.B.Liu,and Y.Zhu,Phys.Lett.A 375(2011)2041.

    [30]V.S.Zotev,G.F.Rodriguez,G.G.Kenning,R.Orbach,E.Vincent,and J.Hammann,Phys.Rev.B 67(2003)184422.

    [31]G.F.Rodriguez,G.G.Kenning,and R.Orbach,Phys.Rev.Lett.91(2003)037203.

    [32]J.Kisker,L.Santen,M.Schreckenberg,and H.Rieger,Phys.Rev.B 53(1996)6418.

    [33]L.Berthier and J.P.Bouchaud,Phys.Rev.B 66(2002)054404.

    [34]O.V.Billoni,S.A.Cannas,and F.A.Tamarit,Phys.Rev.B 72(2005)104407.

    猜你喜歡
    張開
    不一樣的“張”
    Trajectory equation of a lump before and after collision with other waves for generalized Hirota-Satsuma-Ito equation
    開花
    詩潮(2019年10期)2019-11-19 13:58:55
    天津詩人(2019年3期)2019-11-13 19:29:53
    就是那個夢想
    踏莎行·留守婦
    就是那個夢想
    張開想象的翅膀,在童話中飛翔
    讀寫算(中)(2016年9期)2016-02-27 08:47:36
    日本色播在线视频| 国产在线视频一区二区| 国产精品一区www在线观看| 日韩av免费高清视频| 满18在线观看网站| 男女午夜视频在线观看 | 国产视频首页在线观看| 国产免费一级a男人的天堂| 国产淫语在线视频| 亚洲精品日本国产第一区| 日本猛色少妇xxxxx猛交久久| 国产永久视频网站| 少妇被粗大的猛进出69影院 | 99九九在线精品视频| 少妇人妻久久综合中文| 精品人妻偷拍中文字幕| 18禁国产床啪视频网站| 国产精品久久久久久久久免| 美国免费a级毛片| 久久久久视频综合| 老司机影院毛片| 午夜免费观看性视频| 老司机亚洲免费影院| 自拍欧美九色日韩亚洲蝌蚪91| 香蕉丝袜av| 在线观看免费视频网站a站| 一边摸一边做爽爽视频免费| 两个人看的免费小视频| 少妇被粗大猛烈的视频| 国产一区二区激情短视频 | 国产高清不卡午夜福利| 男人添女人高潮全过程视频| 侵犯人妻中文字幕一二三四区| 日日爽夜夜爽网站| av福利片在线| 熟女电影av网| 热99久久久久精品小说推荐| 女人被躁到高潮嗷嗷叫费观| 99久久精品国产国产毛片| 青春草亚洲视频在线观看| 人人妻人人澡人人看| 欧美日韩综合久久久久久| 成人综合一区亚洲| 少妇人妻精品综合一区二区| 国产免费视频播放在线视频| 精品久久国产蜜桃| 少妇人妻久久综合中文| 久久久久久久久久久久大奶| 国产精品不卡视频一区二区| 国产日韩欧美视频二区| 美女内射精品一级片tv| av国产久精品久网站免费入址| 伊人亚洲综合成人网| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | av网站免费在线观看视频| 美女中出高潮动态图| 高清毛片免费看| 久久精品夜色国产| 校园人妻丝袜中文字幕| 一级毛片 在线播放| 欧美xxⅹ黑人| 大香蕉久久网| tube8黄色片| 丝瓜视频免费看黄片| 亚洲精品国产av成人精品| 国产欧美另类精品又又久久亚洲欧美| 久久女婷五月综合色啪小说| 一二三四在线观看免费中文在 | 最近2019中文字幕mv第一页| 国产av国产精品国产| 中国三级夫妇交换| 欧美人与性动交α欧美精品济南到 | 哪个播放器可以免费观看大片| 精品国产露脸久久av麻豆| 亚洲精品一二三| 又黄又爽又刺激的免费视频.| 内地一区二区视频在线| 国产亚洲一区二区精品| 日韩免费高清中文字幕av| 狂野欧美激情性xxxx在线观看| 久久久久久伊人网av| 亚洲熟女精品中文字幕| 天天躁夜夜躁狠狠久久av| 日韩,欧美,国产一区二区三区| 国产又色又爽无遮挡免| 亚洲欧美色中文字幕在线| 欧美成人午夜精品| 99久久精品国产国产毛片| 色视频在线一区二区三区| 高清av免费在线| 精品国产一区二区久久| 日产精品乱码卡一卡2卡三| 伊人亚洲综合成人网| 十八禁网站网址无遮挡| 午夜福利视频在线观看免费| 蜜桃国产av成人99| 99久久精品国产国产毛片| 人妻人人澡人人爽人人| 欧美性感艳星| 少妇人妻久久综合中文| 1024视频免费在线观看| 国产精品久久久久久久电影| 精品酒店卫生间| 国产又色又爽无遮挡免| 精品亚洲成a人片在线观看| 狂野欧美激情性bbbbbb| 咕卡用的链子| 青春草亚洲视频在线观看| www.色视频.com| 亚洲色图 男人天堂 中文字幕 | 汤姆久久久久久久影院中文字幕| 免费高清在线观看日韩| 久热这里只有精品99| 男女无遮挡免费网站观看| 久久久久久久国产电影| 免费看av在线观看网站| 一级黄片播放器| 老司机影院成人| 亚洲欧美日韩卡通动漫| 免费观看性生交大片5| 又粗又硬又长又爽又黄的视频| 成人国产麻豆网| 成人毛片60女人毛片免费| 成人亚洲欧美一区二区av| 久久久久久久久久久免费av| 看十八女毛片水多多多| a级片在线免费高清观看视频| 乱码一卡2卡4卡精品| 亚洲美女搞黄在线观看| 国产69精品久久久久777片| 又黄又粗又硬又大视频| 亚洲高清免费不卡视频| 久久韩国三级中文字幕| 欧美日韩视频高清一区二区三区二| 国产男女内射视频| 精品久久蜜臀av无| 日韩中文字幕视频在线看片| 国产综合精华液| 国产麻豆69| av福利片在线| 国产国语露脸激情在线看| 欧美bdsm另类| 欧美人与性动交α欧美精品济南到 | 日韩大片免费观看网站| 亚洲欧美一区二区三区黑人 | 国产一级毛片在线| 亚洲成人一二三区av| 丝袜脚勾引网站| 曰老女人黄片| 日韩免费高清中文字幕av| 嫩草影院入口| 最后的刺客免费高清国语| 亚洲精品久久午夜乱码| 制服人妻中文乱码| 国产精品三级大全| 两个人看的免费小视频| www.熟女人妻精品国产 | 成年av动漫网址| 内地一区二区视频在线| 黄色 视频免费看| 18禁动态无遮挡网站| 天堂俺去俺来也www色官网| 黄色 视频免费看| 丝袜在线中文字幕| 18禁观看日本| 国产爽快片一区二区三区| 亚洲av综合色区一区| 人妻系列 视频| 亚洲精品456在线播放app| 国产精品一二三区在线看| 中文字幕免费在线视频6| 久久久久久人妻| av在线老鸭窝| 巨乳人妻的诱惑在线观看| 丝袜喷水一区| 国产色爽女视频免费观看| 丝袜喷水一区| 久久久国产欧美日韩av| 欧美成人午夜免费资源| 老女人水多毛片| 亚洲少妇的诱惑av| 国产免费又黄又爽又色| 少妇被粗大的猛进出69影院 | 久久国产精品大桥未久av| 精品国产一区二区三区久久久樱花| 黑丝袜美女国产一区| 国产精品国产三级国产av玫瑰| 亚洲精品国产av成人精品| 一区二区日韩欧美中文字幕 | 国产精品一区www在线观看| 亚洲精品一二三| 精品国产乱码久久久久久小说| 久久精品国产综合久久久 | 成人漫画全彩无遮挡| 女人被躁到高潮嗷嗷叫费观| 天堂中文最新版在线下载| 一级a做视频免费观看| 成人二区视频| 午夜福利在线观看免费完整高清在| 久久久精品94久久精品| 自线自在国产av| 国产精品久久久久久久电影| 亚洲色图综合在线观看| 国产成人精品一,二区| 亚洲av中文av极速乱| 亚洲国产精品一区三区| 精品亚洲成a人片在线观看| 一级,二级,三级黄色视频| 亚洲,一卡二卡三卡| 国产一区有黄有色的免费视频| 久久久亚洲精品成人影院| av国产精品久久久久影院| 少妇精品久久久久久久| 欧美人与性动交α欧美精品济南到 | 伦理电影免费视频| 18禁观看日本| 国产黄色免费在线视频| 9191精品国产免费久久| 18禁国产床啪视频网站| 亚洲精品色激情综合| 少妇熟女欧美另类| 美女脱内裤让男人舔精品视频| 夫妻午夜视频| 新久久久久国产一级毛片| 日韩一本色道免费dvd| 亚洲,一卡二卡三卡| av在线老鸭窝| 欧美日韩视频精品一区| 下体分泌物呈黄色| 亚洲人成77777在线视频| 国产激情久久老熟女| 亚洲国产成人一精品久久久| 亚洲av国产av综合av卡| 最近手机中文字幕大全| 十八禁网站网址无遮挡| 一级毛片电影观看| 少妇精品久久久久久久| 国产精品秋霞免费鲁丝片| 下体分泌物呈黄色| 九九在线视频观看精品| 日韩成人av中文字幕在线观看| 涩涩av久久男人的天堂| 国产精品一国产av| 日韩 亚洲 欧美在线| 国产一区二区激情短视频 | 水蜜桃什么品种好| 欧美最新免费一区二区三区| 黄片播放在线免费| 日韩视频在线欧美| 草草在线视频免费看| 亚洲人与动物交配视频| 欧美日韩一区二区视频在线观看视频在线| 啦啦啦在线观看免费高清www| 天堂俺去俺来也www色官网| 人人妻人人澡人人爽人人夜夜| 国产激情久久老熟女| 晚上一个人看的免费电影| 亚洲欧美一区二区三区黑人 | 国产成人欧美| 天天躁夜夜躁狠狠久久av| av卡一久久| 日韩一区二区视频免费看| 免费播放大片免费观看视频在线观看| 亚洲人与动物交配视频| 久久人妻熟女aⅴ| 久久久久久久精品精品| 国产精品人妻久久久久久| 亚洲综合色惰| 黄色 视频免费看| 国产女主播在线喷水免费视频网站| av国产精品久久久久影院| 精品一品国产午夜福利视频| 国产精品国产三级国产av玫瑰| 999精品在线视频| 亚洲av欧美aⅴ国产| 毛片一级片免费看久久久久| 久久久精品免费免费高清| 日韩不卡一区二区三区视频在线| 韩国av在线不卡| 你懂的网址亚洲精品在线观看| 人人澡人人妻人| 亚洲图色成人| 中文欧美无线码| 老司机影院成人| 捣出白浆h1v1| 伦理电影免费视频| 国产色婷婷99| 亚洲国产av影院在线观看| 99热全是精品| 亚洲欧美精品自产自拍| 国语对白做爰xxxⅹ性视频网站| 午夜福利,免费看| 精品久久蜜臀av无| 精品亚洲乱码少妇综合久久| 国产一区二区在线观看日韩| 热re99久久精品国产66热6| 国产免费一级a男人的天堂| 久久99热这里只频精品6学生| 久久婷婷青草| 午夜激情久久久久久久| 亚洲伊人色综图| 久久99蜜桃精品久久| 国产老妇伦熟女老妇高清| 免费大片黄手机在线观看| 一级毛片电影观看| 日韩视频在线欧美| 久久久久久伊人网av| 亚洲精品中文字幕在线视频| 亚洲精品乱码久久久久久按摩| 亚洲国产最新在线播放| 九草在线视频观看| 黄色怎么调成土黄色| 午夜视频国产福利| 中文精品一卡2卡3卡4更新| 女的被弄到高潮叫床怎么办| 成人手机av| 亚洲国产色片| 国产精品久久久久久久电影| 国产成人a∨麻豆精品| 熟女av电影| 日韩中文字幕视频在线看片| 涩涩av久久男人的天堂| 久久这里只有精品19| 亚洲av综合色区一区| 天天躁夜夜躁狠狠久久av| 国语对白做爰xxxⅹ性视频网站| 国产一区二区三区综合在线观看 | 看免费成人av毛片| 久久午夜综合久久蜜桃| 精品国产一区二区三区四区第35| 日韩中文字幕视频在线看片| 免费黄频网站在线观看国产| 桃花免费在线播放| 97在线人人人人妻| 人人妻人人澡人人看| 亚洲精品中文字幕在线视频| 国产精品无大码| 97精品久久久久久久久久精品| 免费观看av网站的网址| 一二三四在线观看免费中文在 | xxxhd国产人妻xxx| 宅男免费午夜| 大片电影免费在线观看免费| 国产日韩欧美在线精品| 成人国语在线视频| 精品亚洲成国产av| 亚洲av.av天堂| 亚洲精品一区蜜桃| 亚洲av.av天堂| 久久精品国产a三级三级三级| 99热国产这里只有精品6| 亚洲国产欧美日韩在线播放| 日韩中字成人| 国产爽快片一区二区三区| av免费观看日本| 欧美亚洲日本最大视频资源| 国产精品一国产av| 中文字幕亚洲精品专区| 精品国产一区二区久久| 国产日韩欧美亚洲二区| 国产一区亚洲一区在线观看| 日韩电影二区| 丰满乱子伦码专区| 国产不卡av网站在线观看| 高清av免费在线| 涩涩av久久男人的天堂| 久久久久视频综合| 精品一区二区三卡| 中文精品一卡2卡3卡4更新| 日本欧美视频一区| 国产亚洲欧美精品永久| 日韩视频在线欧美| 一级毛片电影观看| 国产成人一区二区在线| 两个人看的免费小视频| 久久久久久久久久成人| 最近中文字幕高清免费大全6| 深夜精品福利| 精品第一国产精品| 久久久久久久久久成人| 91在线精品国自产拍蜜月| 成年人免费黄色播放视频| 欧美性感艳星| 人人妻人人爽人人添夜夜欢视频| 啦啦啦在线观看免费高清www| 久久久国产欧美日韩av| 久久久国产一区二区| 久久狼人影院| 久久ye,这里只有精品| 亚洲精品一二三| 久久热在线av| 在线天堂中文资源库| av在线播放精品| 黄色一级大片看看| 日韩欧美精品免费久久| 国产成人精品久久久久久| 成年人午夜在线观看视频| 欧美精品人与动牲交sv欧美| 日韩一区二区三区影片| 69精品国产乱码久久久| 精品亚洲乱码少妇综合久久| 精品午夜福利在线看| 免费人成在线观看视频色| 精品久久国产蜜桃| 久久av网站| 人人妻人人添人人爽欧美一区卜| 性高湖久久久久久久久免费观看| 国产在视频线精品| 欧美精品人与动牲交sv欧美| 国产亚洲一区二区精品| 久久精品久久久久久噜噜老黄| 老熟女久久久| 亚洲国产欧美在线一区| 少妇被粗大的猛进出69影院 | 在线观看免费视频网站a站| √禁漫天堂资源中文www| 赤兔流量卡办理| 两个人看的免费小视频| 伦理电影大哥的女人| 高清不卡的av网站| 香蕉丝袜av| 成年人午夜在线观看视频| 男女啪啪激烈高潮av片| 超碰97精品在线观看| 日韩伦理黄色片| 精品人妻一区二区三区麻豆| 九色成人免费人妻av| 国产成人午夜福利电影在线观看| 久久青草综合色| 国产免费现黄频在线看| 欧美国产精品va在线观看不卡| 午夜福利网站1000一区二区三区| 黄网站色视频无遮挡免费观看| 亚洲天堂av无毛| 99久久人妻综合| 一本色道久久久久久精品综合| 日韩精品免费视频一区二区三区 | 日韩电影二区| 9色porny在线观看| 色94色欧美一区二区| 又黄又粗又硬又大视频| 日韩av不卡免费在线播放| 在线免费观看不下载黄p国产| 午夜av观看不卡| 国产深夜福利视频在线观看| 日日爽夜夜爽网站| 亚洲,欧美,日韩| 午夜福利视频精品| 日本-黄色视频高清免费观看| 欧美国产精品va在线观看不卡| 久久免费观看电影| 亚洲成人一二三区av| 中文字幕人妻熟女乱码| 少妇精品久久久久久久| 国产精品一区二区在线不卡| 岛国毛片在线播放| 2021少妇久久久久久久久久久| 一级片免费观看大全| 97精品久久久久久久久久精品| 国产精品无大码| 国产深夜福利视频在线观看| 精品一区二区三区四区五区乱码 | 街头女战士在线观看网站| 国产爽快片一区二区三区| 各种免费的搞黄视频| 久久精品aⅴ一区二区三区四区 | 2021少妇久久久久久久久久久| 一级,二级,三级黄色视频| 成人二区视频| 美女国产视频在线观看| 考比视频在线观看| 日日摸夜夜添夜夜爱| 全区人妻精品视频| 一边摸一边做爽爽视频免费| 草草在线视频免费看| 成人综合一区亚洲| 视频中文字幕在线观看| 国产av精品麻豆| 日韩 亚洲 欧美在线| av免费观看日本| 久久久国产欧美日韩av| 搡老乐熟女国产| 国产精品.久久久| 国产精品久久久久成人av| freevideosex欧美| 久久精品国产a三级三级三级| 大片电影免费在线观看免费| 精品少妇黑人巨大在线播放| 我要看黄色一级片免费的| 午夜日本视频在线| 丝瓜视频免费看黄片| 久久久国产一区二区| 亚洲,欧美,日韩| 性色avwww在线观看| 1024视频免费在线观看| 亚洲美女搞黄在线观看| 国产精品三级大全| 亚洲中文av在线| 国产精品嫩草影院av在线观看| 国产精品偷伦视频观看了| 精品亚洲乱码少妇综合久久| av一本久久久久| av有码第一页| 中文乱码字字幕精品一区二区三区| 亚洲美女黄色视频免费看| 国产日韩欧美亚洲二区| 久久午夜综合久久蜜桃| 大陆偷拍与自拍| 少妇人妻精品综合一区二区| 亚洲国产av影院在线观看| 久久精品aⅴ一区二区三区四区 | 午夜激情av网站| 婷婷色综合大香蕉| 国产xxxxx性猛交| 人人澡人人妻人| 你懂的网址亚洲精品在线观看| 欧美成人午夜精品| 日日撸夜夜添| 国产精品不卡视频一区二区| 最后的刺客免费高清国语| 亚洲精品日韩在线中文字幕| 精品亚洲乱码少妇综合久久| 中文字幕最新亚洲高清| 国产av精品麻豆| 欧美成人午夜精品| 桃花免费在线播放| 国产伦理片在线播放av一区| 亚洲精品国产av成人精品| 蜜臀久久99精品久久宅男| 亚洲精品一区蜜桃| 搡老乐熟女国产| 最近中文字幕2019免费版| 欧美成人午夜精品| 99久久中文字幕三级久久日本| 亚洲精华国产精华液的使用体验| 精品国产国语对白av| 韩国精品一区二区三区 | 在线天堂中文资源库| 老司机影院成人| 婷婷色综合大香蕉| 免费人成在线观看视频色| 高清不卡的av网站| 国产永久视频网站| 黑人巨大精品欧美一区二区蜜桃 | videosex国产| 久久精品夜色国产| 亚洲综合色惰| 亚洲国产精品999| 高清欧美精品videossex| 日韩人妻精品一区2区三区| 亚洲精品国产av蜜桃| 色哟哟·www| 国产成人精品在线电影| 国产日韩欧美视频二区| 18禁裸乳无遮挡动漫免费视频| 高清视频免费观看一区二区| 色婷婷久久久亚洲欧美| 26uuu在线亚洲综合色| 久热这里只有精品99| 丝袜美足系列| 免费高清在线观看视频在线观看| 久久久a久久爽久久v久久| 午夜免费鲁丝| 亚洲一码二码三码区别大吗| 熟妇人妻不卡中文字幕| 午夜激情久久久久久久| 女人久久www免费人成看片| 国产成人aa在线观看| 国产精品秋霞免费鲁丝片| 亚洲欧美成人精品一区二区| 亚洲欧美清纯卡通| 日本午夜av视频| 成年女人在线观看亚洲视频| 18禁在线无遮挡免费观看视频| 欧美日韩成人在线一区二区| 天天影视国产精品| 黄色毛片三级朝国网站| 午夜日本视频在线| 国产色爽女视频免费观看| 啦啦啦中文免费视频观看日本| 久久久久久久久久久久大奶| 高清在线视频一区二区三区| 9色porny在线观看| 成人毛片60女人毛片免费| 欧美成人午夜免费资源| 亚洲国产精品一区三区| 男女免费视频国产| 欧美成人午夜免费资源| 丰满迷人的少妇在线观看| 男女免费视频国产| 丝瓜视频免费看黄片| 两个人看的免费小视频| 成人毛片60女人毛片免费| 久久精品国产亚洲av天美| 黑人欧美特级aaaaaa片| 亚洲精品aⅴ在线观看| 亚洲av在线观看美女高潮| 国产综合精华液| 伊人亚洲综合成人网| 精品亚洲成a人片在线观看| 久久99热这里只频精品6学生| 久久久亚洲精品成人影院| 久久久a久久爽久久v久久| 亚洲欧美日韩卡通动漫| 亚洲精品久久久久久婷婷小说| 国产免费又黄又爽又色| 亚洲高清免费不卡视频| 国产精品一国产av| 午夜视频国产福利| 99久久精品国产国产毛片| 日韩精品有码人妻一区| 色5月婷婷丁香| 国产精品一区www在线观看| 99久久中文字幕三级久久日本| 欧美激情极品国产一区二区三区 |