• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Trajectory equation of a lump before and after collision with other waves for generalized Hirota-Satsuma-Ito equation

    2023-11-02 08:08:54YarongXia夏亞榮KaikaiZhang張開開RuoxiaYao姚若俠andYaliShen申亞麗
    Chinese Physics B 2023年10期
    關(guān)鍵詞:張開

    Yarong Xia(夏亞榮), Kaikai Zhang(張開開), Ruoxia Yao(姚若俠), and Yali Shen(申亞麗)

    1School of Information and Engineering,Xi’an University,Xi’an 710065,China

    2School of Science,Xi’an University of Architecture and Technology,Xi’an 710055,China

    3School of Computer Science,Shaanxi Normal University,Xi’an 710062,China

    4Maths and Information Technology School,Yuncheng University,Yuncheng 044000,China

    Keywords: Hirota bilinear method,long wave limit,hybrid solutions,trajectory equation

    1.Introduction

    Nonlinear partial differential equations (NLPDEs) play an important role in fluid mechanics, plasma, quantum field theory, and so on.[1-3]The exact solution of NLPDEs can describe various physical properties exhibited by the equation, therefore, the search for effective methods of solving NLPDEs has received a lot of attention.Until now,many useful methods have been proposed, such as Darboux transformation,[4,5]B¨acklund transformation,[7]inverse scattering transformation,[8]variable separation method,[9,10]Hirota bilinear method,[11-13]etc.Among them, Hirota bilinear method is most studied by many scholars owing to its simplicity and directness.In Refs.[14-19], the lump solutions to many NLPDEs were presented through Hirota bilinear method.Lump wave is a special rational function wave,which is localized in all directions of space.Manakovet al.gave the analytical expression of the lump solution when he studied the rational solution of the KP equation[20]firstly.In recent years, the interaction between lumps and solitons, breathers,rogue waves, etc.has become a research focus in the soliton theory.Liet al.investigated the high-order lumps,breathers,and hybrid solutions of the(2+1)-dimensional fifth-order KdV equation.[21]Wang constructed lump and interaction solutions to the(2+1)-dimensional Burgers equation in Ref.[22].Zhouet al.studiedn-lump and interaction solutions of localized waves to the (2+1)-dimensional generalized KDKK equation in Ref.[23].In Ref.[24], Zhanget al.provided the trajectory equation and phase expression of a lump before and after collisions with line and breather waves based on the hybrid solutions of the KP equation.In Ref.[25],Zhanget al.derived a new class of nonlinear superposition between lump waves and other waves of KPI equation.Xiaet al.discussed the trajectory equation of a lump before and after collisions withn-line andn-breather waves for (2+1)-dimensional Sawada-Kotera equation in Ref.[26].

    In this paper, we will study the following (2+1)-dimensional GHSI equation

    whereρi(i=1,..., 4) are arbitrary constants.Equation (1)is an important model in shallow water wave theory, which is proposed by Hirota and Satsuma via a B¨acklund transformation of the Boussinesq equation, it is an extension of the Hirota-Satsuma shallow water wave equation.In Refs.[27-31], the authors have studied Eq.(1) from different perspectives, mainly including multi-soliton solution, lump solution,breather solution, hybrid solutions, etc.However, there is no relevant research on the trajectory equation before and after the interactions of the GHSI equation with other nonlinear waves until now.This will be the main work of our paper.

    The rest of this paper is organized as follows: In Section 2, then-soliton solution of Eq.(1) is constructed via the Hirota bilinear method.In Section 3, by employing the long wave limit method,the hybrid solutions consisting ofm-lump andn-soliton wave,m-lump, andn-breather wave for Eq.(1)are obtained.In Section 4, the trajectory equation and phase change of the lump wave before and after collisions withnsoliton andn-breather wave are given.The last section contains a discussion and summary.

    2.The N-soliton solution for generalized Hirota-Satsuma-Ito equation

    Through the dependent variable transformation

    equation(1)can be converted into the following bilinear equation:

    whereτ=τ(x,y,t),theDis the bilinear differential operator defined by

    That is,ifτis a solution to Eq.(3),thenv=2(lnτ)xis a solution to Eq.(1).

    Based on the Hirota bilinear method and transformation(2),then-soliton solution of Eq.(1)is

    wherepi,qi,ωi, andφiare arbitrary constants, ∑μ=0,1represents the sum of all possible combinations ofμi=0,1 (i=1,...,N).

    3.The M-lump solution and hybrid solutions for generalized Hirota-Satsuma-Ito equation

    The long wave limit method is an effective method to construct lump solution for nonlinear differential equations.In this section, we will explore this method to the GHSI equation.

    3.1.The M-lump solution for generalized Hirota-Satsuma-Ito equation

    Taking the long wave limit for then-soliton solution(5)

    we can get them-lump solution of Eq.(1)as

    with

    WhenN=2,M=1 for Eq.(6)and Eq.(7),the following 1-lump solution can be derived:

    WhenN=4,M=2,the 2-lump solution of Eq.(1)is

    3.2.Hybrid solutions for generalized Hirota-Satsuma-Ito equation

    When we take the following partial long wave limit on Eq.(5),that is constraints

    the hybrid solution betweenm-lump andn-soliton of Eq.(1)can be derived.

    For example,whenm=1,n=1,

    equation (12) denotes the hybrid solutions of 1-lump and 1-solitons,where

    Whenm=1,n=2, we can yield the hybrid solutions of 1-lump and 2-solitons as

    whereKijsatisfies Eq.(13).

    Similarly,taking the following partial long wave limit onn-soliton solution(5):

    the hybrid solutions betweenm-lump andn-breather wave of Eq.(1)can be obtained.

    For example,whenm=1,n=1,the hybrid solutions of 1-lump and 1-breather are

    It is easy to found that although equations (14) and (16)have the same expression form, they represent completely different hybrid solutions due to different constraints conditions(11)and(15).

    4.Trajectory equation of a lump before and after collision with other waves for generalized Hirota-Satsuma-Ito equation

    According to Eq.(7), the 1-lump solution of the (2+1)-dimensional GHSI equation can be expressed as

    whereθiandKi jare given by Eq.(8).Through the extreme value theorem of binary functions,we can obtain the parameter equation of the wave peak and valley of the 1-lump solution for Eq.(1)as follows:

    the parametric equations (18) and (19) can be converted into the following general form

    From Eqs.(20)and(21),we know that the lump wave moves along a straight line,and the wave speed is

    The height of peak and the depth of valley are respectively

    It is well known that the research on the motion trajectory of the lump wave usually refers to study its peak motion.In order to better understand the motion behavior of the 1-lump wave, we select the parametersρ1=2,ρ2=2,ρ3=3,ρ4=3,P1=1+(3/4)I,P2=1-(3/4)I,Q1=-1/2+I,Q2=-(1/2)-I,the following image simulations are shown in Fig.1.

    4.1.Trajectory equation of 1-lump before and after collisions with n-soliton

    In this subsection, with the help of the motion trajectory of a single lump, we mainly study the trajectory equation of 1-lump before and after collisions withn-soliton.In order to give a concise form of the trajectory equation before and after collisions,we refer to the following two function tokens:

    4.1.1.Trajectory equation of 1-lump before and after collisions with 1-soliton

    To proceed,with the help of expression(12),we propose the trajectory equation of 1-lump before and after collisions with 1-soliton for Eq.(1)by Theorem 1,and the related proof is given.

    Theorem 1 If the hybrid solution between 1-lump and 1-soliton for Eq.(1)can be represented as Eq.(12),and

    then, before and after the collisions of 1-lump and 1-soliton,the trajectory equations for the lump wave are

    with

    the phase change of the lump wave is

    However,before and after the collisions,the height and depth of the lump wave do not change,they still satisfy Eqs.(23)and(24).Where sign(x)is a symbolic function,x-,y-andx+,y+are the trajectory equations of the lump wave before and after collisions with solitons respectively.

    Proof Applying the following constraints:

    to the second equation of Eq.(12),it can be transformed into

    where

    For Eq.(31),we first discuss the case ofλ3>0.

    Whenλ3>0 andt →-∞,equation(31)can be reduced to the following form:

    Whent →∞,due to the invariance of the solutionv=2(lnτ)x,we multiply the expression exp(-λ3t-η3)to the right side of Eq.(31)will get

    Solving Eq.(30),c1andc2can be obtained below:

    Substituting Eq.(35)into Eqs.(33)and(34)leads to

    Here,bothτ-andτ+satisfy the bilinear equation(3).Therefore,before and after collisions,the trajectory equations of the lump wave can be written as

    The general forms of Eq.(37)are

    Substitutingx-,y-andx+,y+into the solutionv=2(lnτ)x,it can be verified that the height and depth of the lump wave remain unchanged.For the case ofλ3<0, the proof process is similar to the case ofλ3>0,it is omitted here.

    From Theorem 1, we find that the collision between 1-lump and 1-soliton is elastic whenλ3/=0.In order to better characterize Theorem 1, let the parametersρ1=2,ρ2=2,ρ3=3,ρ4=3,P1=-1/2,P2=-1/2,Q1=I,Q2=-I,p3=1/3,q3=-5/6,φ3=0, the corresponding diagrams plotted in Fig.2.

    Fig.2.Evolution behaviors of hybrid solution of 1-lump and 1-soliton for Eq.(1)at t=-10,0,10:(a)-(c)three-dimensional(3D)plots;(d)-(f)density plots.

    4.1.2.Trajectory equation of 1-lump before and after collisions with 2-soliton

    In this part,the trajectory equation of 1-lump before and after the collisions with 2-soliton is discussed from the 4-soliton solution,and the trajectory equation of 1-lump colliding withn-soliton is given.

    Theorem 2 If the hybrid solution between 1-lump and 2-solitons for Eq.(1)can be represented as Eq.(14),and

    then,before and after collisions,the trajectory equations of the lump wave are given below:

    whereβiandγiare determined by Eq.(28).Before and after collisions,the phase change of the lump is

    But the height and depth of the lump do not change and are consistent with Eqs.(23)and(24).

    Proof By employing the condition(30),the second equation of Eq.(14)can be converted into

    whereχiandηisatisfy Eq.(32).

    For Eq.(42), we need to consider the following casesλ3>0,λ4>0;λ3>0,λ4<0;λ3<0,λ4>0, andλ3<0,λ4<0.Here,we only discuss the first two cases,and the others can be discussed in the same way.

    (i)Whenλ3>0,λ4>0,according to the method in Theorem 1,whent →-∞andt →∞,equation(42)can be written as

    the trajectory equations of the lump wave before and after collisions are given below:

    The general forms of Eq.(44)are as follows:

    By Eq.(45), we can yield the value of phase change in Eq.(41).Substituting Eq.(44) intov=2(lnτ)x, the height and depth of the lump wave do not change.

    (ii)Whenλ3>0,λ4<0,we have

    The general equations corresponding to Eq.(47)are

    The values of Eq.(41)of the phase change can be obtained by Eq.(48).Substituting Eq.(47)intov=2(lnτ)x,we can verify that the height and depth of the lump wave do not change.

    To better explain the Theorem 2, by taking a set of parametersρ1=2,ρ2=2,ρ3=3,ρ4=3,P1=I/2,P2=-I/2,Q1=1+I/4,Q2=1-I/4,p3=1/4,p4=1/7,q3=-3/4,q4=-2,φ3=0,φ4=0, the collision diagrams of a lump wave and two-kink soliton can be given in Fig.3.

    By further generalizing Theorem 1 and Theorem 2, the trajectory equations before and after collisions of 1-lump andn-solitons can be obtained below.

    Theorem 3 Ifλi/=0, (i=3, 4,..., 2+n), then before and after 1-lump wave collidings withn-solitons, the trajectory equations of the lump wave are as follows:

    The phase shift of lump wave is

    Fig.3.Evolution behaviors of hybrid solution of 1-lump and 2-soliton for Eq.(1)at t=-30,0,30: (a)-(c)the 3D plots;(d)-(f)density plots.

    4.2.Trajectory equation of 1-lump before and after collisions with n-breather

    In this subsection, the motion trajectories and phase expressions of the lump wave in the hybrid solutions of 1-lump and 1-breather,1-lump andn-breather will be investigated.

    Theorem 4 If ?(λ3), ?(λ4)/= 0, then the trajectory equations of the collisions between 1-lump and 1-breather are

    and the phase shift of the lump wave is

    Comparing Theorem 2 and Theorem 4,their proof procedures are similar except for different constraint conditions, so the proof process will not be given here.In order to better describe the motion trajectory of 1-lump and 1-breather before and after collisions,the collision diagrams can be given in Fig.4 by selecting parametersρ1=2,ρ2=2,ρ3=3,ρ4=3,P1=3+I,P2= 3-I,Q1= 1+6I,Q2= 1-6I,p3= 3I,p4=-3I,q3=5/2,q4=5/2,φ3=0,φ4=0.

    Next,we further extend Theorem 4 to the case of 1-lump collidings withn-breather.The specific content is shown in the following Theorem 5.

    Theorem 5 If ?(λi)/=0,(i=3,4,...,2+2n),then, before and after collisions of a lump andn-breather the trajectory equations of the lump wave are

    and the phase shift of the lump wave is

    5.Summary and discussion

    In this paper, the trajectory equations of a lump before and after collisions with other waves for generalized Hirota-Satsuma-Ito equation are studied.Firstly, we start from the multi-soliton solution of the (2+1)-dimensional GHSI equation, many different types of mixed solutions of the GHSI equation are derived,such as the interaction between the lump solution and the line-soliton solution, the lump solution, and the breather solution.Secondly, under the constraint conditionsλi/=0, ?(λi)/=0 the trajectory equations of the lump wave before and after collisions withn-soliton(Theorm 3)andn-breather(Theorm 5)are proposed,and we have proved that the collision between lump and other waves are elastic,and the height and depth of the lump wave do not change.However,what does it mean whenλi=0,?(λi)=0? It will be shown in our subsequent research.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.12001424 and 12271324), the Natural Science Basic Research Program of Shaanxi Province,China (Grant No.2021JZ-21), the Chinese Post Doctoral Science Foundation (Grant No.2020M673332), and the Three-year Action Plan Project of Xi’an University (Grant No.2021XDJH01).

    猜你喜歡
    張開
    不一樣的“張”
    開花
    詩潮(2019年10期)2019-11-19 13:58:55
    天津詩人(2019年3期)2019-11-13 19:29:53
    就是那個(gè)夢想
    踏莎行·留守婦
    就是那個(gè)夢想
    張開想象的翅膀,在童話中飛翔
    讀寫算(中)(2016年9期)2016-02-27 08:47:36
    Dynamical Properties of a Diluted Dipolar-Interaction Heisenberg Spin Glass?
    国产精品一区二区免费欧美| 两性午夜刺激爽爽歪歪视频在线观看| 女生性感内裤真人,穿戴方法视频| 久久精品久久久久久噜噜老黄 | 亚洲图色成人| 国产伦在线观看视频一区| 亚洲av二区三区四区| 国产午夜精品久久久久久一区二区三区 | 九九爱精品视频在线观看| 在线观看舔阴道视频| 99久久久亚洲精品蜜臀av| 亚洲成人中文字幕在线播放| 日本爱情动作片www.在线观看 | 91在线观看av| 欧美日韩黄片免| 搡女人真爽免费视频火全软件 | 99久久精品国产国产毛片| 免费黄网站久久成人精品| 色5月婷婷丁香| 精品人妻偷拍中文字幕| 亚洲熟妇中文字幕五十中出| 春色校园在线视频观看| 老女人水多毛片| 白带黄色成豆腐渣| 色噜噜av男人的天堂激情| 偷拍熟女少妇极品色| 国产精华一区二区三区| 色精品久久人妻99蜜桃| 男人舔奶头视频| 亚洲精华国产精华液的使用体验 | 免费观看的影片在线观看| 国产视频内射| 欧美成人免费av一区二区三区| 国产aⅴ精品一区二区三区波| 少妇人妻精品综合一区二区 | 少妇裸体淫交视频免费看高清| 亚洲国产欧美人成| 精品乱码久久久久久99久播| 国产精品免费一区二区三区在线| 亚洲,欧美,日韩| 性欧美人与动物交配| 天美传媒精品一区二区| 国产成人影院久久av| 久久精品夜夜夜夜夜久久蜜豆| 熟女电影av网| 亚洲国产精品合色在线| 国产高清不卡午夜福利| 成人精品一区二区免费| 小说图片视频综合网站| 美女高潮喷水抽搐中文字幕| 一区二区三区四区激情视频 | 91在线精品国自产拍蜜月| 亚洲成人久久爱视频| 中文字幕久久专区| 91久久精品电影网| 国产一区二区三区在线臀色熟女| 色视频www国产| 窝窝影院91人妻| 欧美日韩黄片免| 久久国产乱子免费精品| 日本精品一区二区三区蜜桃| 99在线视频只有这里精品首页| 老女人水多毛片| 日韩中文字幕欧美一区二区| 久久久久久久久大av| 国产精品久久视频播放| 成熟少妇高潮喷水视频| 国语自产精品视频在线第100页| 18禁黄网站禁片免费观看直播| 久久精品综合一区二区三区| 午夜激情福利司机影院| 欧美日韩国产亚洲二区| 一级a爱片免费观看的视频| 久久久精品欧美日韩精品| 国产淫片久久久久久久久| 99热这里只有是精品50| 国产乱人视频| 深爱激情五月婷婷| 亚洲人成伊人成综合网2020| 亚洲欧美日韩东京热| 久久精品国产亚洲av天美| 美女被艹到高潮喷水动态| 国产精品一区二区三区四区免费观看 | 久久精品91蜜桃| 日韩欧美三级三区| 日韩 亚洲 欧美在线| av专区在线播放| 999久久久精品免费观看国产| 国产精品,欧美在线| 岛国在线免费视频观看| 18禁裸乳无遮挡免费网站照片| 很黄的视频免费| 很黄的视频免费| 国产久久久一区二区三区| 在线国产一区二区在线| 欧美绝顶高潮抽搐喷水| 国产高清不卡午夜福利| 国产精品无大码| 我要看日韩黄色一级片| 欧美另类亚洲清纯唯美| 免费无遮挡裸体视频| 国产高清激情床上av| 色精品久久人妻99蜜桃| 国产激情偷乱视频一区二区| 美女大奶头视频| 免费搜索国产男女视频| 亚洲av电影不卡..在线观看| 午夜免费男女啪啪视频观看 | 又粗又爽又猛毛片免费看| 天堂√8在线中文| 99精品久久久久人妻精品| 午夜免费男女啪啪视频观看 | 狠狠狠狠99中文字幕| 婷婷丁香在线五月| 国产老妇女一区| 亚洲一级一片aⅴ在线观看| 毛片女人毛片| 中国美白少妇内射xxxbb| 18禁黄网站禁片免费观看直播| 性插视频无遮挡在线免费观看| 国产69精品久久久久777片| 搡老熟女国产l中国老女人| 色在线成人网| www.www免费av| 99精品在免费线老司机午夜| 国产三级在线视频| 日韩欧美精品免费久久| 小蜜桃在线观看免费完整版高清| 一a级毛片在线观看| 两个人视频免费观看高清| 国产精品伦人一区二区| 国产精品98久久久久久宅男小说| 无遮挡黄片免费观看| 麻豆国产97在线/欧美| 欧美最新免费一区二区三区| h日本视频在线播放| 天堂av国产一区二区熟女人妻| 国内精品宾馆在线| 国产精品爽爽va在线观看网站| 色精品久久人妻99蜜桃| 极品教师在线免费播放| 观看美女的网站| 久久精品国产亚洲网站| 亚洲男人的天堂狠狠| 国产av一区在线观看免费| 91精品国产九色| 国产色婷婷99| 尤物成人国产欧美一区二区三区| 成年女人永久免费观看视频| 欧美xxxx黑人xx丫x性爽| 色哟哟·www| 欧美日韩乱码在线| 久久久久国内视频| 最近中文字幕高清免费大全6 | 国产91精品成人一区二区三区| 成人二区视频| 一个人免费在线观看电影| 国产黄色小视频在线观看| 在现免费观看毛片| 别揉我奶头 嗯啊视频| 国产乱人伦免费视频| 亚洲精品成人久久久久久| 校园人妻丝袜中文字幕| 国产真实乱freesex| 午夜精品一区二区三区免费看| 亚洲人成网站在线播放欧美日韩| 热99在线观看视频| 亚洲av美国av| 国产一区二区亚洲精品在线观看| 99热这里只有是精品在线观看| 国产精品不卡视频一区二区| 精品人妻偷拍中文字幕| 日本 av在线| 亚洲av第一区精品v没综合| 午夜福利成人在线免费观看| 不卡视频在线观看欧美| 欧美日本亚洲视频在线播放| 久久6这里有精品| 女人被狂操c到高潮| 老熟妇乱子伦视频在线观看| 亚洲成人中文字幕在线播放| 国产伦人伦偷精品视频| 午夜激情福利司机影院| 美女被艹到高潮喷水动态| 国产亚洲精品综合一区在线观看| 久久欧美精品欧美久久欧美| 久久久久久大精品| 国产成人av教育| 在线国产一区二区在线| 精华霜和精华液先用哪个| 中国美女看黄片| 亚洲av成人精品一区久久| 日本-黄色视频高清免费观看| 热99在线观看视频| 一夜夜www| 欧美又色又爽又黄视频| 欧美bdsm另类| av在线天堂中文字幕| 18禁黄网站禁片午夜丰满| 国产亚洲精品综合一区在线观看| 亚洲国产精品sss在线观看| 日日干狠狠操夜夜爽| 99精品久久久久人妻精品| 免费一级毛片在线播放高清视频| 成人毛片a级毛片在线播放| 亚洲熟妇中文字幕五十中出| 成人无遮挡网站| 国产人妻一区二区三区在| 成人一区二区视频在线观看| 老熟妇乱子伦视频在线观看| 村上凉子中文字幕在线| 69人妻影院| 女人被狂操c到高潮| 老司机深夜福利视频在线观看| 欧美日本亚洲视频在线播放| 18禁在线播放成人免费| 免费在线观看成人毛片| 91精品国产九色| 日日夜夜操网爽| 亚洲va日本ⅴa欧美va伊人久久| 老熟妇仑乱视频hdxx| 久久久久久久久大av| 天美传媒精品一区二区| 女的被弄到高潮叫床怎么办 | 不卡一级毛片| 国产成人福利小说| 日本爱情动作片www.在线观看 | 美女高潮的动态| 天堂av国产一区二区熟女人妻| 国产精品久久久久久亚洲av鲁大| 精品国产三级普通话版| av在线天堂中文字幕| 女的被弄到高潮叫床怎么办 | 国产极品精品免费视频能看的| 草草在线视频免费看| 亚洲国产精品成人综合色| 亚洲人成伊人成综合网2020| 中文字幕av在线有码专区| 国产女主播在线喷水免费视频网站 | 亚洲va在线va天堂va国产| 精品久久久久久久久久久久久| 熟女电影av网| 波多野结衣高清作品| 亚洲精华国产精华精| 真人做人爱边吃奶动态| 97超视频在线观看视频| 亚洲男人的天堂狠狠| 日日啪夜夜撸| 熟女人妻精品中文字幕| 看十八女毛片水多多多| 国产黄色小视频在线观看| 啦啦啦韩国在线观看视频| 久久精品国产亚洲av香蕉五月| 麻豆国产av国片精品| 中文字幕免费在线视频6| 国内精品一区二区在线观看| 亚洲自偷自拍三级| 99热6这里只有精品| a级一级毛片免费在线观看| 成人毛片a级毛片在线播放| 综合色av麻豆| 蜜桃亚洲精品一区二区三区| 老熟妇乱子伦视频在线观看| 亚洲一级一片aⅴ在线观看| 在现免费观看毛片| 亚洲av五月六月丁香网| 极品教师在线免费播放| 中文字幕精品亚洲无线码一区| 伦精品一区二区三区| 精品乱码久久久久久99久播| 欧洲精品卡2卡3卡4卡5卡区| 国产 一区精品| 一本一本综合久久| 国产探花在线观看一区二区| 精品人妻偷拍中文字幕| 久久精品综合一区二区三区| 99热6这里只有精品| 日韩精品中文字幕看吧| 高清日韩中文字幕在线| 欧美性感艳星| 免费看日本二区| 亚洲va日本ⅴa欧美va伊人久久| 久久婷婷人人爽人人干人人爱| 久久天躁狠狠躁夜夜2o2o| 国产大屁股一区二区在线视频| 成年女人看的毛片在线观看| 乱人视频在线观看| 欧美成人免费av一区二区三区| 亚洲成人免费电影在线观看| a级毛片免费高清观看在线播放| 18禁裸乳无遮挡免费网站照片| 午夜福利成人在线免费观看| 人妻夜夜爽99麻豆av| 深爱激情五月婷婷| 久久久久久久亚洲中文字幕| ponron亚洲| 嫩草影院新地址| 亚洲图色成人| 又黄又爽又免费观看的视频| 日日撸夜夜添| 国产成人影院久久av| 精品一区二区三区av网在线观看| 国产高清视频在线播放一区| 日韩欧美免费精品| 国产精品久久电影中文字幕| 日韩中文字幕欧美一区二区| 亚洲精品国产成人久久av| 特大巨黑吊av在线直播| 日本五十路高清| 精品欧美国产一区二区三| 人妻制服诱惑在线中文字幕| 噜噜噜噜噜久久久久久91| 午夜精品一区二区三区免费看| 22中文网久久字幕| 美女高潮喷水抽搐中文字幕| 天堂影院成人在线观看| 国产精品av视频在线免费观看| 99热这里只有是精品在线观看| 日韩人妻高清精品专区| 成人性生交大片免费视频hd| 免费在线观看影片大全网站| 日本欧美国产在线视频| 三级国产精品欧美在线观看| 精品欧美国产一区二区三| 亚洲成人免费电影在线观看| 国产亚洲av嫩草精品影院| 国产白丝娇喘喷水9色精品| 国内毛片毛片毛片毛片毛片| 久久久久免费精品人妻一区二区| 超碰av人人做人人爽久久| 亚洲av中文字字幕乱码综合| 国产精品久久久久久精品电影| 91麻豆av在线| 最好的美女福利视频网| 很黄的视频免费| 国产乱人视频| 国内精品久久久久久久电影| 91久久精品电影网| 亚洲人与动物交配视频| 精品人妻偷拍中文字幕| 在线免费观看不下载黄p国产 | 美女cb高潮喷水在线观看| 国语自产精品视频在线第100页| av视频在线观看入口| 欧美日韩国产亚洲二区| 欧美日韩乱码在线| 欧美精品啪啪一区二区三区| 免费搜索国产男女视频| 在线观看66精品国产| 岛国在线免费视频观看| 国产黄片美女视频| 一边摸一边抽搐一进一小说| 国产高清不卡午夜福利| 春色校园在线视频观看| 身体一侧抽搐| 可以在线观看的亚洲视频| 老熟妇仑乱视频hdxx| 久9热在线精品视频| 动漫黄色视频在线观看| 麻豆成人午夜福利视频| 嫩草影视91久久| 国产精品一区www在线观看 | 校园春色视频在线观看| 亚洲成人精品中文字幕电影| 久久99热6这里只有精品| 在线观看av片永久免费下载| 亚洲人成伊人成综合网2020| 日韩欧美精品v在线| 日本撒尿小便嘘嘘汇集6| 欧美+亚洲+日韩+国产| 三级毛片av免费| ponron亚洲| 国产成人aa在线观看| 国产女主播在线喷水免费视频网站 | 国产日本99.免费观看| 99久久久亚洲精品蜜臀av| 别揉我奶头~嗯~啊~动态视频| 日本-黄色视频高清免费观看| 毛片女人毛片| 人妻夜夜爽99麻豆av| 国产人妻一区二区三区在| 国产爱豆传媒在线观看| 能在线免费观看的黄片| 又粗又爽又猛毛片免费看| 国产成人av教育| 99国产极品粉嫩在线观看| 久久99热6这里只有精品| 亚洲乱码一区二区免费版| 干丝袜人妻中文字幕| 深夜a级毛片| 特大巨黑吊av在线直播| www.色视频.com| 欧美日韩亚洲国产一区二区在线观看| 一区福利在线观看| 免费黄网站久久成人精品| 久久婷婷人人爽人人干人人爱| 尤物成人国产欧美一区二区三区| 亚洲自偷自拍三级| 亚洲av中文字字幕乱码综合| 免费看美女性在线毛片视频| 成人高潮视频无遮挡免费网站| 国产一区二区亚洲精品在线观看| 中文资源天堂在线| 女人十人毛片免费观看3o分钟| 国产精品99久久久久久久久| 两个人视频免费观看高清| 国产白丝娇喘喷水9色精品| 久久天躁狠狠躁夜夜2o2o| 中文亚洲av片在线观看爽| 亚洲av免费高清在线观看| 免费观看在线日韩| 日韩 亚洲 欧美在线| 亚洲精品在线观看二区| 精品日产1卡2卡| 99久久精品热视频| 久久国产精品人妻蜜桃| 成年女人永久免费观看视频| 18+在线观看网站| 免费看美女性在线毛片视频| 成年版毛片免费区| 国产精华一区二区三区| 久久精品人妻少妇| 午夜老司机福利剧场| 精品不卡国产一区二区三区| 久久午夜亚洲精品久久| 大型黄色视频在线免费观看| 很黄的视频免费| 国产爱豆传媒在线观看| 一本久久中文字幕| 看免费成人av毛片| 黄色视频,在线免费观看| 淫妇啪啪啪对白视频| 亚洲四区av| 天堂影院成人在线观看| 午夜影院日韩av| 18禁黄网站禁片午夜丰满| 国产极品精品免费视频能看的| 色精品久久人妻99蜜桃| 欧美日韩综合久久久久久 | 成人国产综合亚洲| 亚洲va在线va天堂va国产| 人妻夜夜爽99麻豆av| 非洲黑人性xxxx精品又粗又长| 日日啪夜夜撸| 亚洲男人的天堂狠狠| 日韩欧美三级三区| 午夜日韩欧美国产| 天美传媒精品一区二区| 在线观看免费视频日本深夜| 可以在线观看的亚洲视频| 午夜影院日韩av| 精品99又大又爽又粗少妇毛片 | 看黄色毛片网站| 观看美女的网站| 两性午夜刺激爽爽歪歪视频在线观看| 在线观看午夜福利视频| 中文字幕av成人在线电影| 性欧美人与动物交配| 久久婷婷人人爽人人干人人爱| 成人美女网站在线观看视频| 波多野结衣高清作品| 国产精品野战在线观看| 国产精品人妻久久久影院| 中文在线观看免费www的网站| 亚洲精品成人久久久久久| 国产人妻一区二区三区在| 又紧又爽又黄一区二区| 99国产精品一区二区蜜桃av| 国产精品亚洲美女久久久| 色综合站精品国产| 亚洲在线自拍视频| 高清日韩中文字幕在线| 一本精品99久久精品77| 日韩中字成人| 欧美丝袜亚洲另类 | 亚洲av免费高清在线观看| 成人av在线播放网站| 日韩国内少妇激情av| 日本爱情动作片www.在线观看 | 久久久久国内视频| 欧美日韩国产亚洲二区| 亚洲熟妇中文字幕五十中出| 亚洲在线自拍视频| 国产欧美日韩精品亚洲av| 联通29元200g的流量卡| 精品国产三级普通话版| 免费看av在线观看网站| 永久网站在线| 给我免费播放毛片高清在线观看| 一区二区三区激情视频| 97热精品久久久久久| 看十八女毛片水多多多| 色播亚洲综合网| 看十八女毛片水多多多| 欧美成人a在线观看| av福利片在线观看| www.www免费av| 成年女人看的毛片在线观看| 国产亚洲欧美98| 免费av毛片视频| 日日夜夜操网爽| 免费大片18禁| 亚洲精品一卡2卡三卡4卡5卡| 国内精品宾馆在线| 亚洲国产精品sss在线观看| 观看免费一级毛片| 中文字幕熟女人妻在线| 精品福利观看| 无人区码免费观看不卡| 最新中文字幕久久久久| 日日摸夜夜添夜夜添小说| 天美传媒精品一区二区| 国产一级毛片七仙女欲春2| 日本撒尿小便嘘嘘汇集6| 国产蜜桃级精品一区二区三区| 免费一级毛片在线播放高清视频| a级毛片免费高清观看在线播放| 看黄色毛片网站| 嫩草影院新地址| 亚洲中文字幕一区二区三区有码在线看| 午夜精品久久久久久毛片777| 精品一区二区三区人妻视频| 国产美女午夜福利| 最新中文字幕久久久久| 亚洲av中文字字幕乱码综合| 最近最新免费中文字幕在线| 22中文网久久字幕| 亚洲国产精品久久男人天堂| 91久久精品国产一区二区三区| 国产探花极品一区二区| 真人一进一出gif抽搐免费| 91av网一区二区| 国产 一区 欧美 日韩| 国产一区二区三区在线臀色熟女| 国产精品98久久久久久宅男小说| 在线免费观看不下载黄p国产 | 99久久精品一区二区三区| 91在线精品国自产拍蜜月| 1000部很黄的大片| 欧美另类亚洲清纯唯美| 精品久久久久久久久av| 看免费成人av毛片| 乱系列少妇在线播放| 午夜福利欧美成人| 国产探花在线观看一区二区| 少妇猛男粗大的猛烈进出视频 | 两个人的视频大全免费| 中出人妻视频一区二区| 亚洲内射少妇av| 免费无遮挡裸体视频| 三级毛片av免费| 香蕉av资源在线| 国产伦一二天堂av在线观看| 日韩亚洲欧美综合| 少妇丰满av| 赤兔流量卡办理| 亚洲精华国产精华精| 99国产极品粉嫩在线观看| 最近最新中文字幕大全电影3| 18禁在线播放成人免费| 国产视频一区二区在线看| 久久精品国产亚洲网站| 免费不卡的大黄色大毛片视频在线观看 | 白带黄色成豆腐渣| 少妇人妻精品综合一区二区 | 身体一侧抽搐| 99热这里只有精品一区| 国产精品爽爽va在线观看网站| 在线天堂最新版资源| 免费看日本二区| 变态另类丝袜制服| 国产精品1区2区在线观看.| 国产视频内射| 十八禁网站免费在线| 免费无遮挡裸体视频| 很黄的视频免费| 有码 亚洲区| 在线观看66精品国产| 麻豆av噜噜一区二区三区| 国产亚洲91精品色在线| 网址你懂的国产日韩在线| 日本撒尿小便嘘嘘汇集6| 日本精品一区二区三区蜜桃| 伦理电影大哥的女人| 简卡轻食公司| 免费av毛片视频| 欧美绝顶高潮抽搐喷水| 可以在线观看的亚洲视频| 99热网站在线观看| 欧美日韩国产亚洲二区| 麻豆成人午夜福利视频| 丰满的人妻完整版| 国产探花极品一区二区| 欧美xxxx性猛交bbbb| 国产精品久久久久久精品电影| 国产精品99久久久久久久久| 乱系列少妇在线播放| 国产91精品成人一区二区三区| 少妇的逼水好多| www.www免费av| 五月伊人婷婷丁香| 色综合婷婷激情| 一本一本综合久久| 国产伦精品一区二区三区视频9| 日韩在线高清观看一区二区三区 | 欧美不卡视频在线免费观看| 亚洲人成伊人成综合网2020| 国产高清视频在线观看网站| 又黄又爽又免费观看的视频| 国产日本99.免费观看| 亚洲av成人av| 在线a可以看的网站| 亚洲欧美精品综合久久99| 琪琪午夜伦伦电影理论片6080| 亚洲电影在线观看av|