• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental investigation of velocity fluctuations in a radial diffuser pump*

    2015-02-16 06:50:29FENGJianjun馮建軍LUOXingqi羅興锜BENRAFriedrichKarlDOHMENHansJosef
    關(guān)鍵詞:建軍

    FENG Jian-jun (馮建軍), LUO Xing-qi (羅興锜), BENRA Friedrich-Karl, DOHMEN Hans-Josef

    1. State Key Laboratory Base of Eco-Hydraulic Engineering in Arid Area, Xi’an University of Technology, Xi’an 710048, China

    2. Department of Mechanical Engineering, Faculty of Engineering, University of Duisburg-Essen, Duisburg 47048, Germany, E-mail: fengjianjunxaut@163.com

    Experimental investigation of velocity fluctuations in a radial diffuser pump*

    FENG Jian-jun (馮建軍)1,2, LUO Xing-qi (羅興锜)1, BENRA Friedrich-Karl2, DOHMEN Hans-Josef2

    1. State Key Laboratory Base of Eco-Hydraulic Engineering in Arid Area, Xi’an University of Technology, Xi’an 710048, China

    2. Department of Mechanical Engineering, Faculty of Engineering, University of Duisburg-Essen, Duisburg 47048, Germany, E-mail: fengjianjunxaut@163.com

    (Received April 22, 2014, Revised August 4, 2014)

    The strong interaction in a radial pump due to the relative movement between the impeller and the diffuser may excite not only strong pressure fluctuations but also velocity fluctuations. In this paper, the laser Doppler velocimetry (LDV) technique is successfully applied to measure the periodic flow field in a radial diffuser pump with low-specific speed, in order to investigate the velocity fluctuations caused by the impeller-diffuser interactions both in the impeller and diffuser regions. The velocity fluctuations in the impeller region are quantitatively examined at different radial positions, and the flow structure at the radial gap between two flow components is analyzed at different relative positions. In addition, the downstream effect on the diffuser flow is quantitatively and qualitatively assessed and compared with the turbulence effect.

    laser Doppler velocimetry (LDV), radial pump, impeller-diffuser interaction, velocity fluctuations

    Introduction

    The radial pumps are turbo-machines used for transporting or raising a specified volume flow to a specified pressure level, and are extensively used in industry. The inside flow structure is very complicated and strongly unsteady, and it is induced by a strong interaction due to the relative movement between the rotating impeller and the stationary diffuser, known as the impeller-diffuser interaction. It is reported that the interaction in between can produce strong pressure fluctuations both upstream the impeller flow and downstream the diffuser flow[1-3], along with velocity and turbulence fluctuations[4,5].

    The pressure fluctuations in radial diffuser pumps were extensively studied by both numerical and experimental methods, such as Wang and Tsukamoto[6], Furukawa et al.[7], Guo and Maruta[8], Yuan et al.[9]and Ni et al.[10]. It is revealed that the unsteady interactions can generate strong pressure fluctuations upstream and downstream, to produce high dynamics forces and cause vibrations, noises and even damages in some extreme cases.

    The velocity fluctuations in radial pumps were studied with particle image velocimetry (PIV) measurements[11-14]and axial pumps[15]. Another non-contact method of measuring velocities is the laser Doppler velocimetry (LDV), which is considered to be more accurate due to its direct measurements at the points of interest. The LDV measurements in radial pumps were conducted to study unsteady flows there. Akhras et al.[16]and Hajem et al.[17]applied the LDV to investigate the flow field near an impeller outlet. Pintrand et al.[18]measured the velocity field in the impeller outer part and also in the diffuser region. Nicholas et al.[19]studied the impeller internal flow fields using the LDV technique. Akhras et al.[20]applied the LDV to investigate the influence of the downstream diffuser on the impeller flow field. Feng et al.[21]applied the LDV in a radial pump to investigate unsteady effects related to the unsteady velocities. Their studies improved the understanding of the unsteady flow characteristics in radial diffuser pumps. However, the velocity fluctuations caused by the impeller-diffuser interaction remain an issue for further studies.

    Table1 Pump geometry

    In this paper, the LDV technique is successfully applied to measure the unsteady flow in the impeller and the diffuser of a radial diffuser pump, in order to examine the velocity fluctuations caused by unsteady interactions between the impeller and the diffuser.

    Fig.1 Meridional section of the pump stage

    Fig.2 A view of the pump

    1. Experimental procedures

    1.1 Pump geometry

    The radial pump stage is in a low-specific speed, which is composed of a shrouded six-blade impeller and a nine-vane diffuser. The impeller blade is constructed with one single arc and in constant thickness, with inlet radius R1=0.04 mand outlet radius R2= 0.07525 m. The blades are arranged with blade angle of β=17.9oat the inlet andβ=22.5oat the outlet.

    12The radius for the diffuser inletR3is 0.0775 m, with a radial gap of 0.00225 m, which is relatively small and is assumed to generate very strong unsteady effects due to the rotor-stator interaction. Table 1 shows some important parameters for the pump stage, and Fig.1 shows the meridional section of the pump stage. For the optical measurement, the whole pump stage including the impeller, the diffuser and the return channel is constructed entirely with Plexiglas. Figure 2 shows an overview of the impeller and the diffuser.

    Fig.3 Pump test stand with LDV

    1.2 LDV measurements

    Figure 3 shows the pump test stand equipped with the LDV measuring system. The pump stage is driven by a motor connected with a belt, and its rotation frequency can be increased gradually to 50 Hz with a minimum step of 0.1 Hz. A water tank of 3 m3in volume is used to feed the water into the pump and also recollect the water out of the pump. An electromagnetic flow meter is installed behind the pump to measure the flow rate. For the LDV system, a laser light is generated by an Argon-Ion laser. Two laserbeams, the green one (514.5 nm) and the blue one (488 nm), are produced by a beam separator for an optics probe for transmitting and receiving signals. The probe is mounted on a two-dimensional traverse system, whose movement is controlled by software to make successive measurements at required points.

    Fig.4 LDV measurement points

    Fig.5 Velocity decomposition of signals in LDV

    The measurement region is shown in Fig.4, located at the midspan, i.e., the half blade height plane as indicated in the meridional section in the right subfigure, covering a part of the impeller region and a full diffuser channel. The encoder fixed on the pump shaft produces one pulse in a predefined impeller position during each revolution, which is utilized to synchronize the measurement at the impeller circumferential position. In the impeller, the range of measurement points at 8 radial positions covers one whole diffuser pitch. In the diffuser, more than 210 points are selected. At each point, 100 000 sets of data are recorded with the coincidence model, in which each set of two velocity signals are taken simultaneously.

    1.3 Data post-processing

    Measurements are conducted only inxandy directions, as indicated in Fig.4, and the velocity in the z-axis direction is not measured. The relative impeller positionφis utilized to associate the impeller relative circumferential position with the diffuser during the impeller rotation.φ=0ois the relative impeller position when the pre-defined impeller blade trailing edge approaches the leading edge of a pre-defined diffuser vane.

    Figure 5(a) shows the velocity signals from the LDV measurements, each measured signal is synchronized with time in the range between 0 andT(the pump rotation period) with the function of resetting time each cycle realized by the shaft encoder. Then, the signals are sorted into 360 bins (one degree for each bin width), and each bin represents a particular impeller positionφ. During each bin, the mean (arithmetic-average) velocities () and the velocity standard deviations (are calculated taken account of all signals falling into the bin width, as shown in Fig.5(b) and expressed in Eq.(1) for two velocity componentsuandv. The turbulence intensityTu is defined in Eq.(3) based on the velocity standard deviation components. Moreover in cylindrical coordinates, the absolute circumferential velocity Cuand the radial velocity Crare obtained from Eq.(4) according to the azimuth angleφ

    2. Results and discussions

    Results discussed in the following section are for the design condition of the pump: the rotating speed ndes=1450 rpmand the flow rate Qdes=4.5l/s.

    Fig.6 Evolution of turbulence intensity in impeller

    Figure 6 shows the turbulence intensity distributions in the impeller region at four measurement points, positioned at a radial plane of φ=70o(Fig.4). Each measurement point is fixed in the absolute coordinate system, resulting in different circumferential positionsφwithin one impeller revolution.

    The similarity of the turbulence intensity among six impeller channels can be still observed despite some noise, showing the consistence of the measured data set and the uniformity of the flow. For all investigated points, the turbulence intensityTu near the impeller suction side is larger than that near the pressure side, and the largestTu is located near the impeller suction side. This is due to the unsteady effects from the leakage flows in the front side chamber of the impeller, as is confirmed by the CFD results not presented here. The highest turbulence intensity near the impeller suction side keeps decreasing from around 7.5% at r/ R2=0.757to 5.3% at r/ R2=0.930. This is because the unsteady leakage flow effect attenuates with the increase of the radial distance to the outlet of the front side chamber near the impeller inlet[ 12]. However, the highest turbulence intensity on the pressure side stays at around 3%. Moving from r/ R2=0.983to r/ R2=1.01, the turbulence intensity on the pressure side remains 3%, but the highestTu near the impeller suction side increases and reaches up to 8%. In addition, two peaks are generally observed for each impeller pitch. The propagation of the impeller wake and its interaction with the diffuser leading edges contribute to this high magnitude ofTu and the mentioned two peaks.

    Fig.7 Velocity triangle

    The relative flow angleβis defined in Fig.7 and expressed as in Eq.(5). Figure 8 shows the relative flow angle distributions at the radial position r/ R2= 1.01, which is located in the radial gap region between the impeller and the diffuser.

    Obviously,βexperiences a very strong variation in the circumferential direction, influenced not only by the location of the impeller trailing edge (marked with rectangles on the top) but also by the location of the diffuser vane leading edge (marked with ellipses on the bottom).The flow angleβpredicted by the LDV is smaller than the design value (β2= 22.5o)nearly in the whole circumferential range, as a result of the slip effect due to the finite number of the impeller blades. Negative values ofβare observed near each diffuser leading edge due to the local back flow. In addition, the peak-to-peak difference ofβin the circumferential direction is as high as 50o. Notice thatβhas a tendency to increase in the impeller wake region, decreasing when the impeller wake begins to impinge the diffuser leading edge (Fig.8(b)) andincreasing after the impingement. This phenomenon was also reported in axial turbines[22].

    Fig.8 Comparison of relative flow angles in the radial gap between the impeller and diffuser,r/ R2=1.01

    The stator unsteady intensitySuis defined to identify quantitatively the impeller rotation effect on the diffuser flow structure, which is expressed as in Eq.(6) based on the periodic velocity components calculated by excluding the time-averaged components from the phase-averaged components in Eq.(7). In addition, the averagedSuandTu can be obtained from Eq.(8).

    Figure 9 shows a comparison betweenTuand Suat three measuring points in the diffuser. For the point in the semi-vaned region near the diffuser inlet (P1), it is found that the peak value ofSureaches up to 12%, nearly twice larger than that ofTu , which means thatSu is more sensitive to the impeller position thanTu in this region. In addition, six peaks in both distribution curves correspond very clearly to six blades of the impeller. Moving to the point located behind the diffuser inlet throat (P2),Sudecreases greatly and becomes smaller thanTuin the whole range. At the point behind the diffuser outlet throat (P3), the domination of the impeller blade passing frequency on SuandTu becomes very weak, andTustays at about 4% whileSufluctuates around less than 1%.

    Fig.10 Stator unsteady intensity Suin diffuser

    Figure 10 shows the contours of the stator unsteady intensitySu at two impeller positions. The highestSu is around 10%, taken at the position just behind the trailing edge of the impeller blade.Su in the semi-vaned region stays in general at a high level of about 6%.

    Fig.11 Comparison between stator unsteady intensity and turbulence intensity in diffuser

    Figure 11 shows several comparisons of the contours between the turbulence intensityTu and the stator unsteadinessSu , including the time averages and also the peak-to-peak differences (the difference between the maximum and the minimum) in the complete diffuser passage. It is obvious thatSu in Fig.11(a) on the diffuser suction side is much higher than thaton the pressure side, indicating that the flow on the suction side changes more strongly during the impeller rotation, i.e., is more influenced by the impeller rotation. This might be due to the fact that the suction side is closer to the trailing edge of the impeller blade as compared to the pressure side of the diffuser vane. Furthermore, in the front part of a diffuser pitch in the circumferential direction (based on the rotation direction of the impeller) one sees the highest Su reaching 7%. This suggests that the flow field in this region is the most sensitive to the impeller relative position, and the diffuser leading edge contributes to this effect. For Tuin Fig.11(b), a higher value is observed near the diffuser suction side in the semi-vaned region and in the diffuser wake region. In a further analysis, one sees thatSuis larger than or at least comparable to Tuin the semi-vaned region, which is very clearly seen by the comparison in Fig.12(a). Here it is indicated that both the impeller orientation effect and the turbulence effect are dominant for the flow in that region. Behind the inlet throat of the diffuser,Suis observed to be generally smaller than 2%. However,Tu remains to be about 2% in magnitude. Behind the outlet throat of the diffuser, the stator unsteady intensity keeps decreasing and is now much lower than the turbulence intensity, as shown in Fig.12(b). Moreover, the peak-to-peak distribution of Sushown in Fig.11(c) is similar to the averaged distribution, showing that a higherSuis accompanying by a higher peak-to-peak value. The peak-to-peak distribution of Tu in Fig.11(d) shows a highest value of around 6%.

    Fig.12 Comparison of TuandSu in diffuser

    3. Conclusions

    The periodic flow field in a radial diffuser pump stage is measured by the LDV. The attention is paid to the velocity fluctuations caused by the unsteady interactions between the impeller and the diffuser. It is shown that the distribution of the relative flow angle βnear the impeller outlet is strongly non-uniform. Consequently, different inlet conditions are produced for the downstream diffuser. The high turbulence intensity on the impeller suction side induced by the leakage flow is nearly in the same magnitude as in the impeller wake, around 8% based on U2, and it decreases slightly with the radial position. The turbulence intensity on the pressure side stays at about 3% for all measured radial positions, much smaller than on the suction side.

    In the diffuser, the stator unsteady intensity assumes a peak value of about 12% near the diffuser inlet, twice as high as that of the turbulence intensity in that region. In addition, the time-averaged values of both at the diffuser inlet are generally around 5%-6%, slightly fluctuating depending on the circumferential position. It is found that both the impeller orientation effect (i.e., the stator unsteady intensity) and the turbulence effect play important roles for the flow structure in the semi-vaned region ahead of the inlet throat of the diffuser. In other words, the unsteady intensity from the impeller rotation is larger than or at least comparable to the turbulence intensity. Behind the diffuser inlet throat, the stator unsteady intensity diminishes greatly and is lower than the turbulence effect. The impeller orientation effect nearly vanishes behind the outlet throat of the diffuser, while the turbulence intensity does not decay but still remains in a relatively high level.

    [1] ARNDT N., ACOSTA A. J. and BRENNEN C. E. et al. Rotor-stator interaction in a diffuser pump[J]. Journal of Turbomachinery,1989, 111(3): 213-221.

    [2]PAVESIG.,CAVAZZINIG. and ARDIZZON G. Pressure instabilities in a vaned centrifugal pump[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2011, 228(4): 930-939.

    [3] JAPIKSE D., MARSCHER W. D. and RAYMOND M. B. F. Centrifugal pump design and performance[M]. Vermont, USA: Concepts ETI Incorporated, 1997.

    [4] SINHA M., KATZ J. Quantitative visualization of the flow in a centrifugal pump with diffuser vanes, part I: On flow structures and turbulence[J]. Journal of Fluids Engineering, 2000, 122(1): 97-107.

    [5] SINHA M., KATZ J. Quantitative visualization of the flow in a centrifugal pump with diffuser vanes, part II: Addressing passage averaged and LES modeling issues in turbomachinery flow[J]. Journal of Fluids Engineering, 2000, 122(1): 108-116.

    [6] WANG H., TSUKAMOTO H. Experimental and numerical study of unsteady flow in a diffuser pump at offdesign conditions[J]. Journal of Fluids Engineering, 2003, 125(5): 767-777.

    [7] FURUKAWA A., TAKAHARA H. and NAKAGAWA T. et al. Pressure fluctuation in a vaned diffuser downstream from a centrifugal pump impeller[J]. International Journal of Rotating Machinery, 2003, 9(1): 285- 292.

    [8] GUO S., MARUTA Y. Experimental investigations on pressure fluctuations and vibration of the impeller in a centrifugal pump with vaned diffuser[J]. JSME International Journal, Series B: Fluids and Thermal En- gineering, 2005, 48(1): 136-143.

    [9] YUAN Shou-qi, NI Yong-yan and PAN Zhong-yong et al. Unsteady turbulent simulation and pressure fluctuation analysis for centrifugal pumps[J]. Chinese Journal of Mechanical Engineering, 2009, 22(1): 64-69.

    [10] NI Yong-yan, YUAN Shou-qi and PAN Zhong-yong et al. Diagnosing the running condition of pump by its vibration character[J]. Drainage and Irrigation Machi- nery, 2007, 25(2): 49-52(in Chinese).

    [11] WUIBAUT G., BOIS G. and DUPONT P. et al. PIV measurements in the impeller and the vaneless diffuser of a radial flow pump in design and off-design operating conditions[J]. Journal of Fluids Engineering, 2002, 124(3): 791-797.

    [12] FENG J, BENRA F.-K. and DOHMEN H. J. Unsteady flow visualization at part-load conditions of a radial diffuser pump: by PIV and CFD[J]. Journal of Visuali- zation, 2009, 12(1): 65-72.

    [13] CAVAZZINI G.,CAVAZZINIG. and ARDIZZON G. Validation of an analysis method for particle image velocimetry of turbulent unsteady flows in turbomachinery[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2010, 224(5): 679-689.

    [14] GAETANI P., BOCCAZZI A. and SALA R. Low field in the vaned diffuser of a centrifugal pump at different vane setting angles[J]. Journal of Fluids Engineering, 2012,134(3): 031101.

    [15] ZHANG Hua, SHI Wei-dong and CHEN Bin et al. Experimental study of flow field in interference area between impeller and guide vane of axial flow pump[J]. Journal of Hydrodynamics, 2015, 26(6): 894-901.

    [16] AKHRAS A., HAJEM M. E. and MOREL R. et al. Internal flow investigation of a centrifugal pump at the design point[C]. 20th IAHR Symposium on Hydraulic Machinery and Systems. Charlotte, NC, USA, 2000.

    [17] HAJEM M. E., AKHRAS A. and CHAMPAGNe J. Y. et al. Rotor stator interactions in a centrifugal pump equipped with a vaned diffuser[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2001, 215(6): 809-817.

    [18] PINTRAND G., CAIGNAERT G. and BOIS G. et al. Analysis of unsteady flows in a vaned diffuser radial flow pump[C]. XXIst IAHR Symposium on Hydraulic Machinery and Systems. Lausanne, Switzerland, 2002.

    [19] NICHOLAS P., LARSEN P. S. and JACOBSEN C. B. Flow in a centrifugal pump impeller at design and offdesign conditions, Part I: Particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) measurements[J]. Journal of Fluids Engineering, 2003, 125(1): 61-72.

    [20] AKHRAS A., HAJEM M. E. and CHAMPAGNE J. Y. et al. The flow rate influence on the interaction of a radial pump impeller and the diffuser[J]. International Journal of Rotating Machinery, 2004, 10(1): 309-317.

    [21] FENG J., BENRA F.-K. and DOHMEN H. J. Investigation of turbulence and blade orientation effects in a radial diffuser pump by laser Doppler velocimetry[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2009, 223(8): 991-998.

    [22] YU W. S., LAKSHMINARAYANA B. Numerical simulation of the effects of rotor-stator spacing and wakeblade count ratio on turbomachinery unsteady flows[J]. Journal of Fluids Engineering,1995, 117(4): 639-646.

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 51339005, 51379174 and 51279160), the Doctoral Fund of Ministry of Education of China (Grant No. 20126118130002).

    Biography: FENG Jian-jun (1976-), Male, Ph. D., Professor

    猜你喜歡
    建軍
    慶祝建軍95周年
    Ergodic stationary distribution of a stochastic rumor propagation model with general incidence function
    GENERALIZED CES`ARO OPERATORS ON DIRICHLET-TYPE SPACES*
    Spatio-temporal evolution characteristics and pattern formation of a gas–liquid interfacial AC current argon discharge plasma with a deionized water electrode
    古建軍
    無(wú)論等多久
    建軍90周年有感
    中華魂(2017年8期)2017-11-22 12:21:09
    建軍90周年
    慶祝中國(guó)人民解放軍建軍89周年
    Totally laparoscopic Billroth Ⅱ gastrectomy without intracorporeal hand-sewn sutures
    欧美另类亚洲清纯唯美| 亚洲美女黄片视频| 欧美老熟妇乱子伦牲交| 中文字幕另类日韩欧美亚洲嫩草| 热99re8久久精品国产| 男女高潮啪啪啪动态图| a级毛片黄视频| 少妇精品久久久久久久| 国内毛片毛片毛片毛片毛片| 操美女的视频在线观看| 王馨瑶露胸无遮挡在线观看| 涩涩av久久男人的天堂| 18禁美女被吸乳视频| 欧美人与性动交α欧美精品济南到| 最新美女视频免费是黄的| a级毛片黄视频| 亚洲第一av免费看| 国产精品久久久久久人妻精品电影 | 国产国语露脸激情在线看| 亚洲欧洲日产国产| av免费在线观看网站| videos熟女内射| 国产精品一区二区在线观看99| 亚洲人成电影免费在线| 亚洲av成人一区二区三| 波多野结衣av一区二区av| 国产精品一区二区在线观看99| 精品国产乱码久久久久久小说| 日本av手机在线免费观看| 午夜两性在线视频| 99在线人妻在线中文字幕 | 成人18禁高潮啪啪吃奶动态图| 亚洲色图av天堂| 搡老岳熟女国产| 中文字幕人妻丝袜制服| 777米奇影视久久| 我要看黄色一级片免费的| 国产日韩欧美亚洲二区| 久久99一区二区三区| 精品久久蜜臀av无| 国产精品98久久久久久宅男小说| 蜜桃在线观看..| 这个男人来自地球电影免费观看| 夫妻午夜视频| 黑人巨大精品欧美一区二区mp4| 亚洲精品久久成人aⅴ小说| 99国产精品一区二区蜜桃av | 国产精品熟女久久久久浪| 男女午夜视频在线观看| 99国产精品一区二区蜜桃av | 国产精品99久久99久久久不卡| 美女午夜性视频免费| 亚洲欧美一区二区三区黑人| 法律面前人人平等表现在哪些方面| 成年人午夜在线观看视频| 国产xxxxx性猛交| 亚洲一码二码三码区别大吗| 国产精品一区二区在线不卡| 老汉色∧v一级毛片| 十八禁网站网址无遮挡| 操出白浆在线播放| 无限看片的www在线观看| 亚洲美女黄片视频| 午夜福利在线观看吧| www.熟女人妻精品国产| 精品少妇一区二区三区视频日本电影| 国产精品二区激情视频| 日本wwww免费看| 午夜日韩欧美国产| 日韩 欧美 亚洲 中文字幕| 男女下面插进去视频免费观看| 色综合欧美亚洲国产小说| 免费在线观看视频国产中文字幕亚洲| 在线观看一区二区三区激情| av超薄肉色丝袜交足视频| 免费av中文字幕在线| av免费在线观看网站| 国产欧美日韩一区二区三| 99riav亚洲国产免费| 国产精品一区二区在线不卡| 久久久久久免费高清国产稀缺| 欧美黑人欧美精品刺激| 三级毛片av免费| 99久久99久久久精品蜜桃| 免费看a级黄色片| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产中文字幕在线视频| 激情视频va一区二区三区| 天堂动漫精品| 操美女的视频在线观看| 欧美日韩av久久| 久久精品国产亚洲av香蕉五月 | 欧美大码av| 动漫黄色视频在线观看| 色94色欧美一区二区| 日本撒尿小便嘘嘘汇集6| 一本久久精品| 在线永久观看黄色视频| 制服诱惑二区| 一区二区三区乱码不卡18| 国产在线观看jvid| av网站免费在线观看视频| √禁漫天堂资源中文www| 亚洲欧美日韩另类电影网站| 精品人妻熟女毛片av久久网站| 99精品久久久久人妻精品| 正在播放国产对白刺激| av不卡在线播放| 色老头精品视频在线观看| 亚洲精品中文字幕在线视频| 在线观看人妻少妇| 亚洲av美国av| 视频在线观看一区二区三区| 一本色道久久久久久精品综合| 日日爽夜夜爽网站| 女性被躁到高潮视频| 成人特级黄色片久久久久久久 | 国产精品.久久久| 纵有疾风起免费观看全集完整版| 久久精品亚洲av国产电影网| 十分钟在线观看高清视频www| 黑人欧美特级aaaaaa片| 香蕉久久夜色| 国产真人三级小视频在线观看| 一本一本久久a久久精品综合妖精| 在线看a的网站| 久久这里只有精品19| 人人澡人人妻人| 一边摸一边做爽爽视频免费| 国产日韩欧美在线精品| 久久久国产精品麻豆| 久久精品亚洲av国产电影网| 欧美一级毛片孕妇| 欧美日韩国产mv在线观看视频| 丰满饥渴人妻一区二区三| 国产在线观看jvid| av有码第一页| 青草久久国产| 法律面前人人平等表现在哪些方面| 午夜91福利影院| 黄色 视频免费看| 少妇被粗大的猛进出69影院| 日本a在线网址| 亚洲国产av影院在线观看| 欧美久久黑人一区二区| 女性被躁到高潮视频| 极品少妇高潮喷水抽搐| 性高湖久久久久久久久免费观看| 国产精品成人在线| 国产一区二区 视频在线| 亚洲精品在线美女| 免费少妇av软件| 两人在一起打扑克的视频| 亚洲欧美一区二区三区黑人| 免费观看a级毛片全部| 正在播放国产对白刺激| 国产精品熟女久久久久浪| 黑人巨大精品欧美一区二区蜜桃| a级片在线免费高清观看视频| 亚洲精品中文字幕一二三四区 | 国产精品亚洲一级av第二区| 巨乳人妻的诱惑在线观看| 亚洲av电影在线进入| 99香蕉大伊视频| 最近最新中文字幕大全电影3 | 男女边摸边吃奶| 欧美日韩黄片免| 美女午夜性视频免费| 日韩视频一区二区在线观看| 亚洲国产av新网站| 成人精品一区二区免费| 美女视频免费永久观看网站| 他把我摸到了高潮在线观看 | 在线av久久热| 中文字幕av电影在线播放| 国产精品亚洲一级av第二区| 久久久国产欧美日韩av| 精品乱码久久久久久99久播| 国产精品 国内视频| 黄色片一级片一级黄色片| 日本av手机在线免费观看| 国产精品亚洲一级av第二区| h视频一区二区三区| 国产伦人伦偷精品视频| 国产麻豆69| 91精品国产国语对白视频| 999久久久精品免费观看国产| 考比视频在线观看| 最近最新中文字幕大全免费视频| 十分钟在线观看高清视频www| 亚洲av片天天在线观看| 欧美日韩亚洲高清精品| 亚洲人成77777在线视频| 色尼玛亚洲综合影院| 男人舔女人的私密视频| 超色免费av| 9191精品国产免费久久| 亚洲成av片中文字幕在线观看| 精品久久久久久电影网| 蜜桃国产av成人99| 精品久久久久久久毛片微露脸| 热99re8久久精品国产| 亚洲精品美女久久久久99蜜臀| 久久久精品免费免费高清| 国产在线免费精品| 成年人黄色毛片网站| 一级毛片电影观看| 免费日韩欧美在线观看| videos熟女内射| 国内毛片毛片毛片毛片毛片| 日韩大片免费观看网站| 美国免费a级毛片| 色在线成人网| 国产有黄有色有爽视频| 亚洲人成伊人成综合网2020| 丁香六月欧美| 久久久久久人人人人人| 美女高潮到喷水免费观看| 欧美日韩福利视频一区二区| 精品高清国产在线一区| 亚洲精品国产区一区二| 亚洲精品国产精品久久久不卡| 人妻久久中文字幕网| 丝袜在线中文字幕| 久久亚洲真实| 日韩免费高清中文字幕av| 午夜福利,免费看| 一本—道久久a久久精品蜜桃钙片| 国产无遮挡羞羞视频在线观看| 亚洲欧美一区二区三区黑人| 9191精品国产免费久久| 亚洲精品国产精品久久久不卡| 国产一区二区在线观看av| 激情在线观看视频在线高清 | 国产一区二区 视频在线| 亚洲少妇的诱惑av| 亚洲人成电影免费在线| 一边摸一边做爽爽视频免费| 最近最新中文字幕大全免费视频| 欧美乱码精品一区二区三区| 成年人免费黄色播放视频| 亚洲欧洲日产国产| 亚洲第一av免费看| 最新在线观看一区二区三区| 亚洲 国产 在线| 最新的欧美精品一区二区| 日韩免费高清中文字幕av| 国产欧美日韩精品亚洲av| 婷婷丁香在线五月| 91成人精品电影| 午夜精品久久久久久毛片777| 老司机在亚洲福利影院| 久久精品国产亚洲av高清一级| 黄色毛片三级朝国网站| 91精品三级在线观看| 免费不卡黄色视频| 中文字幕av电影在线播放| 久久狼人影院| 国产单亲对白刺激| 涩涩av久久男人的天堂| 久久久精品国产亚洲av高清涩受| 老汉色∧v一级毛片| 老鸭窝网址在线观看| 王馨瑶露胸无遮挡在线观看| 五月开心婷婷网| 久久ye,这里只有精品| 国产日韩欧美在线精品| 亚洲成国产人片在线观看| 久久久久久人人人人人| 一区在线观看完整版| 国产精品一区二区精品视频观看| 久久人妻熟女aⅴ| 中文字幕av电影在线播放| 国产一卡二卡三卡精品| av一本久久久久| 国产一区有黄有色的免费视频| 午夜精品久久久久久毛片777| 欧美精品亚洲一区二区| 男女下面插进去视频免费观看| 精品国产国语对白av| 精品少妇黑人巨大在线播放| 91大片在线观看| 巨乳人妻的诱惑在线观看| 精品国产一区二区久久| 大型黄色视频在线免费观看| 欧美日韩一级在线毛片| 午夜两性在线视频| av网站免费在线观看视频| 国产在视频线精品| 99国产综合亚洲精品| 久久青草综合色| 蜜桃在线观看..| 狂野欧美激情性xxxx| 成人国产一区最新在线观看| 免费观看av网站的网址| 欧美久久黑人一区二区| 欧美精品亚洲一区二区| 亚洲欧美一区二区三区久久| 欧美成人午夜精品| 欧美激情极品国产一区二区三区| 亚洲人成电影免费在线| 国产成人免费无遮挡视频| 午夜福利在线观看吧| 天天躁日日躁夜夜躁夜夜| 欧美黑人欧美精品刺激| 美女扒开内裤让男人捅视频| 黑人巨大精品欧美一区二区mp4| 午夜福利,免费看| 性少妇av在线| 国产精品1区2区在线观看. | 欧美日韩精品网址| 免费在线观看完整版高清| 亚洲第一欧美日韩一区二区三区 | 国产精品香港三级国产av潘金莲| 亚洲一区二区三区欧美精品| 久久青草综合色| 极品少妇高潮喷水抽搐| 免费看十八禁软件| 黄色毛片三级朝国网站| 日本欧美视频一区| 一区二区三区精品91| 精品卡一卡二卡四卡免费| 人妻 亚洲 视频| 别揉我奶头~嗯~啊~动态视频| 超碰成人久久| 欧美激情 高清一区二区三区| 女警被强在线播放| 亚洲va日本ⅴa欧美va伊人久久| 欧美激情 高清一区二区三区| 国产97色在线日韩免费| 九色亚洲精品在线播放| 亚洲男人天堂网一区| 十分钟在线观看高清视频www| 大片免费播放器 马上看| 久久人人97超碰香蕉20202| 在线看a的网站| 怎么达到女性高潮| 波多野结衣av一区二区av| 欧美日韩成人在线一区二区| 成人精品一区二区免费| 日韩 欧美 亚洲 中文字幕| 久久午夜亚洲精品久久| netflix在线观看网站| 他把我摸到了高潮在线观看 | 嫩草影视91久久| 国产精品 国内视频| 91精品国产国语对白视频| 精品视频人人做人人爽| av福利片在线| 9热在线视频观看99| 精品人妻熟女毛片av久久网站| www.精华液| 亚洲国产毛片av蜜桃av| 青草久久国产| netflix在线观看网站| 国产精品亚洲av一区麻豆| 中文字幕av电影在线播放| 午夜精品国产一区二区电影| 亚洲av第一区精品v没综合| 国产成人av激情在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 欧美成狂野欧美在线观看| 午夜福利影视在线免费观看| 美女高潮喷水抽搐中文字幕| 777米奇影视久久| 悠悠久久av| a级毛片在线看网站| netflix在线观看网站| 人妻一区二区av| 精品国产一区二区久久| 亚洲中文字幕日韩| 日韩欧美免费精品| 国产精品电影一区二区三区 | 99国产极品粉嫩在线观看| 日韩大码丰满熟妇| 午夜日韩欧美国产| 国产精品久久久人人做人人爽| 亚洲色图 男人天堂 中文字幕| 搡老熟女国产l中国老女人| 真人做人爱边吃奶动态| 777米奇影视久久| 91字幕亚洲| 久久免费观看电影| 丁香六月欧美| 久久久精品免费免费高清| 亚洲国产av影院在线观看| 国产精品免费视频内射| 女性生殖器流出的白浆| 在线av久久热| 成人特级黄色片久久久久久久 | 国产成人一区二区三区免费视频网站| 少妇 在线观看| 黄色视频,在线免费观看| 淫妇啪啪啪对白视频| 国产不卡一卡二| 热99re8久久精品国产| 黄网站色视频无遮挡免费观看| 免费女性裸体啪啪无遮挡网站| 脱女人内裤的视频| 欧美黑人精品巨大| 操美女的视频在线观看| 不卡一级毛片| 亚洲精华国产精华精| 国产亚洲精品一区二区www | 亚洲精品中文字幕一二三四区 | 久久人妻熟女aⅴ| 亚洲午夜理论影院| 亚洲av日韩精品久久久久久密| 人人妻人人添人人爽欧美一区卜| 宅男免费午夜| 欧美大码av| 久久中文看片网| 免费久久久久久久精品成人欧美视频| 亚洲伊人色综图| 日本av免费视频播放| 曰老女人黄片| 黑丝袜美女国产一区| 一级毛片精品| 国产欧美日韩精品亚洲av| 午夜免费鲁丝| 十八禁网站网址无遮挡| 国产一区二区 视频在线| 午夜福利一区二区在线看| 欧美一级毛片孕妇| 日韩成人在线观看一区二区三区| e午夜精品久久久久久久| 老熟女久久久| 热99re8久久精品国产| 免费在线观看影片大全网站| 国产黄频视频在线观看| 变态另类成人亚洲欧美熟女 | 色播在线永久视频| 免费高清在线观看日韩| 亚洲午夜理论影院| 国产成人精品在线电影| 丁香六月欧美| 捣出白浆h1v1| 成人18禁高潮啪啪吃奶动态图| 久久久精品免费免费高清| 日韩中文字幕视频在线看片| av天堂在线播放| 女警被强在线播放| 亚洲第一av免费看| 久久午夜综合久久蜜桃| 涩涩av久久男人的天堂| 最新在线观看一区二区三区| 久久精品国产亚洲av香蕉五月 | 一级a爱视频在线免费观看| 满18在线观看网站| 女人爽到高潮嗷嗷叫在线视频| 热99久久久久精品小说推荐| 考比视频在线观看| 日韩一卡2卡3卡4卡2021年| 建设人人有责人人尽责人人享有的| 人成视频在线观看免费观看| 天天躁日日躁夜夜躁夜夜| 国产三级黄色录像| 亚洲欧美日韩高清在线视频 | av片东京热男人的天堂| 欧美日韩亚洲高清精品| 国产色视频综合| 午夜两性在线视频| 男女边摸边吃奶| 亚洲午夜精品一区,二区,三区| 免费观看av网站的网址| 精品国产国语对白av| 国产一区二区激情短视频| 免费在线观看日本一区| 99国产精品免费福利视频| 制服人妻中文乱码| 精品人妻在线不人妻| 午夜久久久在线观看| 日韩视频在线欧美| 国产单亲对白刺激| 十八禁高潮呻吟视频| 69精品国产乱码久久久| 婷婷成人精品国产| 欧美日韩一级在线毛片| 国产欧美日韩一区二区三区在线| 中文欧美无线码| 女同久久另类99精品国产91| av网站免费在线观看视频| netflix在线观看网站| 国产欧美亚洲国产| 成人18禁高潮啪啪吃奶动态图| 亚洲国产看品久久| 日韩大片免费观看网站| 日韩免费av在线播放| 成人黄色视频免费在线看| 丰满饥渴人妻一区二区三| 99riav亚洲国产免费| 国产视频一区二区在线看| 母亲3免费完整高清在线观看| 岛国在线观看网站| 在线看a的网站| 岛国在线观看网站| 国产福利在线免费观看视频| 欧美精品啪啪一区二区三区| 国产亚洲精品久久久久5区| 午夜福利影视在线免费观看| 99国产综合亚洲精品| 一区二区三区乱码不卡18| 精品国产一区二区三区久久久樱花| 大片免费播放器 马上看| 一个人免费在线观看的高清视频| 丝袜美足系列| 国产av精品麻豆| 一本久久精品| 国产有黄有色有爽视频| 成人永久免费在线观看视频 | 成人精品一区二区免费| 久久天堂一区二区三区四区| 精品人妻熟女毛片av久久网站| 午夜久久久在线观看| 十八禁高潮呻吟视频| 久久这里只有精品19| 人人妻,人人澡人人爽秒播| 极品人妻少妇av视频| 十八禁高潮呻吟视频| 欧美黄色淫秽网站| 男女午夜视频在线观看| 国产97色在线日韩免费| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产欧美在线一区| 国产淫语在线视频| 欧美中文综合在线视频| 他把我摸到了高潮在线观看 | 免费看a级黄色片| 在线av久久热| 国产又爽黄色视频| 国产激情久久老熟女| 欧美变态另类bdsm刘玥| 最近最新中文字幕大全电影3 | 久久狼人影院| 国产亚洲欧美精品永久| 亚洲成av片中文字幕在线观看| 高清欧美精品videossex| 欧美乱妇无乱码| 欧美精品高潮呻吟av久久| 亚洲欧美日韩高清在线视频 | 超碰97精品在线观看| 精品久久蜜臀av无| 亚洲精品美女久久av网站| 美女国产高潮福利片在线看| 免费在线观看黄色视频的| 成年动漫av网址| 黄色毛片三级朝国网站| 久久精品91无色码中文字幕| 国产男靠女视频免费网站| 国产aⅴ精品一区二区三区波| 久久中文字幕一级| 国产亚洲一区二区精品| av又黄又爽大尺度在线免费看| 亚洲精品美女久久av网站| 老熟妇乱子伦视频在线观看| 无人区码免费观看不卡 | 午夜日韩欧美国产| a在线观看视频网站| 波多野结衣av一区二区av| 色视频在线一区二区三区| 亚洲国产精品一区二区三区在线| 三上悠亚av全集在线观看| 色尼玛亚洲综合影院| 黄色视频,在线免费观看| 激情视频va一区二区三区| 欧美一级毛片孕妇| 女人久久www免费人成看片| 变态另类成人亚洲欧美熟女 | 免费在线观看完整版高清| 老司机深夜福利视频在线观看| 欧美人与性动交α欧美精品济南到| 在线观看免费视频网站a站| 午夜日韩欧美国产| 黄片大片在线免费观看| 巨乳人妻的诱惑在线观看| 日日摸夜夜添夜夜添小说| 视频在线观看一区二区三区| 久久久国产欧美日韩av| av国产精品久久久久影院| 最近最新免费中文字幕在线| videos熟女内射| xxxhd国产人妻xxx| 一级,二级,三级黄色视频| 精品亚洲成国产av| 啦啦啦中文免费视频观看日本| a级毛片在线看网站| 亚洲美女黄片视频| 国产精品电影一区二区三区 | 精品第一国产精品| 天堂中文最新版在线下载| 在线亚洲精品国产二区图片欧美| 多毛熟女@视频| 国内毛片毛片毛片毛片毛片| 每晚都被弄得嗷嗷叫到高潮| av一本久久久久| 男女之事视频高清在线观看| 18禁观看日本| 国产日韩一区二区三区精品不卡| 久久久国产精品麻豆| 久久久久网色| 久久午夜亚洲精品久久| 国产男靠女视频免费网站| 国产精品欧美亚洲77777| 国产一区二区三区综合在线观看| 黑人操中国人逼视频| 精品福利永久在线观看| 欧美亚洲日本最大视频资源| 夜夜夜夜夜久久久久| 久久精品国产亚洲av香蕉五月 | 欧美人与性动交α欧美软件| 汤姆久久久久久久影院中文字幕| 久久久久久久国产电影| 18禁裸乳无遮挡动漫免费视频| 午夜福利一区二区在线看| 精品国内亚洲2022精品成人 |