• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-scale Runge-Kutta_Galerkin method for solving one-dimensional KdV and Burgers equations*

    2015-02-16 06:50:48CHENGSirui程思睿ZHANJiemin詹杰民
    水動力學研究與進展 B輯 2015年3期

    CHENG Si-rui (程思睿), ZHAN Jie-min (詹杰民)

    1. Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China, E- mail:csrpanda@163.com

    2.Department of Applied Mechanics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China

    Multi-scale Runge-Kutta_Galerkin method for solving one-dimensional KdV and Burgers equations*

    CHENG Si-rui (程思睿)1, ZHAN Jie-min (詹杰民)2

    1. Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China, E- mail:csrpanda@163.com

    2.Department of Applied Mechanics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China

    (Received June 2, 2010, Revised April 26, 2015)

    In this paper, the multi-scale Runge-Kutta_Galerkin method is developed for solving the evolution equations, with the spatial variables of the equations being discretized by the multi-scale Galerkin method based on the multi-scale orthogonal bases in(a, b)and then the classical fourth order explicit Runge-Kutta method being applied to solve the resulting initial problem of the ordinary differential equations for the coefficients of the approximate solution. The proposed numerical scheme is validated by applications to the Burgers equation (nonlinear convection-diffusion problem), the KdV equation (single solitary and 2-solitary wave problems) and the KdV-Burgers equation, where analytical solutions are available for estimating the errors. Numerical results show that using the algorithm we can solve these equations stably without the need for extra stabilization processes and obtain accurate solutions that agree very well with the corresponding exact solutions in all cases.

    multi-scale Galerkin method, fourth order Runge Kutta method, Burgers equation KdV equation, KdV-Burgers equation

    Introduction

    In this paper, we numerically solve one-dimensional Burgers equations, the KdV equations and the KdV-Burgers equations by applying the multi-scale Galerkin method combined with the classical fourth order Runge-Kutta method. Both the Burgers equation and the KdV equation are important model equations in hydrodynamics. The Burgers equation was first introduced by Bateman and later treated by Burgers as a mathematical model for turbulence (Burgers 1948). The KdV equation was derived by Korteweg and de Vries as a model for long waves propagating in a channel (Korteweg and De Vries 1895). The Korteweg-de Vries type equations can be used to describe a variety of phenomena in physical sciences, and they are well studied. Many methods were proposed to study the nonlinear water wave equations, such as the spectral method[1,2], the group method[3], and the expansion method[4].

    Multi-scale methods enjoy many advantages and become standard approaches in solving integral equations[5-15]. They lead to matrix compression schemes which would generate the coefficient matrix efficiently and allow us to design fast solvers for solving the resulting discrete systems of the integral equations.

    Chen et al.[16]constructed multi-scale orthonormal bases in(0, 1)spaces and developed the multilevel augmentation methods for solving linear differential equations with zero boundary conditions. In a recent paper[17], Chen et al. developed the multilevel augmentation method for solving nonlinear operator equations of the second kind and applied it to solve the one dimensional sine-Gordon equation.

    A great advantage of the multi-scale methods to solve differential equations is the stability of the multi-scale bases. In this paper, we use the multi-scaleGalerkin method based on the bases constructed in paper[16]to solve the one dimensional Burgers equations and the KdV equations. After discretizing the spatial variables by the Galerkin method, we apply the fourth order Runge-Kutta method to solve the resulting ordinary differential equations. The numerical results show that the proposed method has two main competitive advantages. Firstly, it is stable enough to solve the KdV equations without the need for extra stabilization processing. Secondary, it can be used to obtain numerical solutions with high accuracy without the use of a large number of bases.

    1. The multi-scale Runge-Kutta-Galerkin scheme for solving KdV-Burgers equations

    We consider the initial-boundary value problem of the general Korteweg-de Vries Burgers equation

    where ε,νandμare parameters.

    First we introduce three functions l( x),r( x)and q( x)satisfying

    and let u( x, t)=u?( x, t)+l( x) ua( t)+r( x) ub( t)+ q( x) u1b(t). Thus Eqs.(1) can be reformulated as an initial-boundary value problem with respect to the functionu?( x, t)

    Equation (5) can be reformulated into a variational problem as[18]: find u? = u?(·,t)∈ X , such that

    when μ=0. And(·,·)denotes the L2inner product.

    In order to solve Eqs.(6) numerically, we choose Xn,the finite dimensional subspace ofX,as a piecewise polynomial subspace with knots a+(b-a) j kn,j∈N, wherek is an integer larger than1,kn-1 and the notation Nn:={1,2,…,n}forn∈N. Then the semi-discrete scheme is: findu?n:=u?n(·,t)∈Xnsuch that

    where u?0(x):=u0(x)-l( x) ua(0)-r( x) ub(0)-q( x)· u1b(0), and u?0n(x)is a certain approximation of u?0(x)usually taken as its interpolation projection or L2-projection or elliptic projection on Xn.

    Since the subspaces Xnare nested, i.e.,Xn?Xn+1,n∈N0:={0,1,2,…},Xn+1, can be expressed as an orthogonal direct sum of Xnand Wn+1. It follows that for n∈N0,

    where W:=X, and the notation A⊕⊥Bstands for

    00 the orthogonal direct sum of the spacesAandB .

    Let w( i) denote the dimension of the i-th level subspace W( i )of Xn,Zn:={0,1,2,…,n-1}, Un:={(i, j):i∈Zn+1,j∈Zw(i)}. Then the multi-scale orthonormal bases forXnconstructed in Ref.[7] can be represented as {wij:(i, j)∈Un}. By utilizing the bases, we rewrite the problem (7) as: find coefficients uij(t),(i, j)∈Un, such that the solution u?n:=, satisfies for all (i′,j′)∈Un,t∈ (0,]T,

    Equations (8) express an initial value problem of ordinary differential equations with coefficients {uij(t): (i, j)∈Un}.

    Denote matrices

    and vectors

    then Eqs.(8) can be written in the matrix-vector form as

    Chooseτas the time step and apply the classical fourth order explicit Runge-Kutta method to solve Eq.(9), i.e., for p=1,2,…,T/τ, compute

    Table1 Numerical results for Example 1

    Thus for p∈{1,2,…,T/τ}, we obtain the coefficientsand the approximate solution of Eqs.(1) can be expressed as

    2. Numerical examples

    2.1 Numerical results for Burgers equations

    When μ=0and ε=1, Eqs.(1) is reduced to the following Burgers equation

    Example 1: Burgers equation with zero boundary values

    Let u0(x)=4x(1-x),ua( t)=ub( t )=0,a =0, b =1,T=1in Eqs.(1). Then the corresponding exact solution is

    where

    The solution space for the variational problem is(0,1)We chooseXnas the piecewise linear polynomial subspace with knots j/2n,j-1∈Z2n-1. Then W0=?,dimWi=2i-1,i>0, and the base of W1is[16]

    The bases for Wi,i>1, can be obtained by the translation and the dilation ofw10. Details can be found in Ref.[16].

    Since ua( t)=ub( t )=0, we let l( x)=r( x)=0. We takeu0nas the elliptic projection on Xnof u0,i.e.,uij(0)=′). Several cases of vare considered. The numerical results are presented in Table 1, whereτis the time step,nand D( n)stand for the level and the dimension of the subspaceXn, respectively, and Er stands for the root mean square error of 1001 equal distant points on[a, b], including the endpointsaandb.The same notations will be used in the following all tables in this paper.

    Table2 Numerical results for Example 2 with α=0. 2,β=0. 3,λ=0

    Table3 Numerical results for Example 2 with α=0. 4,β=0. 6,λ=0. 125

    Example 2: Burgers equation with nonzero boundary values

    Let

    and the parametersα,β,λandνare arbitrary constants. The exact solution for this problem is

    where ζ=α/ ν(x-βt-λ).

    The solution space for this variation problem is(a, b). We choose Xas the piecewise linear po

    n lynomial subspace with knotsa+j( b-a)/2n,j-1∈Z2n-1. As in Example 1,W0=?,dimWi=2i-1, i>0. By an affine transformation of Eqs.(12), we obtain the following base of W1for(a, b)

    1

    Table4 Numerical results for Example 3

    The bases for Wi, i>1, can also be obtained by the translation and the dilation of Eqs.(13) as before.

    We choosel( x)and r( x)as the Lagrange interpolation functions onx=aand x=b , i.e.,

    We also take u?0nas the elliptic projection on Xnof u?0. Let a=-10,b =10,T=10We compute two cases ofα,βandλ. The numerical results for α=0. 2,β=0. 3,λ=0are presented in Table 2. The numerical results forα=0. 4,β=0. 6,λ= 0.125 are presented in Table 3.

    We conclude from Table 1, Table 2 and Table 3 that the algorithm is stable and accurate results can be obtained in relatively low dimensional subspaces. Furthermore, the root mean square errors decrease regularly with the increase of the leveln . Whennis changed ton+1, the root mean square error is reduced by a factor of 4.

    Fig.1 Comparison of exact solution with approximate solution for Example 3 with n =5,dimXn=62,τ=0. 005, t=1.0

    2.2 Numerical results for KdV equations

    When ν=0and μ=1, Eqs.(1) is reduced to the following KdV equation

    The solution space for the variation problem of Eqs.(15) is(a, b). We choose Xnas the piecewise cubic polynomial subspace with knotsa+j( b-a)/ 2n,j-1∈Z2n-1. Then X0=?,dimWi=2i,i>0 By an affine transformation of the bases of(0,1) constructed as in Ref.[7], we obtain the following bases of Wfor(a, b)

    1

    Table5 Numerical results for Example 4

    where

    E=b-a,F=a+b

    The bases of Wifor i>1can be obtained by the translation and the dilation ofw10and w11.

    Fig.2 Comparison of exact solution with approximate solution for Example 4 with n =6,dimXn=126,τ=0.0005, t=0.5

    We choose l( x)and r( x)as the Hermitien interpolation functions onx=aand x=b , i.e.,

    which satisfy

    And we choose

    which satisfies q( a)=q( b)=0,q′( a)=0,q′( b)=1.

    The vectorV0of the initial approximate function

    n u?0nis defined by

    where F(0)=[(u?0,wij):(i, j)∈Un].

    Example 3: KdV equation with solitary wave solution

    Let

    Then the corresponding exact solution of Eqs.(15) is u( x, t)=-2sech2(x-4t)

    Let a=-10,b =10,T=1. The numerical results are presented in Table 4. Figure 1 shows the comparison of the analytic solution with the approximate solution withn =5,dimXn=62,τ=0. 005, t=1.0. We use 1001 point values to plot all figures in this section.

    Example 4: KdV equation with 2-soliton solution

    Table6 Numerical results for Example 5 with ε=1.0,ν=0.1,μ=0.01

    where

    G=2b-8t,H=4b-64t,I=b-28t,D=3b-36t

    Then the corresponding analytical solution of Eqs.(15) is

    Let a=-10,b =10,T=0. 5. The numerical results are presented in Table 5. And Fig.2 shows the comparison of the analytic solution with the approximate solution withn =6,dimXn=126,τ=0.0005, t=0.5.

    The numerical results of Example 3 and Example 4 show that with the algorithm developed in Section 1, the KdV equations are solved stably and accurately without the need for extra stabilization processes and in relatively low dimensional subspaces. When nis changed ton+1, the root mean square error is almost reduced by a factor of 10.

    2.3 Numerical results for KdVB equation

    Example 5: KdV-Burgers equation

    Consider the initial-boundary value problem

    where A=ν2/25εμ,B=ν/10μ,C=6ν2/25μ.

    The corresponding analytical solution is

    We use the same approximate subspace and bases as in Example 3, choose l( x),r( x)as Eqs.(18), chooseq( x)as Eq.(21), and computeby Eq.(22). Leta=-10,b =10,T =20,ε=1.0,ν=0.1, μ=0.01. The numerical results are presented in Table 6, which shows the high stability and accuracy of the method. Figure 3 shows the comparison of the analytic solution with the approximate solution with n =4,dimXn=30,τ=0.2,t =20.

    Fig.3 Comparison of exact solution with approximate solution for Example 5 with n =4,dimXn=30,τ=0.2, t=20

    3. Conclusion

    In this paper we combine the multi-scale Galerkin method based on the multi-scale bases constructed as in Ref.[16] and the classical fourth order Runge-Kutta method to solve the KdV equation, the Burgers equation and the KdV-Burgers equation. The algorithm presented in Section 1, is then applied to solve several equations and the numerical results are presented in Section 2. It is shown that with the algorithm, the KdV equations, the Burgers equations andthe KdV-Burgers equations can be solved stably without any stabilization technique and accurately with a limited number of bases. Moreover, the results of Example 2, Example 3 and Example 4 show the same accuracy as the generalized finite spectral method[1]. Figure 1, Fig.2 and Fig.3 show that the approximate solutions agree very well with the corresponding exact solutions by using a limited number of bases.

    [1] ZHAN Jie-min, LI Yok-sheung. Generalized finite spectral method for 1D Burgers and KdV equations[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(12): 1635-1643.

    [2] ZHAO Xi-zeng, SUN Zhao-chen and LIANG Shu-xiu et al. A numerical method for nonlinear water waves[J]. Journal of Hydrodynamics, 2009, 21(3): 401-407.

    [3] MINA B. A., MEDHAT M. H. Group method solutions of the generalized forms of Burgers, Burgers-KdV and KdV equations with time-dependent variable coefficients[J]. Acta Mechanica, 2011, 221 (3-4): 281-296.

    [4] HASIBUN N., FARAH A. A. and AHMET B. Abundant traveling wave solutions of the compound KdVBurgers equation via the improved (G’/G)-expansion method[J]. AIP Advances, 2012, 2(4): 042163.

    [5] CHEN Z., MICCHELLI C. A. and XU Y. A multilevel method for solving operator equations[J]. Journal of Mathematical Analysis and Applications, 2001, 262(2): 688-699.

    [6] CHEN Z., MICCHELLI C. A. and XU Y. Fast collocation methods for second kind integral equations[J]. SIAM Journal on Numerical Analysis, 2002, 40(1): 344-375.

    [7] CHEN Zhong-ying, WU Bin and XU Yue-sheng. Multilevel augmentation methods for solving operator equations[J]. Numerical Mathematics: A Journal of Chinese Universities (English Series), 2005, 14(1): 31-55.

    [8] CHEN Z., WU B. and XU Y. Fast multilevel augmentation methods for solving Hammerstein equations[J]. SIAM Journal on Numerical Analysis, 2009, 47(3): 2321-2346.

    [9] CHEN Z., XU Y. and YANG H. A multilevel augmentaion method for solving ill-posed operator equations[J]. Inverse Problems, 2006, 22(1): 155-174.

    [10] FANG W., MA F. and XU Y. Multilevel iteration methods for solving integral equations of the second kind[J]. Journal of Integral Equations and Applications, 2002, 14(4): 355-376.

    [11] CHEN X., CHEN Z. and WU B. Multilevel augmentation methods for nonlinear boundary integral equations II: Accelerated quadratures and Newton iterations[J]. Journal of Integral Equations and Applications, 2012, 24(4): 545-574.

    [12] CHEN X., CHEN Z. and WU B. Multilevel augmentation methods with matrix compression for solving reformulated Hammerstein equations[J]. Journal of Integral Equations and Applications, 2012, 24(4): 513-544.

    [13] DING S., YANG H. Fast multiscale Galerkin methods for solving ill-posed integral equations via a coupled system under general source conditions[J]. Journal of Mathematical Analysis and Applications, 2013, 408(1): 213-224.

    [14] CHEN J. Fast multilevel augmentation method for nonlinear integral equations[J]. International Journal of Computer Mathematics, 2012, 89(1): 80-89.

    [15] LUO X., FAN L. and WU Y. et al. Fast multi-level iteration methods with compression Technique for solving ill-posed integral equations[J]. Journal of Computational and Applied Mathematics, 2014, 256: 131-151.

    [16] CHEN Z., WU B. and XU Y. Multilevel augmentation methods for differential equations[J]. Advances in Computational Mathematics, 2006, 24(1-4): 213-238.

    [17] CHEN J., CHEN Z. and CHENG S. Fast multilevel augmentation methods for solving the sine-Gordon equation[J]. Journal of Mathematical Analysis and Applications, 2011, 375(2): 706-724.

    [18] STRUWE M. Variational methods[M]. New York, USA: Springer-Verlag, 2000.

    * Project supported by the National Marine Public Welfare Research Projects of China (Grant No. 201005002), the National Natural Science Foundation of China (Grant No. 11071264) and the Fundamental Research Funds for the Central Universities.

    Biography: CHENG Si-rui (1979-), Female, Ph. D., Lecturer

    ZHAN Jie-min,

    E-mail: stszjm@mail.sysu.edu.cn

    老司机在亚洲福利影院| 国产精品98久久久久久宅男小说| 一本久久中文字幕| 日韩视频一区二区在线观看| 99re在线观看精品视频| 亚洲精品一卡2卡三卡4卡5卡| 国内久久婷婷六月综合欲色啪| 麻豆成人午夜福利视频| 久久久久久久午夜电影| 国产精品久久久久久精品电影 | 黄色成人免费大全| 一级毛片女人18水好多| 亚洲免费av在线视频| 中亚洲国语对白在线视频| 波多野结衣高清作品| 久久久久久九九精品二区国产 | 国内久久婷婷六月综合欲色啪| 99久久国产精品久久久| 欧美在线一区亚洲| 琪琪午夜伦伦电影理论片6080| 美女午夜性视频免费| 亚洲三区欧美一区| 亚洲自偷自拍图片 自拍| 看片在线看免费视频| 一卡2卡三卡四卡精品乱码亚洲| 麻豆国产av国片精品| 亚洲一码二码三码区别大吗| 久久久水蜜桃国产精品网| 国产精品影院久久| 成人特级黄色片久久久久久久| 欧美 亚洲 国产 日韩一| 日日爽夜夜爽网站| 日本一本二区三区精品| 国产成人欧美在线观看| 国产av又大| 黄色视频,在线免费观看| 国产蜜桃级精品一区二区三区| 美女免费视频网站| 欧美亚洲日本最大视频资源| 亚洲国产日韩欧美精品在线观看 | 亚洲国产欧美一区二区综合| 变态另类丝袜制服| 搡老岳熟女国产| 久久久久久九九精品二区国产 | 我的亚洲天堂| 免费看日本二区| 桃红色精品国产亚洲av| 美女高潮到喷水免费观看| 最好的美女福利视频网| 国产真人三级小视频在线观看| 丁香六月欧美| 免费看日本二区| 国产精品 国内视频| 国产精品一区二区三区四区久久 | 亚洲人成网站在线播放欧美日韩| 黑人欧美特级aaaaaa片| 国产日本99.免费观看| 日日干狠狠操夜夜爽| 国产91精品成人一区二区三区| 成年版毛片免费区| 99精品在免费线老司机午夜| 亚洲人成伊人成综合网2020| 免费女性裸体啪啪无遮挡网站| 久热这里只有精品99| ponron亚洲| 国产精品综合久久久久久久免费| 亚洲最大成人中文| 人人澡人人妻人| 亚洲人成电影免费在线| 国产成人精品久久二区二区91| 免费在线观看完整版高清| 日韩中文字幕欧美一区二区| 精品国产乱子伦一区二区三区| 美女 人体艺术 gogo| 男女视频在线观看网站免费 | 可以在线观看毛片的网站| 亚洲一区高清亚洲精品| 18美女黄网站色大片免费观看| 黄片小视频在线播放| 无遮挡黄片免费观看| 国产精品98久久久久久宅男小说| 搡老熟女国产l中国老女人| 精品国内亚洲2022精品成人| 9191精品国产免费久久| 9191精品国产免费久久| 午夜两性在线视频| 一级a爱视频在线免费观看| 亚洲专区国产一区二区| 亚洲熟女毛片儿| 午夜两性在线视频| 久久久久亚洲av毛片大全| 午夜免费观看网址| 亚洲av电影在线进入| 一夜夜www| av超薄肉色丝袜交足视频| 国产精品爽爽va在线观看网站 | 亚洲国产欧美一区二区综合| 亚洲狠狠婷婷综合久久图片| 一区福利在线观看| 麻豆久久精品国产亚洲av| 久久婷婷成人综合色麻豆| 麻豆久久精品国产亚洲av| 亚洲av成人不卡在线观看播放网| 伊人久久大香线蕉亚洲五| 欧美日本亚洲视频在线播放| 岛国视频午夜一区免费看| or卡值多少钱| 一级作爱视频免费观看| 国内精品久久久久久久电影| xxxwww97欧美| 夜夜夜夜夜久久久久| 国产单亲对白刺激| 成熟少妇高潮喷水视频| 午夜福利成人在线免费观看| 熟女少妇亚洲综合色aaa.| 中文在线观看免费www的网站 | 免费看十八禁软件| 欧美人与性动交α欧美精品济南到| 亚洲人成伊人成综合网2020| 制服人妻中文乱码| 两个人看的免费小视频| 日日爽夜夜爽网站| 看黄色毛片网站| 国产亚洲精品一区二区www| 好看av亚洲va欧美ⅴa在| 欧美乱码精品一区二区三区| netflix在线观看网站| 一区二区三区国产精品乱码| 国产亚洲精品综合一区在线观看 | 成人一区二区视频在线观看| 色哟哟哟哟哟哟| 丝袜在线中文字幕| ponron亚洲| 国产三级在线视频| 国产av在哪里看| 嫩草影视91久久| 一区福利在线观看| 国产三级在线视频| 99久久久亚洲精品蜜臀av| 亚洲自拍偷在线| 一级a爱片免费观看的视频| 人人妻,人人澡人人爽秒播| 男人舔奶头视频| 18禁观看日本| 国产主播在线观看一区二区| 男女做爰动态图高潮gif福利片| 久久精品夜夜夜夜夜久久蜜豆 | 白带黄色成豆腐渣| 欧美三级亚洲精品| 日韩欧美 国产精品| 亚洲成人精品中文字幕电影| 国产野战对白在线观看| 精品国产美女av久久久久小说| 久久久水蜜桃国产精品网| 性色av乱码一区二区三区2| 日本 欧美在线| 日韩高清综合在线| 国产区一区二久久| 法律面前人人平等表现在哪些方面| 男女那种视频在线观看| 怎么达到女性高潮| 757午夜福利合集在线观看| 亚洲精品在线美女| 色在线成人网| 精品久久久久久,| 久久婷婷人人爽人人干人人爱| 亚洲精品美女久久久久99蜜臀| 啦啦啦 在线观看视频| 欧美日韩乱码在线| 久久久久九九精品影院| 一级作爱视频免费观看| xxxwww97欧美| 国内久久婷婷六月综合欲色啪| 美女扒开内裤让男人捅视频| 九色国产91popny在线| 久久热在线av| 久久国产亚洲av麻豆专区| 好看av亚洲va欧美ⅴa在| 女同久久另类99精品国产91| 亚洲成人久久性| 好男人电影高清在线观看| 在线视频色国产色| 久热这里只有精品99| 长腿黑丝高跟| av在线天堂中文字幕| 久久天躁狠狠躁夜夜2o2o| 真人一进一出gif抽搐免费| 久久这里只有精品19| 国产国语露脸激情在线看| 老司机福利观看| 欧美久久黑人一区二区| 又黄又粗又硬又大视频| 一级黄色大片毛片| 国产精品影院久久| 欧美激情 高清一区二区三区| 亚洲av成人av| 亚洲av电影在线进入| 一本久久中文字幕| 色综合欧美亚洲国产小说| 日韩大尺度精品在线看网址| 无限看片的www在线观看| 中文字幕久久专区| 白带黄色成豆腐渣| 老熟妇仑乱视频hdxx| av在线播放免费不卡| 国产午夜精品久久久久久| 亚洲七黄色美女视频| 给我免费播放毛片高清在线观看| 亚洲人成伊人成综合网2020| 一卡2卡三卡四卡精品乱码亚洲| 脱女人内裤的视频| 不卡av一区二区三区| 一区二区三区激情视频| 午夜视频精品福利| 神马国产精品三级电影在线观看 | 又黄又粗又硬又大视频| 妹子高潮喷水视频| 午夜福利18| 免费电影在线观看免费观看| 欧美日韩中文字幕国产精品一区二区三区| 青草久久国产| 我的亚洲天堂| 成人国产一区最新在线观看| 色在线成人网| 久久狼人影院| 国产黄a三级三级三级人| 久久天堂一区二区三区四区| 丝袜美腿诱惑在线| 后天国语完整版免费观看| 日本撒尿小便嘘嘘汇集6| 一级毛片精品| 国产亚洲av高清不卡| 国产一级毛片七仙女欲春2 | 欧美色视频一区免费| 成人三级做爰电影| 50天的宝宝边吃奶边哭怎么回事| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品中文字幕在线视频| 日本 av在线| 美女高潮喷水抽搐中文字幕| 欧美成人性av电影在线观看| 久久香蕉激情| 亚洲第一电影网av| 亚洲激情在线av| 亚洲性夜色夜夜综合| 亚洲五月婷婷丁香| 亚洲avbb在线观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲一区二区三区色噜噜| 欧美在线黄色| 亚洲狠狠婷婷综合久久图片| 99久久精品国产亚洲精品| 亚洲中文日韩欧美视频| 国产亚洲精品久久久久久毛片| 成人av一区二区三区在线看| 国内揄拍国产精品人妻在线 | 男女之事视频高清在线观看| 亚洲色图 男人天堂 中文字幕| 久久精品国产99精品国产亚洲性色| 国产在线精品亚洲第一网站| 国产亚洲精品一区二区www| 婷婷亚洲欧美| 成人国产一区最新在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 中文亚洲av片在线观看爽| 久久婷婷人人爽人人干人人爱| 久久亚洲真实| 制服人妻中文乱码| 欧美乱码精品一区二区三区| 午夜激情av网站| 国产av在哪里看| 国产精品久久久av美女十八| 亚洲熟妇中文字幕五十中出| 哪里可以看免费的av片| 国产黄a三级三级三级人| 国内毛片毛片毛片毛片毛片| 香蕉国产在线看| 一级片免费观看大全| 禁无遮挡网站| 夜夜爽天天搞| 亚洲欧美激情综合另类| 91大片在线观看| 757午夜福利合集在线观看| 久久久久久九九精品二区国产 | 99国产极品粉嫩在线观看| 久久香蕉国产精品| 国产熟女午夜一区二区三区| 天堂影院成人在线观看| 成人欧美大片| 麻豆成人av在线观看| 日本五十路高清| 黄色视频不卡| 日本免费a在线| 国产精品久久视频播放| 亚洲欧美激情综合另类| 人人澡人人妻人| 激情在线观看视频在线高清| 日韩精品青青久久久久久| 亚洲男人天堂网一区| 夜夜爽天天搞| 久久这里只有精品19| 两性午夜刺激爽爽歪歪视频在线观看 | 色在线成人网| 国产精品自产拍在线观看55亚洲| 真人一进一出gif抽搐免费| 天堂影院成人在线观看| 亚洲av五月六月丁香网| 国产av在哪里看| 两个人免费观看高清视频| 91av网站免费观看| 日本三级黄在线观看| 国产精品98久久久久久宅男小说| 欧美黑人精品巨大| 淫秽高清视频在线观看| 18禁黄网站禁片午夜丰满| 日本一本二区三区精品| 日本成人三级电影网站| 国内揄拍国产精品人妻在线 | 国产成人av教育| 色播在线永久视频| 丝袜在线中文字幕| 他把我摸到了高潮在线观看| 精品国产乱码久久久久久男人| 在线观看免费日韩欧美大片| 日韩欧美国产在线观看| 欧美精品亚洲一区二区| 在线视频色国产色| 天天添夜夜摸| 黄色片一级片一级黄色片| 免费在线观看日本一区| 国产乱人伦免费视频| 美女大奶头视频| 听说在线观看完整版免费高清| 午夜精品久久久久久毛片777| 国产高清videossex| 在线十欧美十亚洲十日本专区| 亚洲真实伦在线观看| 国产三级黄色录像| 久久久久久久精品吃奶| 国产单亲对白刺激| 女人爽到高潮嗷嗷叫在线视频| www.自偷自拍.com| 欧美日韩中文字幕国产精品一区二区三区| 国产欧美日韩一区二区精品| 精品一区二区三区av网在线观看| 亚洲三区欧美一区| 国产蜜桃级精品一区二区三区| 91成年电影在线观看| 操出白浆在线播放| 国产成人av激情在线播放| 国产视频一区二区在线看| 国产精品香港三级国产av潘金莲| 欧美激情高清一区二区三区| 两人在一起打扑克的视频| 9191精品国产免费久久| 少妇 在线观看| 国产主播在线观看一区二区| 国产爱豆传媒在线观看 | 波多野结衣高清无吗| 欧美日韩中文字幕国产精品一区二区三区| 俺也久久电影网| 久久国产精品人妻蜜桃| 在线观看免费视频日本深夜| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看午夜福利视频| 免费在线观看日本一区| 日韩成人在线观看一区二区三区| 俺也久久电影网| 一区二区三区国产精品乱码| 久久久国产欧美日韩av| 欧美日韩亚洲综合一区二区三区_| 精品午夜福利视频在线观看一区| 两个人看的免费小视频| 久久国产精品影院| 在线免费观看的www视频| 午夜精品久久久久久毛片777| 免费在线观看日本一区| 国产精品影院久久| 成在线人永久免费视频| 亚洲成国产人片在线观看| 亚洲欧美精品综合一区二区三区| 亚洲国产精品999在线| 亚洲激情在线av| 久久精品国产亚洲av高清一级| 美女扒开内裤让男人捅视频| 亚洲午夜精品一区,二区,三区| 黄色女人牲交| 最近最新免费中文字幕在线| 人人澡人人妻人| 18禁观看日本| 久久久精品欧美日韩精品| 69av精品久久久久久| 久久午夜亚洲精品久久| 日日夜夜操网爽| 丁香欧美五月| 亚洲色图 男人天堂 中文字幕| 国产精品亚洲美女久久久| 日韩欧美一区二区三区在线观看| 好男人在线观看高清免费视频 | 在线观看一区二区三区| 在线观看日韩欧美| 国产v大片淫在线免费观看| av免费在线观看网站| av有码第一页| 亚洲欧美精品综合久久99| 亚洲精品国产区一区二| 国产精品自产拍在线观看55亚洲| 精品欧美一区二区三区在线| 国产视频一区二区在线看| 国产精品爽爽va在线观看网站 | 国产片内射在线| 在线视频色国产色| 夜夜爽天天搞| 日韩大尺度精品在线看网址| 日本免费一区二区三区高清不卡| 叶爱在线成人免费视频播放| 国产精品久久电影中文字幕| 亚洲精品中文字幕在线视频| 国产精品日韩av在线免费观看| 最新在线观看一区二区三区| 美国免费a级毛片| 99re在线观看精品视频| 这个男人来自地球电影免费观看| 淫妇啪啪啪对白视频| 男人舔奶头视频| а√天堂www在线а√下载| 亚洲第一电影网av| 亚洲人成网站在线播放欧美日韩| АⅤ资源中文在线天堂| 国产日本99.免费观看| 精品久久久久久久人妻蜜臀av| 国产爱豆传媒在线观看 | 亚洲熟妇熟女久久| av片东京热男人的天堂| 手机成人av网站| 中文字幕人妻丝袜一区二区| 久久午夜综合久久蜜桃| 最好的美女福利视频网| 欧美成人一区二区免费高清观看 | 久久99热这里只有精品18| 久久午夜亚洲精品久久| 黑人操中国人逼视频| 男女做爰动态图高潮gif福利片| 国产麻豆成人av免费视频| 免费无遮挡裸体视频| 欧美激情 高清一区二区三区| 日韩一卡2卡3卡4卡2021年| 白带黄色成豆腐渣| 久久久水蜜桃国产精品网| 首页视频小说图片口味搜索| 婷婷精品国产亚洲av| 日韩三级视频一区二区三区| 首页视频小说图片口味搜索| 国产亚洲av高清不卡| 欧美日韩中文字幕国产精品一区二区三区| 欧美中文日本在线观看视频| 久久久久免费精品人妻一区二区 | 亚洲av美国av| 夜夜夜夜夜久久久久| 又紧又爽又黄一区二区| 国产精品一区二区三区四区久久 | 中文字幕精品亚洲无线码一区 | 天天躁狠狠躁夜夜躁狠狠躁| 嫁个100分男人电影在线观看| 亚洲一区中文字幕在线| 亚洲无线在线观看| 国产精品久久久久久人妻精品电影| 啦啦啦韩国在线观看视频| 中文字幕人成人乱码亚洲影| 国产麻豆成人av免费视频| 在线观看66精品国产| 国产一区二区三区在线臀色熟女| 国产片内射在线| 此物有八面人人有两片| 久久天躁狠狠躁夜夜2o2o| 中文资源天堂在线| 色综合亚洲欧美另类图片| 国产区一区二久久| 身体一侧抽搐| 黑丝袜美女国产一区| 脱女人内裤的视频| www.自偷自拍.com| 亚洲精品中文字幕一二三四区| 脱女人内裤的视频| 午夜福利一区二区在线看| 很黄的视频免费| 亚洲电影在线观看av| 国产精品久久久久久人妻精品电影| 欧美最黄视频在线播放免费| 午夜影院日韩av| 在线观看免费午夜福利视频| 亚洲精品中文字幕在线视频| 亚洲黑人精品在线| 国产亚洲精品一区二区www| 国产黄a三级三级三级人| 色尼玛亚洲综合影院| 亚洲国产精品sss在线观看| 给我免费播放毛片高清在线观看| 亚洲专区字幕在线| 亚洲成av片中文字幕在线观看| 欧美一级毛片孕妇| 少妇粗大呻吟视频| 麻豆av在线久日| 美国免费a级毛片| АⅤ资源中文在线天堂| 欧美丝袜亚洲另类 | 亚洲最大成人中文| 久久香蕉国产精品| 国产片内射在线| 啦啦啦免费观看视频1| 操出白浆在线播放| 曰老女人黄片| 美女高潮到喷水免费观看| 精品第一国产精品| 美女高潮喷水抽搐中文字幕| 91麻豆av在线| 亚洲美女黄片视频| 女人被狂操c到高潮| 啦啦啦免费观看视频1| 午夜久久久在线观看| avwww免费| 国内久久婷婷六月综合欲色啪| 亚洲片人在线观看| 亚洲欧洲精品一区二区精品久久久| 黄色女人牲交| 怎么达到女性高潮| 亚洲熟妇中文字幕五十中出| 中文字幕久久专区| 变态另类丝袜制服| 色播在线永久视频| 精品免费久久久久久久清纯| 熟妇人妻久久中文字幕3abv| 91成年电影在线观看| 久久 成人 亚洲| 在线天堂中文资源库| 日韩大尺度精品在线看网址| 一二三四社区在线视频社区8| 男女那种视频在线观看| videosex国产| 久久精品国产综合久久久| 黑丝袜美女国产一区| 老司机深夜福利视频在线观看| 亚洲国产精品成人综合色| 婷婷亚洲欧美| 搡老妇女老女人老熟妇| 欧美不卡视频在线免费观看 | 一夜夜www| 亚洲五月色婷婷综合| 好男人在线观看高清免费视频 | 国产黄a三级三级三级人| av超薄肉色丝袜交足视频| 亚洲 欧美 日韩 在线 免费| 中文字幕人妻熟女乱码| 97碰自拍视频| 麻豆成人午夜福利视频| 亚洲 国产 在线| 国产单亲对白刺激| 亚洲国产精品sss在线观看| 国产单亲对白刺激| 一级a爱片免费观看的视频| 俄罗斯特黄特色一大片| 制服人妻中文乱码| 国产av一区二区精品久久| 日本撒尿小便嘘嘘汇集6| 神马国产精品三级电影在线观看 | 十八禁人妻一区二区| 国产黄片美女视频| 亚洲黑人精品在线| 一级黄色大片毛片| 一边摸一边抽搐一进一小说| 亚洲熟女毛片儿| 最近在线观看免费完整版| 大型黄色视频在线免费观看| 久久九九热精品免费| 999精品在线视频| 99久久国产精品久久久| 自线自在国产av| 狂野欧美激情性xxxx| 在线观看一区二区三区| 久久午夜综合久久蜜桃| 19禁男女啪啪无遮挡网站| 亚洲欧美日韩高清在线视频| 久久久久久国产a免费观看| 黑人操中国人逼视频| av视频在线观看入口| 国产精品一区二区精品视频观看| 这个男人来自地球电影免费观看| 成人特级黄色片久久久久久久| 久久香蕉激情| av天堂在线播放| 成年女人毛片免费观看观看9| 久久精品aⅴ一区二区三区四区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲第一青青草原| 黄片播放在线免费| 露出奶头的视频| 国产伦一二天堂av在线观看| 日本 欧美在线| 国产午夜福利久久久久久| 女警被强在线播放| 欧美av亚洲av综合av国产av| 欧美中文综合在线视频| 亚洲久久久国产精品| 99国产精品99久久久久| 亚洲av熟女| 在线观看www视频免费| 日本撒尿小便嘘嘘汇集6| 两个人免费观看高清视频| 中文字幕av电影在线播放| 最近最新中文字幕大全免费视频| 亚洲精品在线美女| 在线看三级毛片| 午夜福利一区二区在线看| 可以在线观看毛片的网站| а√天堂www在线а√下载|