• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability of a tumblehome hull under the dead ship condition*

    2015-02-16 06:50:50GUMin顧民LUJiang魯江WANGTianhua王田華

    GU Min (顧民), LU Jiang (魯江), WANG Tian-hua (王田華)

    Jiangsu Key Laboratory of Green Ship Technology, China Ship Scientific Research Center, Wuxi 214082 , China, E-mail: gumin702@163.com

    Stability of a tumblehome hull under the dead ship condition*

    GU Min (顧民), LU Jiang (魯江), WANG Tian-hua (王田華)

    Jiangsu Key Laboratory of Green Ship Technology, China Ship Scientific Research Center, Wuxi 214082 , China, E-mail: gumin702@163.com

    (Received May 11, 2014, Revised August 13, 2014)

    Some methods for direct stability assessment under the dead ship condition were currently developed by the international maritime organization (IMO) under the Second Generation Intact Stability Criteria. Model tests and simulations are carried out to validate the numerical methods used in assessing the stability under the dead ship condition. This is done in three stages. Firstly, the uncoupled roll mathematical model (1 DOF) is adopted to calculate the roll motion based on the irregular beam waves and the steady wind. Secondly, a drift free experiment is conducted to measure the roll motion under irregular beam waves with zero speed, and then two restrained experiments with counter weights and four springs are performed under the same condition. Finally, the effects of the drift and sway motions on stability under the dead ship condition are then verified by experimental results, and the results of the numerical methods are compared to the results of the model experiments. It is concluded that more accurate numerical methods could be developed for assessing the direct stability under the dead ship condition.

    dead ship condition, direct stability assessment, second generation intact stability criteria, irregular waves

    Introduction

    Some methods for direct stability assessment under the dead ship condition were currently developed by the international maritime organization (IMO) under the Second Generation Intact Stability Criteria. Some approaches based on probability assessment were investigated, such as the piece-wise linear method and the critical wave group method[1,2]. For the direct stability assessment under the dead ship condition, Japan and Italy carried out a Monte Carlo simulation on an uncoupled roll model with irregular beam winds and waves (1 DOF) in time domain for the direct stability assessment of the dead ship condition[3,4]. However, Italy’s 1 DOF approach contains too much simplications for a direct stability assessment, and thus this approach was not accepted by the majority of the working group.

    Umeda et al.[5]performed physical model tests of capsizing in irregular beam waves with non-fluctuating wind and validated the results of the numerical method based on an uncoupled roll equation and piece-wise linear approach. Kubo et al.[6]developed a coupled sway-heave-roll-pitch (4 DOF) numerical model for assessing the stability under the dead ship condition, and it was concluded that the 4 DOF numerical model is better than the 1 DOF numerical model as compared with the model tests of capsizing in irregular beam waves with fluctuating wind. Ogawa et al.[7]pointed out that the drift speed affects the capsizing probability under the dead ship condition; and the capsizing probability of a passenger ship with drift is higher than that without, based on model experiments of a passenger ship under moored and drift conditions.

    In order to develop a more reliable numerical method to analyze the stability under the dead ship condition, model experiments are conducted by using three methods: a drift free test, a restrained test with counter weights, and a restrained test with four springs. The effects of drift and sway motions on the stability under the dead ship condition are verified by experimental results, and the results of the uncoupled roll mathematical model (1 DOF) are then compared with the results obtained by model experiments. It is shown that a more precise numerical method should be developed for assessing the direct stability under the dead ship condition.

    The authors pointed out[8]that the stability of a tumblehome hull with a low freeboard is vulnerable under the dead ship condition. The ONR tumblehome ship is selected in this study as the objective ship, which is provided by an IMO’s intercessional corresponding group as one of standard models for drafting second generation intact stability criteria.

    1. Mathematical model

    In order to calculate the probability of the unstability under the dead ship condition, the nonlinear and uncoupled equation with a stochastic wave excitation and a wind moment is used.

    whereφis the roll angle,μthe linear roll damping coefficient,βthe quadratic roll damping coefficient, W the ship weight,Ixxthe roll moment of inertia Jxxthe added roll moment of inertia,GZ the righting arm, Mwind(t)the wind induced moment consisting of the steady and the fluctuating wind moments,Mwave(t)is the Froude-Krylov component of the wave exciting moment. The roll diffraction moment and the roll radiation moment due to the sway cancels out when the wave length is sufficiently longer than the ship breadth. The dots denote differentiation with respect to time.

    The wind induced excitation moment can be calculated by the following equation

    where ρa(bǔ)iris the air density,Cmthe aerodynamic drag coefficient,Uwthe mean wind velocity,U( t) the fluctuating wind velocity calculated by the Davenport spectrum[9],ALthe lateral windage area, and HCthe height of the center of the wind force from the center of the hydrodynamic reaction force.

    The fluctuating wind velocity is calculated by the following equation, where the Davenport spectrum[10]is used.

    where

    The Froude-Krylov component of the wave exciting moment can be calculated by the following equation

    where γ is the effective wave slope coefficient, which can be calculated by the recommended formula in the 2008IS code or the strip method[11], and Θ (t) is the wave slope calculated from the ITTC wave spectrum[ 12] as follows:

    H1/3is the significant wave height and T01is the mean wave period.

    Fig.1 The ONR Tumblehome model

    Fig.2 ONR Tumblehome lines

    2. Model and test description

    The tested model is the ONR Tumblehome provided by the coordinator of the corresponding group of the second generation intact stability criteria, and its superstructure is replaced by a quadrate organic glass structure (Figs.1, 2). The scale ratio is λ=40.526and the model length between the perpendiculars(LPP)is 3.8 m. The other geometrical and mechanical data of the model are listed in Table 1.

    Table1 Principal particulars of the ONR tumblehome

    The experiment is performed in the seakeeping basin (of 69 m in length, 46 m in breadth and 4 m in depth) in the China Ship Scientific Research Center, equipped with a flap wave maker at two adjacent sides of the basin. A servo-needle wave height sensor is used to measure the incoming waves. It is placed at the port side, 1 m from the model and the left-fore perpendicular.

    Three mooring methods are adopted in the test. Firstly, the model is drifted freely in the beam seas with two protected ropes to avoid the ship from escaping at the worst scenario due to the yaw moment[13]as shown in Fig.3(a). Secondly, the ship model is made perpendicular to the wave direction in the test through a wire system of four wires connected to the ship model at the bow and the stern, respectively, and close to the water surface as shown in Fig.3(b). In the second method, the drift and the yaw may be softly restrained by the counter weight, however, the heave, the pitch, the roll and the sway are free. Thirdly, the ship model is kept perpendicular to the wave direction by a wire system, with four wires connected to the ship model through four short springs at the bow and the stern, respectively, in level with the water surface as shown in Fig.3(c). In the third method, the other ends of the four wires are fixed steadily, so the drift is restrained and the heave, the pitch and the yaw are softly restrained.

    Fig.3 Layout of experimental set-ups

    Roll decay tests are carried out under calm water conditions. The model is heeled to an initial heeling angle and then released. This series of tests are used to determine the roll damping and eventually its linear and nonlinear components[14], which are then used in simulations, as shown in Fig.4.

    Irregular wave’s spectrums generated with five seed numbers by the wave maker agree well with the ITTC Spectrum, as shown in Fig.5. The roll, pitch and yaw amplitudes are measured by the micro electromechanical system (MEMS) based gyroscope placedon the ship model.

    Fig.4 Roll damping curves and the extinction curve (a,b are linear and square extinction coefficients)

    Fig.5 Wave spectrum

    Fig.6 Roll amplitudes with T =12.38s,Fr =0,χ=90o, GM=1.781m

    3. Results and discussions

    The roll amplitudes from the simulations using the 1 DOF approach in a regular beam wave are larger than those from model experiments, with the exception of the case of small wave height as shown in Fig.6. The discrepancy is attributed to the assumption of a linear relationship between the wave exciting moments and the wave amplitude in the 1 DOF simulation. The roll amplitudes from the free drift test and the restrained tests with counter weight are in agreement with each other, and with the results from restrained tests with four springs at low wave heights, however, they are larger at high wave heights. In the second method, only the drift and the yaw are weakly restrained by the counter weight, while in the third method the drift is restrained, and the heave, the pitch and the yaw are weakly restrained. The effects of test methods on the roll amplitudes are reduced at low wave heights.

    Fig.7 Maximum roll angles with H1/3=14.0 m,T01=12.38s, Fr =0,χ=90o,GM=1.781m

    Capsizing occurs at seed number 5 in restrained tests with counter weight and four springs when encountering a large wave as shown in Figs.7 and 8. However, no capsizing is witnessed in free drift tests and the maximum roll angle is 41.5o. It is because the free drift and sway could damp the instantaneous large wave force on the ship hull and reduce the water on the deck.

    The maximum roll angle is63oin the restrained tests with counter weight and is50oin the free drift test at seed number 4 when encountering two large waves, as shown in Fig.7. The difference between the maximum roll angles is due to the same reason as stated above. The maximum roll angle is only23.4oin the restrained test with four springs at seed number 4 as the ship motion is restrained by the four wires and springs. The differences between the maximum roll angles are not very large at seed numbers 1, 2, 3 among three model tests, without encountering a severe wave, as shown in Fig.7.

    The numerical simulations at different seed numbers predict larger roll angles as shown in Fig.7. The capsizing does not occur in the simulations as the largest encounter wave in the experiments are not reproduced in the numerical simulations.

    Fig.8 Wave record and roll time history with H1/3=14.0 m, T=12.38s,Fr =0,χ=90o,GM=1.781mand01seed number 5

    Fig.9 Probability of upcross with H1/3=14.0 m,T01=12.38s, Fr =0,χ=90o,GM=1.781m

    The probabilities of up-cross[15]in experiments and simulations are calculated as shown in Fig.9.Pupis the up-cross number per second, and the experimental duration is 10 min in 1 h simulations. Although capsizing is not observed at seed number 5 in the free drift test, the probability of up-cross at seed number 1, 3, 5 without wave loads on the superstructure is larger than those in other two tests with wave forces on the superstructure, thus the capsizing probability with drift motions is higher than those without drift motions, as observed by Ogawa et al.[7]. However, in this study, capsizing occurs in both restrained tests and does not occur in free drift tests.

    In conclusion, the 1 DOF simulation results are found to overestimate the maximum roll angle and the probability of up-cross as shown in Figs.7 and 9, with the exception of the cases of seed numbers 4 and 5. As discussed above, a more advanced numerical modelling is desirable to take account of both drift and sway motions.

    4. Conclusions

    From the results of the experimental and numerical studies of the stability under the dead ship condition, the following conclusions are drawn:

    (1) The capsizing probabilities with drift motions are higher than those without drift motions, yet capsizing only occurs in the restrained tests in the experiments in this study.

    (2) It is recommended that more accurate numerical models should be developed for assessing the direct stability under the dead ship condition to include the effects of the drift and the sway on the roll motion in beam seas.

    (3) Restrained tests with counter weight tend to produce more conservative results than the free drift test for the capsizing prediction.

    Acknowledgement

    This paper was presented at the 13th International Ship Stability Workshop. Prof. Umeda N. from Osaka University (Japan) gave useful advices on predicting stability under dead ship condition and the standard model ship.

    [1] THEMELIS N., SPYROU K. J. Probabilistic assessment of ship stability[J]. Transactions of the Society of Naval Architects and Marine Engineers, 2007, 115: 181-206.

    [2] ISKANDAR B. H., ANDUMEDA N. Some examinations of capsizing probability calculation for an Indonesian RoRo passenger ship in waves[J]. Journal of Kansai Society of Naval Architects, 2001, 236: 81-86.

    [3] BULIAN G., FRANCESCUTTO A. Safety and operability of fishing vessels in beam and longitudinal waves[J]. Transactions of the Royal Institution of Naval Architects Part B: International Journal of Small Craft Technology, 2006, 148(2): 1-16.

    [4] MCTAGGART, K., ANDDEKAT J. O. Capsizing risk of intact frigates in irregular seas[J]. Transactions of the Society of Naval Architects and Marine Engineers, 2000, 108(492): 147-177.

    [5] UMEDA N., IZAWA S. and SANO H. et al. Validation attempts on draft new generation intact stability criteria[C]. Proceedings of the12th International Ship Stability Workshop. Washington DC, USA, 2011, 19-26.

    [6] KUBO T., UMEDA N. and IZAWA S. et al. Total stability failure probability of a ship in irregular beam wind and waves: Model experiment and numerical simulaton[C]. Proceedings of 11th International Conference on the Stability of Ships and Ocean Vehicles. Athens, Greece, 2012, 39-46.

    [7] OGAWA Y., De KAT J. O. and ISHIDA S. Analytical study of the effect of drift motion on the capsizing probability under dead ship condition[C]. Proceedings of 9th International Conference on the Stability of Ships and Ocean Vehicles. Rio de Janeiro, Brazil, 2006, 1: 29-36.

    [8] GU M., LU J. and WANG T. An investigation on stability under dead ship condition of a tumblehome hull[C]. Proceedings of 11th International Conference on the Stability of Ships and Ocean Vehicles. Athens, Greece, 2012, 593-598.

    [9] BULIAN G., FRANCESCUTTO A. A simplified modular approach for the prediction of the roll motion due to the combined action of wind and waves[J]. Journal of Engineering for the Maritime Environment, 2004, 218(3): 189-212.

    [10] PAROKA D., OHKURA Y. and UMEDA N. Analytical prediction of capsizing probability of a ship in beam wind and waves[J]. Journal of Ship Research, 2006, 50(2): 187-195.

    [11] BULIAN G., FRANCESCUTTO A. Experimental results and numerical simulations on strongly nonlinear rolling of multihulls in moderate beamseas[J]. Proceedings of the Institution of Mechanical Engineers-Part M-Journal of Engineering for the Maritime Environment, 2009, 223(2): 189-210.

    [12] PAROKA D., UMEDA N. Capsizing probability prediction for a large passenger ship in irregular beam wind and waves: Comparison of analytical and numerical methods[J]. Journal of Ship Research, 2006, 50(4): 371-377.

    [13] UMEDA N., KOGA S. and UEDA J. et al. Methodology for calculating capsizing probability for a ship under dead ship condition[C]. Proceedings of the 9th International Ship Stability Workshop. Hamburg, Germany, 2007.

    [14] IKEDA Y. Prediction methods of roll damping of ships and their application to determine optimum stabilization devices[J]. Marine Technology, 2004, 41(2): 89-93.

    [15] BELENKY V., WEEMS K. M. and LIN W. M. Numerical procedure for evaluation of capsizing probability with split time method[C]. 27th Symposium on Naval Hydrodynamics. Seoul, Korea, 2008.

    * Project supported by Ministry of Industry and Information Technology of China (Grant No. [2012] 533)

    Biography: GU Min (1962- ), Male, Master, Professor

    LU Jiang,

    E-mail: lujiang1980@aliyun.com

    日日摸夜夜添夜夜添av毛片| 国产精品一区二区性色av| 日韩人妻高清精品专区| 久久久久久久久大av| 嫩草影院新地址| 三级毛片av免费| 亚洲av成人精品一区久久| 女人久久www免费人成看片| 日韩欧美精品v在线| 国产成人精品婷婷| 日本一二三区视频观看| 十八禁国产超污无遮挡网站| 看十八女毛片水多多多| 99久久精品热视频| 午夜老司机福利剧场| 欧美高清性xxxxhd video| 18+在线观看网站| 两个人的视频大全免费| 国国产精品蜜臀av免费| 午夜激情福利司机影院| 日韩成人伦理影院| 久久国产乱子免费精品| 天美传媒精品一区二区| 中文字幕免费在线视频6| 99re6热这里在线精品视频| 国产亚洲5aaaaa淫片| 色哟哟·www| 国产在视频线精品| 干丝袜人妻中文字幕| 久久精品熟女亚洲av麻豆精品 | 2022亚洲国产成人精品| 嫩草影院精品99| 最近的中文字幕免费完整| 亚洲三级黄色毛片| 亚洲精品亚洲一区二区| a级毛片免费高清观看在线播放| 最近手机中文字幕大全| 国产单亲对白刺激| 午夜激情欧美在线| 综合色丁香网| 久久久国产一区二区| 日本-黄色视频高清免费观看| 欧美激情国产日韩精品一区| 国产日韩欧美在线精品| 国产色爽女视频免费观看| 一级爰片在线观看| 联通29元200g的流量卡| av在线老鸭窝| 国产高清三级在线| 免费黄频网站在线观看国产| 成人一区二区视频在线观看| 日韩视频在线欧美| 亚洲av中文字字幕乱码综合| 久久久久久久久中文| 一区二区三区高清视频在线| 欧美性猛交╳xxx乱大交人| 麻豆国产97在线/欧美| 日本一二三区视频观看| 亚洲丝袜综合中文字幕| av在线观看视频网站免费| 噜噜噜噜噜久久久久久91| 51国产日韩欧美| 午夜视频国产福利| 深夜a级毛片| 校园人妻丝袜中文字幕| 久久久久久久久久久丰满| 亚洲成色77777| 亚洲美女视频黄频| 国产精品嫩草影院av在线观看| 国产精品麻豆人妻色哟哟久久 | 国产老妇伦熟女老妇高清| 国产精品麻豆人妻色哟哟久久 | 天堂俺去俺来也www色官网 | 欧美另类一区| 国产视频内射| 黄色一级大片看看| 免费av毛片视频| 欧美日韩国产mv在线观看视频 | 欧美成人精品欧美一级黄| 少妇熟女aⅴ在线视频| 看非洲黑人一级黄片| 在线观看免费高清a一片| 国产91av在线免费观看| 亚洲国产高清在线一区二区三| 国产一区亚洲一区在线观看| 少妇熟女欧美另类| 久久久久国产网址| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久视频播放| 一级爰片在线观看| 91午夜精品亚洲一区二区三区| 淫秽高清视频在线观看| 中文字幕亚洲精品专区| 欧美三级亚洲精品| 青春草亚洲视频在线观看| 啦啦啦啦在线视频资源| 成人亚洲欧美一区二区av| 色吧在线观看| 少妇人妻精品综合一区二区| 亚洲欧美日韩东京热| 在线观看一区二区三区| 91久久精品国产一区二区成人| 97精品久久久久久久久久精品| 看十八女毛片水多多多| 国产伦一二天堂av在线观看| 国产午夜精品一二区理论片| 老师上课跳d突然被开到最大视频| 在线观看人妻少妇| 久久亚洲国产成人精品v| 岛国毛片在线播放| 插逼视频在线观看| 午夜福利在线在线| 久久精品久久久久久噜噜老黄| 高清日韩中文字幕在线| 九色成人免费人妻av| 亚洲av电影在线观看一区二区三区 | 夜夜爽夜夜爽视频| 人妻夜夜爽99麻豆av| 久久精品综合一区二区三区| 国产视频内射| 美女脱内裤让男人舔精品视频| 国产成人91sexporn| 国产亚洲精品久久久com| 欧美潮喷喷水| 日韩伦理黄色片| 性色avwww在线观看| 国产淫语在线视频| 日本色播在线视频| 99久久精品国产国产毛片| 午夜免费观看性视频| 久久99精品国语久久久| 一区二区三区免费毛片| 亚洲人成网站在线观看播放| 免费观看a级毛片全部| 美女内射精品一级片tv| 国产日韩欧美在线精品| 婷婷色麻豆天堂久久| 日本av手机在线免费观看| 直男gayav资源| 精品熟女少妇av免费看| 少妇裸体淫交视频免费看高清| 精品99又大又爽又粗少妇毛片| 色网站视频免费| 欧美精品国产亚洲| 极品教师在线视频| 国产精品一区二区在线观看99 | 日韩亚洲欧美综合| 欧美潮喷喷水| 自拍偷自拍亚洲精品老妇| 免费大片18禁| 中文字幕人妻熟人妻熟丝袜美| 一区二区三区高清视频在线| 国精品久久久久久国模美| 天堂影院成人在线观看| 三级男女做爰猛烈吃奶摸视频| 国产成人精品婷婷| 亚洲久久久久久中文字幕| 亚洲欧美一区二区三区黑人 | 大香蕉久久网| 精品午夜福利在线看| 一级黄片播放器| 久久久久免费精品人妻一区二区| 精品一区二区三区人妻视频| 九九在线视频观看精品| 成人二区视频| 精品久久久久久成人av| 亚洲三级黄色毛片| 97超碰精品成人国产| 国产午夜福利久久久久久| 久久久午夜欧美精品| 一级片'在线观看视频| 免费观看无遮挡的男女| 国产一级毛片在线| 国产精品不卡视频一区二区| 国产免费一级a男人的天堂| 免费av毛片视频| 69人妻影院| 国产乱来视频区| 国产激情偷乱视频一区二区| 精品一区二区三区人妻视频| 美女大奶头视频| 久久久久久久午夜电影| 国产亚洲av嫩草精品影院| 九九爱精品视频在线观看| 国产伦理片在线播放av一区| av.在线天堂| 国产精品国产三级国产av玫瑰| 高清欧美精品videossex| 真实男女啪啪啪动态图| 黄片无遮挡物在线观看| 国产人妻一区二区三区在| 日韩国内少妇激情av| 爱豆传媒免费全集在线观看| 婷婷色av中文字幕| 国产高潮美女av| 天美传媒精品一区二区| 日韩一区二区视频免费看| 美女主播在线视频| 国产麻豆成人av免费视频| 99re6热这里在线精品视频| 91av网一区二区| 婷婷色av中文字幕| 亚洲精品第二区| 精品人妻一区二区三区麻豆| 欧美高清成人免费视频www| 肉色欧美久久久久久久蜜桃 | 国产亚洲精品av在线| 欧美精品一区二区大全| 日韩欧美三级三区| 日韩欧美精品免费久久| 99热全是精品| 赤兔流量卡办理| ponron亚洲| 美女国产视频在线观看| 久久97久久精品| 大香蕉97超碰在线| 精品人妻一区二区三区麻豆| 黄色日韩在线| 久久精品久久久久久噜噜老黄| 视频中文字幕在线观看| 超碰97精品在线观看| 天堂网av新在线| 色网站视频免费| 久久久久久久久久黄片| 禁无遮挡网站| 99热这里只有是精品50| 精品一区二区三区人妻视频| 亚洲av成人av| 久久久色成人| 久久草成人影院| 人人妻人人看人人澡| 天堂中文最新版在线下载 | 天天一区二区日本电影三级| 日韩av在线免费看完整版不卡| 五月玫瑰六月丁香| 亚洲高清免费不卡视频| 男人爽女人下面视频在线观看| 国产在线一区二区三区精| 夜夜爽夜夜爽视频| 中国美白少妇内射xxxbb| 国产伦在线观看视频一区| 国产日韩欧美在线精品| 午夜免费男女啪啪视频观看| 国产伦在线观看视频一区| 色网站视频免费| 国产精品一区二区性色av| 国产乱人视频| 中文欧美无线码| 日韩三级伦理在线观看| 欧美一区二区亚洲| 国产在视频线精品| 午夜爱爱视频在线播放| 久久精品久久久久久久性| 久久久久免费精品人妻一区二区| 国产亚洲91精品色在线| 丝瓜视频免费看黄片| 麻豆久久精品国产亚洲av| 亚洲精品久久午夜乱码| 国产伦精品一区二区三区四那| 美女主播在线视频| 韩国av在线不卡| 最近中文字幕2019免费版| 欧美另类一区| 国产一区有黄有色的免费视频 | 精品欧美国产一区二区三| 人妻一区二区av| 亚洲国产av新网站| 美女高潮的动态| 在线a可以看的网站| or卡值多少钱| 国产淫语在线视频| 久久99热这里只有精品18| 五月天丁香电影| 国产探花极品一区二区| av一本久久久久| 亚洲av在线观看美女高潮| 国产精品国产三级专区第一集| 欧美xxxx黑人xx丫x性爽| 久久久精品免费免费高清| 亚洲av男天堂| 免费黄网站久久成人精品| 国产黄色免费在线视频| 麻豆成人午夜福利视频| 日本免费在线观看一区| 欧美成人一区二区免费高清观看| 九草在线视频观看| 久久综合国产亚洲精品| 国产精品不卡视频一区二区| 久久久精品94久久精品| 成年女人在线观看亚洲视频 | 毛片一级片免费看久久久久| 久久久久久久久久成人| 青春草亚洲视频在线观看| 天堂网av新在线| 日韩制服骚丝袜av| 中文字幕制服av| 午夜日本视频在线| 午夜爱爱视频在线播放| 1000部很黄的大片| 2021少妇久久久久久久久久久| 成年版毛片免费区| 亚洲aⅴ乱码一区二区在线播放| 欧美高清成人免费视频www| 精品午夜福利在线看| 别揉我奶头 嗯啊视频| 亚洲成人精品中文字幕电影| 非洲黑人性xxxx精品又粗又长| 日韩一区二区三区影片| 日韩欧美 国产精品| 美女内射精品一级片tv| 欧美激情久久久久久爽电影| 一夜夜www| 日韩在线高清观看一区二区三区| 国产一区二区亚洲精品在线观看| 久久精品熟女亚洲av麻豆精品 | 国产v大片淫在线免费观看| 男人舔奶头视频| 嫩草影院入口| 国产黄片美女视频| 色播亚洲综合网| 亚洲国产日韩欧美精品在线观看| 日韩强制内射视频| 少妇的逼水好多| 亚洲国产欧美在线一区| 十八禁国产超污无遮挡网站| av免费在线看不卡| 日韩欧美国产在线观看| 色综合亚洲欧美另类图片| 亚洲一区高清亚洲精品| 人人妻人人澡欧美一区二区| 免费在线观看成人毛片| ponron亚洲| 男人和女人高潮做爰伦理| 亚洲成人av在线免费| or卡值多少钱| 成人av在线播放网站| 日韩成人av中文字幕在线观看| 草草在线视频免费看| 有码 亚洲区| 国产亚洲精品久久久com| 网址你懂的国产日韩在线| 啦啦啦中文免费视频观看日本| 看黄色毛片网站| 天堂√8在线中文| 中文字幕人妻熟人妻熟丝袜美| 在线观看一区二区三区| 18禁动态无遮挡网站| 欧美日韩在线观看h| 免费黄色在线免费观看| 亚洲av中文av极速乱| 亚洲精品日本国产第一区| 欧美三级亚洲精品| 日韩亚洲欧美综合| 亚洲av日韩在线播放| 国产亚洲精品久久久com| 精品国产露脸久久av麻豆 | av线在线观看网站| 国产成人91sexporn| 亚洲人成网站在线播| 美女大奶头视频| 啦啦啦啦在线视频资源| 免费观看a级毛片全部| 超碰97精品在线观看| 街头女战士在线观看网站| 建设人人有责人人尽责人人享有的 | 一二三四中文在线观看免费高清| 欧美日本视频| 欧美一区二区亚洲| 亚洲欧美日韩东京热| 日本爱情动作片www.在线观看| 亚洲,欧美,日韩| 欧美性感艳星| 天天一区二区日本电影三级| 色播亚洲综合网| 国产精品.久久久| 国精品久久久久久国模美| 不卡视频在线观看欧美| 久久99热这里只频精品6学生| 国产伦一二天堂av在线观看| av在线播放精品| 久久久久国产网址| 国产免费视频播放在线视频 | 麻豆成人午夜福利视频| 男女啪啪激烈高潮av片| 人妻系列 视频| 蜜臀久久99精品久久宅男| 非洲黑人性xxxx精品又粗又长| 亚洲av国产av综合av卡| 日本黄色片子视频| eeuss影院久久| 特大巨黑吊av在线直播| 亚洲av成人精品一二三区| 99久久人妻综合| 亚洲国产精品专区欧美| 国产日韩欧美在线精品| 国产精品日韩av在线免费观看| 小蜜桃在线观看免费完整版高清| 乱人视频在线观看| 少妇熟女aⅴ在线视频| 女人十人毛片免费观看3o分钟| 黄色配什么色好看| 六月丁香七月| 亚洲第一区二区三区不卡| 99久久精品国产国产毛片| 国内精品美女久久久久久| 在线免费十八禁| 久久久亚洲精品成人影院| 亚洲人与动物交配视频| 亚洲自拍偷在线| 嘟嘟电影网在线观看| 久久久久精品久久久久真实原创| 国产亚洲av片在线观看秒播厂 | 99久久人妻综合| 一级毛片 在线播放| 亚洲人成网站高清观看| 国产成人福利小说| 91精品一卡2卡3卡4卡| 天美传媒精品一区二区| 夫妻性生交免费视频一级片| 一本一本综合久久| 2022亚洲国产成人精品| 午夜精品国产一区二区电影 | 国产亚洲午夜精品一区二区久久 | 只有这里有精品99| 午夜福利成人在线免费观看| 高清日韩中文字幕在线| 久久这里有精品视频免费| 国产精品爽爽va在线观看网站| 欧美+日韩+精品| 女人十人毛片免费观看3o分钟| 国产男女超爽视频在线观看| 老司机影院成人| 精品人妻偷拍中文字幕| 免费看日本二区| 少妇丰满av| 中文字幕人妻熟人妻熟丝袜美| 中文精品一卡2卡3卡4更新| 午夜免费观看性视频| 欧美性猛交╳xxx乱大交人| 日韩,欧美,国产一区二区三区| 毛片一级片免费看久久久久| 日本黄大片高清| 国产麻豆成人av免费视频| 国产三级在线视频| 亚洲不卡免费看| 在线免费观看的www视频| 联通29元200g的流量卡| 青青草视频在线视频观看| 国内精品一区二区在线观看| 午夜老司机福利剧场| 国产免费一级a男人的天堂| 亚洲精品第二区| 亚洲熟女精品中文字幕| 中文字幕人妻熟人妻熟丝袜美| 国产国拍精品亚洲av在线观看| 在线播放无遮挡| 丝袜美腿在线中文| 寂寞人妻少妇视频99o| 51国产日韩欧美| 亚洲欧美日韩无卡精品| 精品99又大又爽又粗少妇毛片| 精品人妻视频免费看| 亚洲精品第二区| 男的添女的下面高潮视频| 日日摸夜夜添夜夜爱| 2021少妇久久久久久久久久久| 国产伦在线观看视频一区| 麻豆国产97在线/欧美| 美女高潮的动态| 人妻夜夜爽99麻豆av| 毛片女人毛片| 在线a可以看的网站| 欧美性感艳星| 在线观看美女被高潮喷水网站| 久久草成人影院| 亚洲av国产av综合av卡| 国产高清有码在线观看视频| 久久精品国产亚洲av涩爱| 免费观看性生交大片5| 日本一二三区视频观看| 亚洲国产欧美人成| 欧美一级a爱片免费观看看| 国产成人精品婷婷| 真实男女啪啪啪动态图| 成人国产麻豆网| 又爽又黄无遮挡网站| 人人妻人人澡欧美一区二区| 精品人妻熟女av久视频| 国产免费福利视频在线观看| 18禁在线无遮挡免费观看视频| 久久久久免费精品人妻一区二区| 日韩三级伦理在线观看| 伊人久久国产一区二区| 亚洲人成网站在线观看播放| 亚洲欧美精品专区久久| 欧美xxxx性猛交bbbb| 我的老师免费观看完整版| 18禁裸乳无遮挡免费网站照片| 国产精品一区二区三区四区免费观看| 亚洲av电影在线观看一区二区三区 | 欧美性猛交╳xxx乱大交人| 联通29元200g的流量卡| 成人国产麻豆网| 蜜桃久久精品国产亚洲av| 国产伦精品一区二区三区视频9| 亚洲久久久久久中文字幕| 亚洲成人av在线免费| 97超视频在线观看视频| av线在线观看网站| 国产精品久久久久久精品电影| 丝袜喷水一区| 天堂√8在线中文| 日本三级黄在线观看| 在线观看一区二区三区| 丝瓜视频免费看黄片| 久久99热这里只有精品18| 色尼玛亚洲综合影院| 七月丁香在线播放| 国产精品麻豆人妻色哟哟久久 | 91精品国产九色| 少妇被粗大猛烈的视频| 亚洲不卡免费看| 亚洲伊人久久精品综合| 尤物成人国产欧美一区二区三区| 亚洲伊人久久精品综合| 精品久久久久久久久久久久久| 五月伊人婷婷丁香| 如何舔出高潮| 国产三级在线视频| 97精品久久久久久久久久精品| 精品国产露脸久久av麻豆 | 久久久久久久久久久丰满| 国产精品福利在线免费观看| 少妇熟女欧美另类| 午夜福利高清视频| 国产精品一区www在线观看| 边亲边吃奶的免费视频| 中文乱码字字幕精品一区二区三区 | www.色视频.com| 亚洲图色成人| 日日撸夜夜添| 天堂网av新在线| 国产精品三级大全| 国产白丝娇喘喷水9色精品| 日韩 亚洲 欧美在线| 亚洲av成人精品一二三区| 小蜜桃在线观看免费完整版高清| 国产精品久久视频播放| av在线观看视频网站免费| 天堂影院成人在线观看| 我要看日韩黄色一级片| 99视频精品全部免费 在线| 国产亚洲一区二区精品| 国产一区亚洲一区在线观看| 日韩国内少妇激情av| 国产片特级美女逼逼视频| eeuss影院久久| 久久这里有精品视频免费| 欧美成人a在线观看| 婷婷色麻豆天堂久久| 国产大屁股一区二区在线视频| 久久综合国产亚洲精品| 亚洲av日韩在线播放| 亚洲av电影不卡..在线观看| 色综合站精品国产| 国产高清不卡午夜福利| 久久精品久久久久久久性| 五月玫瑰六月丁香| 黄色一级大片看看| 51国产日韩欧美| 日日撸夜夜添| 国产探花极品一区二区| 简卡轻食公司| 美女国产视频在线观看| 久久亚洲国产成人精品v| 国产亚洲精品久久久com| 精品久久久久久久久亚洲| 美女被艹到高潮喷水动态| 久久午夜福利片| av在线观看视频网站免费| 日本一本二区三区精品| 国产av国产精品国产| 日韩av不卡免费在线播放| 别揉我奶头 嗯啊视频| 一级二级三级毛片免费看| 欧美日韩一区二区视频在线观看视频在线 | 一本久久精品| 国产午夜精品久久久久久一区二区三区| 免费少妇av软件| 午夜福利视频精品| 只有这里有精品99| 精品一区二区三卡| 好男人视频免费观看在线| 街头女战士在线观看网站| 国产淫语在线视频| 欧美成人一区二区免费高清观看| 国产精品无大码| 国产欧美日韩精品一区二区| 精品久久久久久久末码| 国产精品福利在线免费观看| 免费人成在线观看视频色| 久久午夜福利片| 少妇人妻一区二区三区视频| 日韩一区二区视频免费看| 最后的刺客免费高清国语| av国产免费在线观看| 波多野结衣巨乳人妻| 高清欧美精品videossex| 26uuu在线亚洲综合色| 97超碰精品成人国产| 国产精品嫩草影院av在线观看| 婷婷六月久久综合丁香| 国产精品99久久久久久久久| 国产成人aa在线观看| 国产成人免费观看mmmm|