• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tailoring topological corner states in photonic crystals by near-and far-field coupling effects

    2023-12-15 11:47:54ZhaoJianZhang張兆健ZhiHaoLan蘭智豪HuanChen陳歡YangYu于洋andJunBoYang楊俊波
    Chinese Physics B 2023年12期
    關(guān)鍵詞:于洋楊俊

    Zhao-Jian Zhang(張兆健), Zhi-Hao Lan(蘭智豪), Huan Chen(陳歡),Yang Yu(于洋), and Jun-Bo Yang(楊俊波),?

    1Department of Physics,National University of Defense Technology,Changsha 410073,China

    2Center of Material Science,National University of Defense Technology,Changsha 410073,China

    3Department of Electronic and Electrical Engineering,University College London,London WC1E 7JE,United Kingdom

    Keywords: topological corner states,photonic crystal slabs,optical coupling effects,surface lattice resonances

    1.Introduction

    With the advent of the intersection between topology and photonics, the research of topological photonics has offered new approaches to understanding and manipulating the behavior of light in micro-nano structures.[1,2]Over the past decade,a variety of platforms have been established to realize topological photonics, including photonic crystals (PhCs), metamaterials,and waveguide lattices.[3-5]Among these platforms,topological PhCs have received significant attention due to the straightforward analogue to solid state systems and the feasibility of on-chip integrated optical systems.[6]For example,topological valley-dependent edge states were introduced into PhC hole slabs to realize electromagnetic wave propagation with backscattering suppression,which could be applied to robust data transmission in the telecommunication and terahertz bands,[7-9]and even to quantum information processing.[10]Besides,higher-order topological insulators were further proposed recently,[11]where two-dimensional(2D)second-order topological insulators(SOTIs)could support localized corner states and serve as optical nanocavities with high quality (Q)factors in PhCs.[12,13]On this basis,several topological applications have been implemented,such as topological lasing and strong coupling.[14,15]

    Meanwhile, metasurfaces, the 2D counterparts of metamaterials,were also introduced into topological photonics.[16]One example was the topological metasurface based on patterned graphene, which can support edge plasmons that enhance the four-wave mixing nonlinear process.[17]Plasmonic metal metasurfaces could also be used for electrically active control of topological microwave transport.[18]Especially, it is natural to pay more attention to the optical coupling effect between topological states, since it is one of the most important features occurring in metasurfaces.Through arranging meta-atoms periodically, it was inevitable to include optical evanescent coupling between adjacent meta-atoms,which will regulate optical properties of resonances supported on metaatoms.[19]On the other hand, diffractively far-field coupling could also exist in metasurfaces, leading to surface lattice resonance (SLR) with spectral narrowing.[20]Recent studies have investigated by using coupling effects to tailor the optical properties of photonic topological states through periodically arranging PhC supercells like metasurfaces, namely,PhC supercell arrays,where each supercell is SOTI.[21,22]Interestingly, these corner states exhibit exotic characteristics such as nondegenerate eigenfrequencies and collective behaviors,caused by near-field coupling.Moreover,such arrays provide a versatile platform for studying the topological lightmatter interaction,[23]having potential applications in largearea topological photonic devices.However, these studies have involved only PhC hole slabs so far, where another typical PhC slab, the rod slab, is still missing.In addition, the influence of far-field coupling in corner states has remained unclear up to now.

    In this work, we extend the theoretical investigation of coupled corner states in supercell arrays to PhC rod slab frameworks.Following 2D Su-Schrieffer-Heeger (SSH)model,we construct SOTIs by surrounding topologically nontrivial unit cells with trivial ones,which are then arranged periodically to form the supercell array.This results in the coupling of multipole corner states in neighboring SOTIs, which are located above the light line and accessible to external excitation.Our eigenmode analysis demonstrates that there are three types of coupled corner states with nondegenerate eigenfrequencies atΓpoint,while full-wave simulation reveals that coupled dipole corner states can be excited as resonances with polarization insensitivity.We further illustrate that the resonant wavelength andQfactor of the coupled corner state can be effectively tuned through the adjustment of inter-and intrasupercell near-field coupling.In addition, our multipole decomposition calculation reveals the electric quadrupole (EQ)and magnetic dipole (MD) nature of coupled corner states,which distinguish them from those supported in supercell arrays based on PhC hole slab structures.Finally,we observe a sharp increase inQfactor and a unique spectral profile as the resonant wavelength of the coupled corner states approaches to the Rayleigh anomaly(RA)position via increasing the surrounding refractive index(SRI),suggesting the emergence of SLRs induced by far-field coupling.This work introduces more optical means for the customization of corner states in PhCs,and has the potential to be applied to mid-infrared topological lasers,sensors,and detectors.

    2.Structure and method

    Figure 1(a) shows the geometrical configuration of the topological supercell array.It includes periodically arranged supercells based on PhC rod slab structures surrounded by air, and each supercell is an SOTI,[24]consisting of a square topological nontrivial region(highlighted in blue)surrounded with a trivial region(highlighted in green).The trivial region and nontrivial region are composed of trivial/nontrivial unit cells with four compact dielectric rod and expanded dielectric rods, whose lattice constanta=2.03μm, heighth=2a,and permittivityε=16(corresponding to germanium in midinfrared[25]).Additionally,mandnrepresent the number of rows of trivial unit cells between neighboring nontrivial regions, and the number of rows of nontrivial unit cells within one supercell, respectively, thus the period of the supercellP=a(m+n).By varyingmorn, we can separately tune the evanescently optical interaction between corner states located in adjacent supercells or the same supercell respectively,namely, the inter-supercell coupling and intra-supercell coupling respectively.

    In Fig.1(b), we present the first three photonic bands of trivial unit cell and nontrivial unit cells,which is calculated via plane-wave expansion(PWE)method.Here,we only consider transverse magnetic (TM) modes below the light line since rods favor TM band gaps.[5]It is shown that the two unit cells possess identical band structures, and there exists a band gap between the first band and the second band.The topological properties of the two unit cells can be distinguished by 2D Zak phaseθ=(θx,θy),which is determined by the field parity atΓandX(Y)points as[26]

    Here,XαisXorYpoint forα=xory,respectively,ηdenotes the parity of field at high-symmetry point with respect to the middle plane atα=a/2,andiruns over all the bands below the gap,which only involves the first band in this case.Owing toC4symmetry of the unit cell, we also haveθx=θy.For trivial unit cell,we find that its fields of the first band possess even parity at bothΓpoint andXpoint as indicated by symbol+in green in Fig.1(b),thus it possesses 2D Zak phase(0,0),namely, a topologically trivial phase.For nontrivial unit cell,it has nontrivial 2D Zak phase(π,π)since its parity atXpoint becomes odd as indicated by symbol- in blue in Fig.1(b).Such a parity reversal is attributed to the band inversion between the first two bands during the topological phase transition process.[21]

    3.Results and discussion

    Then we turn to the investigation of the supercell array withm=2 andn=3 as given in Fig.1(a).Since we only consider the case of normal incidence in this work,the eigenmodes of the periodic supercells atΓpoint are calculated,and the results are shown in Fig.1(c).It is shown that there are six coupled edge states and four coupled corner states within the band gap of the unit cell,and we focus on the latter.Their field distributions of theEzcomponent, determined in thexyplane of the supercell at the middle of the slab (z=h/2),are presented in the insets of Fig.1(c).These plots show that electric fields of coupled corner states are tightly localized in four corners of the nontrivial region,and exhibit characteristics of multipole corner states defined by Kimet al.,[27]namely, monopole, dipole I,dipole II,and quadrupole corner states from low to high frequencies.Especially,different types of coupled corner states possess nondegenerate eigenfrequencies owing to near-field evanescent coupling,which is a unique feature that distinguishes them from conventional corner states in isolated SOTIs.However, the degeneracy of the two coupled dipole corner states remains unbroken.

    These coupled corner states are beyond the light line atΓpoint of the supercell array, thus they are radiative and accessible to external excitation.We perform the full-wave simulation of the supercell array based on finite-difference timedomain(FDTD)method,where one supercell is modeled under the periodic boundary condition in thexdirection andydirection and a plane wave source is introduced on the top with normal incidence for far-field excitation.The transmission spectrum is shown in Fig.1(d), which shows a resonant dip at 5.857μm,corresponding to the eigenfrequency of coupled dipole corner states.Field distributions at the resonant wavelength also exhibit features of coupled dipole corner states as shown in plots of Fig.1(d), confirming that they are excited as resonances.Owing to theC4symmetry of the supercell array, the spectral response of coupled dipole corner states is insensitive to the polarization angleφof the plane wave.Especially,different coupled dipole corner states can be selectively excited by tuning the polarization angle as shown in plots of Fig.1(d).Notably, there is no spectral evidence of coupled monopole and quadrupole corner states, since they cannot be directly stimulated by the source due to the symmetry mismatch,namely,there is no overlap between their fields and the plane waves.We will keepφ=0 in the following discussion.

    The transmission spectrum of coupled dipole corner states can be fitted by the following Fano formula:[28]

    wherea1,a2,andbdenote constant real parameters,ω0is the resonant frequency, andγrefers to the damping rate of the resonance.TheQfactor of the resonance can be calculated from the relationQ=ω0/(2γ).In this case, coupled dipole corner states possess a lowQfactor of 1252,and thus we further examine the near-field coupling effect for enhancing the resonance performance of coupled dipole corner states.By varyingmandn, the inter-supercell and intra-supercell coupling effects are investigated,and the corresponding transmission spectra are shown in Fig.2, where the positions of coupled dipole corner states are indicated by arrows.It is shown that these near-field couplings can alter the resonance properties of coupled dipole corner states effectively.For example,if we maintainn=3 and increase the inter-supercell coupling strength by reducingm, the resonant wavelength andQfactor of coupled dipole corner state can be modified as shown in Fig.2(b),and aQfactor of 3389 can be obtained at 5.934μm whenm=1.Similarly,if comparing the transmission spectra of different values ofnwith the samem(shown by curves with the same color in Fig.2),one can find that the intra-supercell coupling also plays an important role in determining the resonance behaviors of coupled dipole corner states.Especially,coupled dipole corner states reach a highQfactor of 1.68×104at 5.892μm whenm=n=2 as depicted in Fig.2(c).

    Fig.2.(a)-(d) Transmission spectra of the supercell array at different values of m and n, with arrows indicating positions of coupled dipole corner states.

    Fig.3.(a)Multipolar scattering cross-sections of coupled dipole corner states when(a)m=2 and n=3; (b)m=n=2.(c)Magnetic field vectors of coupled dipole corner states when m=n=2.Colors of vectors indicate the corresponding normalized magnitudes, blue arrows indicate flows of magnetic fields,and the red circle and cross indicate directions of displacement currents.(d)Displacement current density of coupled dipole corner states.Red arrows indicate their flows.

    To gain more insights into coupled dipole corner states,we perform the multipole decomposition under the Cartesian coordinate system.[29]Here, we consider two cases of coupled dipole corner states, the first beingm= 2 andn= 3,and the second beingm=n= 2.The corresponding multipolar scattering cross-sectionCsca, including electric dipole(ED),toroidal dipole(TD),MD,EQ,and magnetic quadrupole(MQ), is presented in Figs.3(a) and 3(b), respectively.It is shown that coupled dipole corner states in both cases are dominated by EQ and MD,where MD is slightly weaker than EQ.Further investigations reveal that the coupled dipole corner states are always dominated by EQ and MD in otherm-ncases.To exhibit the origin of the multipoles, the magnetic field vectors in thex-ymiddle plane of the supercell withm=n=2 are visualized in Fig.3(c).It is shown that the magnetic field vectors circulate clockwise around the left corners,while counterclockwise around right corners as indicated by the blue arrows.They also generate a pair of EDs with opposite phases as indicated by the red circles and crosses.Figure 3(d) shows the displacement current density in thexzcross-section of lower corners, confirming the formation of EDs as indicated by the red dashed straight arrows.Thus,these EDs with opposite phases form the EQ response.Meanwhile, the current loop appearing in Fig.3(d) is attributed to the MD response.Interestingly, these coupled dipole corner states show completely different multipole natures from those in PhC hole slabs,where coupled dipole corner states are dominated by TD and MQ.[22]Therefore,although coupled dipole corner states share the same topological origin(the topological charge)in PhC rod and hole slabs, their natures in real space will differ.This is due to the fact that their in-plane topologically enforced circular flows are caused by magnetic fields and electric currents,respectively.

    Owing to the highQ-factor of coupled dipole corner states whenm=n=2,we further investigate the diffractively far-field coupling effect in this case to see whether theQfactor can be further improved.In the metasurfaces, the localized resonances in individual micro-nano particles can be coupled with in-plane diffracted propagating waves,leading to the SLRs with narrower linewidth.In principle,the SLRs can also exist in any other periodic optical structures such as PhC slabs.In this work,the spectral position of SLR under the normal incidence is determined by the following RA equation:

    wherensis the SRI around the array,Pis the period of the supercell,and(i,j)is the diffraction order of the RAs.

    Fig.4.(a)Transmission spectra of supercell array under different SRIs.(b)Wavelength of coupled dipole corner state and RA at(1,1)under different SRIs.(c) Difference between two wavelengths and Q factor of coupled dipole corner state under different SRIs.(d) Transmission spectra of supercell array when SRI is 1.16,1.17,and 1.18.

    Although the current resonant wavelength of coupled dipole corner stateλcdoes not match anyλr, for theoretical investigation, we can assume that the structure is surrounded by a homogenous lossless medium, and slightly vary the SRI to make the two wavelength positions overlap,since they have different dispersive behaviors with the SRI.Figure 4(a)shows transmission spectra of coupled dipole corner states under different SRIs, exhibiting that the resonant wavelength will redshift with increasing SRI, and the correspondingQfactor is also modified simultaneously.Figure 4(b) displays the relationship of wavelength versusnsforλcandλr(at the diffraction order (1,1)), respectively, with the SRI, which shows that the two curves becomes closer as the SRI increases.In Fig.4(c), we further present the difference betweenλcandλr(1,1), and theQfactor of coupled dipole corner state, under different SRIs.It is evident that the two wavelengths exponentially approach to each other as the SRI increases, and when they coincide atns=1.17 (the position is indicated by the blue dashed line),theQfactor dramatically increases up to 6.43×104.The transmission spectra near the high-Qregime are plotted in Fig.4(d), which exhibit typical spectral profiles of SLRs, including small transmission peaks caused by diffraction next the main transmission dips atns=1.16 and 1.18, and the much narrower transmission dip resulting from the diffraction atns=1.17.The above features all indicate the occurrence of SLRs caused by the far-field coupling, which further enrich the optical approaches to tailoring the resonance properties of coupled dipole corner states.

    4.Conclusions

    In summary, we theoretically investigated the optical properties of coupled corner states in the supercell array based on PhC rod slabs.The eigenmode analysis shows the nondegenerate features of multipole coupled corner states, and the full-wave simulation reveals the accessibility of coupled dipole corner states by using the plane-wave stimulation,which exhibits polarization-independent resonance characteristics.The resonant wavelength andQfactor of coupled dipole corner states can be effectively tuned by inter-supercell nearfield coupling effect and intra-supercell near-field coupling effect, and the multipole decomposition reveals that coupled dipole corner states are dominated by the EQ and MD,which is completely different from the scenario in PhC hole slabs.Finally,by varying the SRI,theQfactor of coupled dipole corner state is further improved through matching the RA position of the structure,namely,forming the SLRs caused by diffractively far-field coupling effects.In practice, the array can be fabricated on germanium-on-insulator platforms.[30]The photoresist should be first deposited on the top surface, and patterns of PhCs can be written with electron beam lithography.Then, the patterns can be transferred into the top germanium layer by using reactive ion etching techniques.[31]Although the insulator (silica) substrate will introduce asymmetric environment, the corresponding low RI will only cause a slight shift at the resonant wavelength,and the physical mechanism introduced in this work still holds.[7-10,32]This work reveals that compared with conventional isolated corner states, coupled corner states possess rich optical phenomena and many degrees of freedom to control,and such topological supercell arrays have potential applications in mid-infrared lasing,sensing,and detection.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.62275271, 12272407, and 62275269), the National Key Research and Development Program of China (Grant No.2022YFF0706005), the Natural Science Foundation of Hunan Province, China (Grant Nos.2023JJ40683, 2022JJ40552, and 2020JJ5646), and the Program for New Century Excellent Talents in University,China(Grant No.NCET-12-0142).

    猜你喜歡
    于洋楊俊
    Topological states switching and group velocity control in two-dimensional non-reciprocal Hermitian photonic lattice
    楊俊德:農(nóng)業(yè)豐收的“守護(hù)神”
    DYNAMICS ANALYSIS OF A DELAYED HIV INFECTION MODEL WITH CTL IMMUNE RESPONSE AND ANTIBODY IMMUNE RESPONSE?
    Little Women (V)
    Little Women (IV)Retold by M. Albers
    Little Woman(III)Retold by M.Albers
    于洋油畫(huà)作品選
    李泊城 隋邦平 楊俊顯 王綠竹 作品
    大眾文藝(2019年3期)2019-01-24 13:39:44
    《紅蜻蜓》教案
    副總一句話
    亚洲精品自拍成人| 黑人高潮一二区| 高清不卡的av网站| 亚洲精品中文字幕在线视频 | 一级毛片黄色毛片免费观看视频| 99久久精品热视频| videossex国产| 自线自在国产av| 国产毛片在线视频| 精华霜和精华液先用哪个| av天堂久久9| 亚洲国产色片| 久久久精品免费免费高清| 肉色欧美久久久久久久蜜桃| 日本vs欧美在线观看视频 | 成人亚洲精品一区在线观看| 国产一区二区在线观看日韩| av国产精品久久久久影院| 日本黄色片子视频| 91精品一卡2卡3卡4卡| 三级国产精品欧美在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩av在线免费看完整版不卡| 大片电影免费在线观看免费| 亚洲四区av| 免费黄频网站在线观看国产| 人体艺术视频欧美日本| 大码成人一级视频| 欧美xxxx性猛交bbbb| 亚洲丝袜综合中文字幕| 两个人的视频大全免费| 成人特级av手机在线观看| 五月天丁香电影| 日本欧美视频一区| 亚洲精品乱码久久久久久按摩| 午夜久久久在线观看| 在线 av 中文字幕| 免费少妇av软件| 永久网站在线| 成人特级av手机在线观看| 熟女人妻精品中文字幕| 国产精品人妻久久久久久| 日韩av在线免费看完整版不卡| 国国产精品蜜臀av免费| 国产精品一二三区在线看| 在线播放无遮挡| 婷婷色麻豆天堂久久| 伦理电影免费视频| 午夜激情福利司机影院| 欧美激情国产日韩精品一区| 欧美日韩精品成人综合77777| 日韩成人av中文字幕在线观看| 乱系列少妇在线播放| 99热这里只有精品一区| 国产色爽女视频免费观看| 精品一区二区三卡| 好男人视频免费观看在线| 精品一区二区三区视频在线| 亚洲国产欧美日韩在线播放 | 国产男人的电影天堂91| 欧美日韩视频高清一区二区三区二| 亚洲精品国产av成人精品| a级毛色黄片| 国产精品麻豆人妻色哟哟久久| a级片在线免费高清观看视频| 国产成人freesex在线| 国产真实伦视频高清在线观看| 成人漫画全彩无遮挡| 欧美丝袜亚洲另类| 精品酒店卫生间| 最新中文字幕久久久久| 99九九在线精品视频 | 国产亚洲欧美精品永久| 久久精品国产亚洲网站| 精品酒店卫生间| 99久久精品热视频| 亚洲国产精品成人久久小说| 国产伦精品一区二区三区四那| 22中文网久久字幕| 人人妻人人添人人爽欧美一区卜| 国产在线一区二区三区精| 国产av精品麻豆| 18禁裸乳无遮挡动漫免费视频| 国内精品宾馆在线| 欧美老熟妇乱子伦牲交| 26uuu在线亚洲综合色| av卡一久久| 国产乱人偷精品视频| 老司机影院毛片| av福利片在线| 国产日韩一区二区三区精品不卡 | 亚洲av综合色区一区| 亚洲欧美一区二区三区国产| 蜜桃久久精品国产亚洲av| 两个人免费观看高清视频 | 综合色丁香网| 色婷婷久久久亚洲欧美| 国产 精品1| 欧美精品高潮呻吟av久久| 不卡视频在线观看欧美| 你懂的网址亚洲精品在线观看| 天天操日日干夜夜撸| 欧美日韩精品成人综合77777| 国产精品欧美亚洲77777| 六月丁香七月| 国产精品一二三区在线看| 在线观看一区二区三区激情| 国产精品99久久久久久久久| 我的老师免费观看完整版| 最新中文字幕久久久久| 青春草亚洲视频在线观看| 99久久精品国产国产毛片| 内地一区二区视频在线| 国产免费福利视频在线观看| 9色porny在线观看| 亚洲精品乱码久久久v下载方式| 久久国产精品大桥未久av | 亚洲国产精品999| 亚洲美女黄色视频免费看| 777米奇影视久久| 亚洲伊人久久精品综合| 丰满人妻一区二区三区视频av| 亚洲欧洲精品一区二区精品久久久 | 国产一区亚洲一区在线观看| 久久99热6这里只有精品| 久久鲁丝午夜福利片| 亚洲国产精品专区欧美| 免费在线观看成人毛片| 成人亚洲欧美一区二区av| 五月玫瑰六月丁香| 免费看日本二区| 久久国产精品大桥未久av | 内射极品少妇av片p| 成人国产麻豆网| 国产精品久久久久成人av| 国产午夜精品一二区理论片| 看非洲黑人一级黄片| 午夜福利影视在线免费观看| 午夜福利,免费看| 日韩精品有码人妻一区| 亚洲国产色片| 老女人水多毛片| 国产av一区二区精品久久| 黄色一级大片看看| 免费人妻精品一区二区三区视频| 亚洲av福利一区| 中国国产av一级| 曰老女人黄片| 国产在线一区二区三区精| 国产毛片在线视频| 婷婷色麻豆天堂久久| 男女边吃奶边做爰视频| 五月天丁香电影| 涩涩av久久男人的天堂| av有码第一页| 日本午夜av视频| 亚洲国产精品一区三区| 日韩 亚洲 欧美在线| 精品亚洲成国产av| 亚洲精品亚洲一区二区| 成人无遮挡网站| 国产av一区二区精品久久| 国产熟女午夜一区二区三区 | 中文在线观看免费www的网站| 伊人亚洲综合成人网| 色视频在线一区二区三区| 亚洲精品乱码久久久v下载方式| 人妻夜夜爽99麻豆av| 亚洲情色 制服丝袜| 久久精品国产亚洲av天美| 交换朋友夫妻互换小说| 嫩草影院入口| 久久av网站| 久久精品久久久久久噜噜老黄| 国产亚洲精品久久久com| 久久久欧美国产精品| 久久精品久久久久久噜噜老黄| 老司机亚洲免费影院| 夫妻性生交免费视频一级片| 亚洲av福利一区| 一级av片app| 全区人妻精品视频| 免费观看性生交大片5| 国产色爽女视频免费观看| 国产亚洲5aaaaa淫片| 热re99久久国产66热| 国产淫语在线视频| 欧美bdsm另类| 国产精品嫩草影院av在线观看| 在线精品无人区一区二区三| 国产男女内射视频| 新久久久久国产一级毛片| 男人舔奶头视频| 国产成人a∨麻豆精品| 美女中出高潮动态图| 久久国产乱子免费精品| 亚洲欧美一区二区三区国产| 国产有黄有色有爽视频| av在线播放精品| 成人综合一区亚洲| 精品久久久久久电影网| 亚洲成人一二三区av| 中文字幕人妻丝袜制服| 久久6这里有精品| 久久狼人影院| 亚洲综合色惰| 亚洲国产成人一精品久久久| 久久99精品国语久久久| 人妻少妇偷人精品九色| 黑丝袜美女国产一区| 国产精品一区二区在线不卡| 国产色婷婷99| 亚洲av.av天堂| 日韩一区二区三区影片| 色网站视频免费| 亚洲av电影在线观看一区二区三区| 国产一级毛片在线| 这个男人来自地球电影免费观看 | 涩涩av久久男人的天堂| 欧美日韩精品成人综合77777| 成年人午夜在线观看视频| 日韩,欧美,国产一区二区三区| xxx大片免费视频| 91精品国产九色| 午夜福利网站1000一区二区三区| av国产久精品久网站免费入址| 亚洲精品一二三| 久久久久久久久大av| 久久精品久久久久久久性| 一级毛片黄色毛片免费观看视频| 卡戴珊不雅视频在线播放| 午夜免费观看性视频| 一区二区av电影网| 欧美日韩亚洲高清精品| freevideosex欧美| 亚洲国产色片| 精品熟女少妇av免费看| 精品少妇内射三级| 九草在线视频观看| 91久久精品国产一区二区三区| 高清在线视频一区二区三区| 26uuu在线亚洲综合色| 最近的中文字幕免费完整| 99视频精品全部免费 在线| 18禁在线播放成人免费| 国产精品国产av在线观看| 一级毛片 在线播放| 性色av一级| 日本黄大片高清| 一二三四中文在线观看免费高清| 亚洲无线观看免费| 国产视频首页在线观看| 日韩精品免费视频一区二区三区 | 插逼视频在线观看| 91精品伊人久久大香线蕉| 在线播放无遮挡| 亚洲av福利一区| 欧美成人午夜免费资源| 国产一区二区在线观看日韩| 欧美3d第一页| 欧美亚洲 丝袜 人妻 在线| 国产亚洲精品久久久com| 国产成人精品福利久久| 日本av手机在线免费观看| 在线观看免费视频网站a站| 精品一区二区免费观看| 国产欧美日韩一区二区三区在线 | 国产日韩一区二区三区精品不卡 | 久久久久久久久久成人| av天堂久久9| 精品一区二区三卡| 亚洲自偷自拍三级| av在线老鸭窝| 亚洲一级一片aⅴ在线观看| 久久久久久久大尺度免费视频| 国产永久视频网站| 亚洲精品日本国产第一区| 成人亚洲精品一区在线观看| 久久 成人 亚洲| a级片在线免费高清观看视频| 777米奇影视久久| 久久精品国产鲁丝片午夜精品| 亚洲天堂av无毛| 亚洲精品第二区| 精品熟女少妇av免费看| 高清欧美精品videossex| 五月开心婷婷网| 天堂8中文在线网| 两个人免费观看高清视频 | 午夜福利,免费看| 一级a做视频免费观看| 久久久a久久爽久久v久久| 免费播放大片免费观看视频在线观看| 日本黄色片子视频| 男女边摸边吃奶| 国产精品熟女久久久久浪| 国产高清不卡午夜福利| 99九九在线精品视频 | 色婷婷久久久亚洲欧美| 亚洲欧美一区二区三区黑人 | 亚洲精品亚洲一区二区| 亚洲人与动物交配视频| 高清黄色对白视频在线免费看 | 亚洲一区二区三区欧美精品| 久久精品夜色国产| 日韩av在线免费看完整版不卡| 国产精品熟女久久久久浪| 欧美日韩综合久久久久久| 黄色毛片三级朝国网站 | 精品久久久精品久久久| 欧美日韩综合久久久久久| 91久久精品国产一区二区成人| 日日摸夜夜添夜夜添av毛片| 在线观看国产h片| 久久久精品免费免费高清| 在线观看三级黄色| 亚洲第一av免费看| 啦啦啦在线观看免费高清www| 97在线人人人人妻| 搡女人真爽免费视频火全软件| 亚洲精品456在线播放app| 汤姆久久久久久久影院中文字幕| 国产精品久久久久久精品电影小说| 久久人妻熟女aⅴ| 精品卡一卡二卡四卡免费| 黄色一级大片看看| 国产成人a∨麻豆精品| 欧美日本中文国产一区发布| 久久久久久久精品精品| 日本黄色日本黄色录像| av在线播放精品| 久久精品国产亚洲av涩爱| 国产精品一区二区在线不卡| 亚洲无线观看免费| 校园人妻丝袜中文字幕| 九草在线视频观看| 国产成人a∨麻豆精品| 欧美激情极品国产一区二区三区 | 亚洲精品国产色婷婷电影| av专区在线播放| 九色成人免费人妻av| 欧美高清成人免费视频www| 99久久精品热视频| 啦啦啦啦在线视频资源| 少妇人妻一区二区三区视频| 亚洲国产成人一精品久久久| 搡女人真爽免费视频火全软件| 纯流量卡能插随身wifi吗| 69精品国产乱码久久久| 18禁动态无遮挡网站| 91aial.com中文字幕在线观看| 国产乱来视频区| 日韩av在线免费看完整版不卡| 水蜜桃什么品种好| 国产精品国产三级专区第一集| 国产中年淑女户外野战色| 伊人亚洲综合成人网| 丝袜脚勾引网站| 日韩欧美 国产精品| 国产片特级美女逼逼视频| 三级国产精品欧美在线观看| 国产美女午夜福利| 欧美亚洲 丝袜 人妻 在线| 国产日韩欧美视频二区| 欧美日韩视频精品一区| 精品99又大又爽又粗少妇毛片| 久久精品国产自在天天线| 欧美日韩亚洲高清精品| 亚洲国产av新网站| 少妇精品久久久久久久| 国产成人精品婷婷| 中文字幕久久专区| 男女国产视频网站| 免费看不卡的av| 狂野欧美激情性xxxx在线观看| 人人妻人人看人人澡| 搡老乐熟女国产| 亚洲精品一二三| 欧美性感艳星| 岛国毛片在线播放| 能在线免费看毛片的网站| 国产有黄有色有爽视频| 麻豆成人午夜福利视频| 日日啪夜夜撸| 国产一级毛片在线| 一区二区av电影网| 国产高清三级在线| 亚洲欧洲日产国产| 亚洲性久久影院| 国产黄片视频在线免费观看| 国产黄片美女视频| 夜夜骑夜夜射夜夜干| 亚洲第一区二区三区不卡| 日韩亚洲欧美综合| 日韩av不卡免费在线播放| 少妇熟女欧美另类| 一区在线观看完整版| 纯流量卡能插随身wifi吗| 人人妻人人澡人人看| 亚洲av在线观看美女高潮| 精品久久久久久电影网| 精品久久久噜噜| 一级a做视频免费观看| 久久久欧美国产精品| 99九九线精品视频在线观看视频| 日韩,欧美,国产一区二区三区| 在线观看免费高清a一片| 国产男女超爽视频在线观看| av不卡在线播放| 三级国产精品欧美在线观看| 少妇 在线观看| 街头女战士在线观看网站| 国产精品伦人一区二区| 国产伦精品一区二区三区视频9| 国产亚洲av片在线观看秒播厂| 爱豆传媒免费全集在线观看| 欧美变态另类bdsm刘玥| 精品少妇久久久久久888优播| 国产精品一区二区三区四区免费观看| 成人无遮挡网站| av福利片在线观看| 色婷婷久久久亚洲欧美| 亚洲精品久久久久久婷婷小说| 婷婷色av中文字幕| 亚洲国产av新网站| 男人添女人高潮全过程视频| 成人漫画全彩无遮挡| 久久鲁丝午夜福利片| 精品国产国语对白av| 制服丝袜香蕉在线| a级毛色黄片| 欧美bdsm另类| 99热这里只有是精品50| 男女国产视频网站| 九草在线视频观看| 久久国内精品自在自线图片| 久久免费观看电影| 男人狂女人下面高潮的视频| www.色视频.com| 中文字幕久久专区| 亚洲情色 制服丝袜| 国产精品.久久久| 亚洲综合精品二区| 男女啪啪激烈高潮av片| 国产精品久久久久久久久免| 七月丁香在线播放| 久久久精品免费免费高清| 一级毛片久久久久久久久女| 夫妻性生交免费视频一级片| 欧美日韩av久久| 街头女战士在线观看网站| 99热这里只有精品一区| 精品午夜福利在线看| 少妇被粗大的猛进出69影院 | 五月伊人婷婷丁香| 中文字幕人妻熟人妻熟丝袜美| 97超视频在线观看视频| 91精品一卡2卡3卡4卡| 国精品久久久久久国模美| 国产熟女欧美一区二区| 免费黄色在线免费观看| 成人国产麻豆网| 亚洲第一av免费看| 欧美性感艳星| 最近中文字幕2019免费版| 人妻少妇偷人精品九色| 婷婷色综合大香蕉| 亚洲第一av免费看| 免费大片18禁| 精品国产一区二区三区久久久樱花| 国产老妇伦熟女老妇高清| 欧美亚洲 丝袜 人妻 在线| 九草在线视频观看| 性色avwww在线观看| 美女大奶头黄色视频| 亚洲av综合色区一区| 美女国产视频在线观看| 午夜免费男女啪啪视频观看| 午夜福利视频精品| 国产女主播在线喷水免费视频网站| 麻豆精品久久久久久蜜桃| 久久精品久久久久久噜噜老黄| 久久久久久久亚洲中文字幕| 9色porny在线观看| 插逼视频在线观看| 国产乱来视频区| 亚洲怡红院男人天堂| 成人综合一区亚洲| 嫩草影院新地址| 在线天堂最新版资源| 亚洲欧美日韩另类电影网站| 国产极品粉嫩免费观看在线 | 欧美+日韩+精品| 成人无遮挡网站| 男女边摸边吃奶| 国产欧美日韩一区二区三区在线 | 亚洲国产色片| 精品久久久久久久久亚洲| 亚洲国产毛片av蜜桃av| 久久人人爽av亚洲精品天堂| 高清午夜精品一区二区三区| 丰满饥渴人妻一区二区三| 99久久精品热视频| 午夜免费男女啪啪视频观看| 99久久综合免费| av网站免费在线观看视频| 欧美日韩亚洲高清精品| 国产亚洲欧美精品永久| 黄色配什么色好看| 精品一区二区三区视频在线| 五月伊人婷婷丁香| 国产淫语在线视频| 国产成人免费无遮挡视频| 国产女主播在线喷水免费视频网站| 亚洲精品456在线播放app| 国产欧美另类精品又又久久亚洲欧美| 欧美人与善性xxx| 中文字幕精品免费在线观看视频 | 久久久久久久久久久久大奶| 国产精品蜜桃在线观看| 少妇的逼好多水| www.av在线官网国产| 久久久久网色| 日韩伦理黄色片| 日韩精品免费视频一区二区三区 | 日本wwww免费看| 少妇被粗大的猛进出69影院 | 男的添女的下面高潮视频| 最近的中文字幕免费完整| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久精品古装| 欧美bdsm另类| 午夜免费观看性视频| 国产成人免费无遮挡视频| 亚洲av欧美aⅴ国产| 亚洲人成网站在线播| 精品久久国产蜜桃| 人人妻人人澡人人爽人人夜夜| 久久久久国产精品人妻一区二区| 亚洲怡红院男人天堂| 国产成人午夜福利电影在线观看| 一区二区三区免费毛片| 欧美亚洲 丝袜 人妻 在线| 丁香六月天网| 人人妻人人添人人爽欧美一区卜| 精品熟女少妇av免费看| 妹子高潮喷水视频| 大码成人一级视频| 九草在线视频观看| 狂野欧美激情性bbbbbb| 国产伦精品一区二区三区视频9| 人人妻人人看人人澡| 一区二区三区乱码不卡18| 亚洲欧美精品专区久久| 欧美97在线视频| 啦啦啦视频在线资源免费观看| 精品人妻偷拍中文字幕| 国产乱人偷精品视频| 中国国产av一级| 欧美三级亚洲精品| 特大巨黑吊av在线直播| 欧美国产精品一级二级三级 | 国产美女午夜福利| 少妇人妻久久综合中文| 国产成人一区二区在线| 久久久久网色| 国产精品秋霞免费鲁丝片| 国产精品人妻久久久久久| 亚洲精品国产av成人精品| 亚洲天堂av无毛| 秋霞伦理黄片| videossex国产| 国产午夜精品久久久久久一区二区三区| 在线观看一区二区三区激情| 啦啦啦视频在线资源免费观看| 亚洲精品乱码久久久久久按摩| 涩涩av久久男人的天堂| 精品少妇久久久久久888优播| 91久久精品电影网| 97在线人人人人妻| 校园人妻丝袜中文字幕| 伊人亚洲综合成人网| 97在线人人人人妻| 天美传媒精品一区二区| 永久免费av网站大全| 免费黄网站久久成人精品| 在线观看国产h片| 大话2 男鬼变身卡| 黑人巨大精品欧美一区二区蜜桃 | 国产欧美另类精品又又久久亚洲欧美| 久久久久国产网址| 少妇熟女欧美另类| 777米奇影视久久| 亚洲经典国产精华液单| 国产亚洲一区二区精品| 久久人人爽人人爽人人片va| 色94色欧美一区二区| 天堂俺去俺来也www色官网| 啦啦啦在线观看免费高清www| 亚洲成色77777| 妹子高潮喷水视频| 国产亚洲午夜精品一区二区久久| 久久女婷五月综合色啪小说| 超碰97精品在线观看| 国产亚洲午夜精品一区二区久久| 精品国产露脸久久av麻豆| 欧美日韩亚洲高清精品| 亚洲内射少妇av| 亚洲国产日韩一区二区| 亚洲四区av| 国产精品成人在线| 99久久人妻综合| 一边亲一边摸免费视频| 亚洲,欧美,日韩| 欧美日韩国产mv在线观看视频|