• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hamiltonian system for the inhomogeneous plane elasticity of dodecagonal quasicrystal plates and its analytical solutions

    2024-01-25 07:14:16ZhiqiangSun孫志強(qiáng)GuolinHou侯國(guó)林YanfenQiao喬艷芬andJincunLiu劉金存
    Chinese Physics B 2024年1期
    關(guān)鍵詞:侯國(guó)

    Zhiqiang Sun(孫志強(qiáng)), Guolin Hou(侯國(guó)林), Yanfen Qiao(喬艷芬), and Jincun Liu(劉金存)

    School of Mathematical Sciences,Inner Mongolia University,Hohhot 010021,China

    Keywords: Hamiltonian system,symplectic elasticity,quasicrystals,analytic solution,state function

    1.Introduction

    Quasicrystals (QCs) are a kind of solid intermediate between crystal and amorphous materials, which were first discovered by Shechtmanet al.[1]The unique quasi-periodic structure makes QCs become a new kind of functional materials and structural materials.[2,3]

    QCs have many excellent properties, such as high strength, abrasion resistance, hardness, thermal conductivity,and low adhesion.[4,5]It should be noted that the properties of QCs are affected by defects such as dislocations,cracks,holes,and inclusions.[6–12]Many methods and techniques have been developed to address the problems of elasticity and defects in QCs.Among them, symplectic elasticity approach,[13–15]the pseudo-Stroh formalism method,[16,17]the state-space method,[18,19]the integral transformation method,[20]the differential quadrature method,[21,22]the complex variable function method,[23–26]and the state-space based differential quadrature method[27]are practical to construct the analytical or numerical solutions of QCs.The integral transformation and differential quadrature methods are numerical and have been approved to be highly efficient for the rapid solution.The state-space-based differential quadrature method[27]inherits the advantages of the state-space method and the differential quadrature method.Its convergence speed is fast and can apply to different boundary conditions.However,the state-space method must be revised to solve the clamped-supported and mixed boundary conditions.The complex variable function method often leads to high-order partial differential equations,which puts forward higher requirements for the smoothness of solutions and may be difficultly solved further by separating variables.[23]The symplectic elasticity approach is the method of separating variables based on the Hamiltonian system.It can construct the general solution of the considered problem without any assumptions about the solution forms.According to the Vainberg theorem[28]in variational theory,a symmetric differential system can continually be transformed into a suitable Hamiltonian system, which provides the possibility for applications of the symplectic elasticity approach in elasticity mechanical problems because the considered mechanical equations are primarily symmetric.Recently, the symplectic elasticity approach has been applied to establish the final governing equation of Laue class 15,[14]which provides a feasible idea for solving some complex quasicrystal problems.

    This paper aims to extend the symplectic elasticity approach to solve the inhomogeneous dodecagonal QC plates.In the geometry of symplectic space, the phonon stress, phason stress, and displacements are set as unknown functions and included in the state vector, and then the formed first-order differential system,a Hamiltonian system,is introduced.Additionally, using the symplectic orthogonality relations of the eigenvectors,the general solutions of phonon and phason displacement under the given boundary conditions are obtained.Finally, the accuracy of the symplectic elasticity approach is verified by numerical examples of QC plates under uniform and concentrated loads, and the effects of different phason elastic constants on displacements and stresses are analyzed.The numerical results show that the symplectic elasticity approach is an effective tool for analyzing the mechanical behavior of QC plates.The presented method in the current paper can also be used to solve other boundary conditions.

    2.Hamiltonian system of dodecagonal QCs

    According to the linear elastic theory of QCs, the basic equations for the inhomogeneous plane elasticity problem of dodecagonal QCs are described in the following.[29]The equilibrium equations are

    and generalized Hooke’s laws have the following form:

    whereux,uyandwx,wydenote the phonon displacements and phason displacements;σxx,σxy,σyx, andσyyare the phonon stresses;Hxx,Hxy,Hyx,andHyyare the phason stresses;q1,q2,q3, andq4are the body forces;L,M,K1,K2, andK3are the elastic constants.For simplicity,K1+K2+K3is abbreviated toK4.

    To establish the Hamiltonian system,define the displacement vector as

    where the superscript T represents the transpose.The strain energy densityU(q, ˙q)can be expressed as

    where ˙()≡?/?y.Moreover,we introduce the Lagrange density function as

    Consider a dodecagonal QC rectangular domain with lengthl(0≤y ≤l)and widthh(0≤x ≤h).To build the variational operation,the equilibrium Eqs.(1a)–(1d) can be obtained by taking the variation with respect toux,uy,wx,andwy,respectively.Applying the Legendre transformation, the corresponding dual vector is given as follows:

    According to Eqs.(3)and(6),defining a state vector

    the Hamiltonian system can be expressed as

    where the Hamiltonian operator reads

    f(x,y)=?(q3,q4,q1,q2,0,0,0,0)Tis an inhomogeneous term related to body forces.Moreover, we consider Eq.(8)to satisfy the following boundary conditions shown in Fig.1,

    Remark 1 The Hamiltonian system (8) derived here is also applicable to other complex boundary conditions,such as clamped or free.The solution to those problems may require the use of the symplectic superposition methods,[30,31]which are not covered in this study.

    Fig.1.Geometry of boundary conditions(10).

    3.Eigenvalues and eigenvectors of H

    According to the theory of linear differential equations,we should first solve the following homogeneous form of Eq.(8):

    Equation (11) can be solved by the method of separating variables.[32]Assuming

    and substituting it into Eq.(11),we arrive at

    whereψ(y)is easy to get,andΦ(x)is an unknown eignvector corresponding to the unknown eigenvalueμ.The eigenvalue problem

    with the boundary condition (10) is needed to take a lot of effort to solve.According to Eq.(10),we find that the eigenvector has the following form:

    whereαandAi(i=1,2,...,8)are unknown constants which depend onμand can be calculated from Eq.(14).

    Combining Eqs.(10)and(14),the characteristic polynomial is derived as follows:

    From Eq.(15),we obtain the eigenvaluesμn=αn=±nπ/h,μ?n=?μn(n= 1,2,...), and corresponding eigenvectors with respect toμnare given by

    Similarly,the basic eigenvectors ofμ?n=?μn(n=1,2,...)are

    and first-order Jordan form eigenvectors ofμ?n=?μn(n=1,2,...)are

    Additionally,μ=0 is also a multiple eigenvalue ofH.The eigenvectors ofHwith respect to eigenvalueμ=0 include basic eigenvectors

    and first-order Jordan form eigenvectors

    4.Symplectic orthogonality and completeness

    The symplectic orthogonality of the generalized eigenvectors of the Hamiltonian operatorHis analyzed first since it plays an important role in representing the solution of the Hamiltonian system.[32]

    In addition,we have

    The following theorem is one of the main results in this paper, which characterizes the completeness of the generalized eigenvector system ofHand also ensures the feasibility of separating variables in the Hamiltonian system.It is worth noting that all of the calculations in this section can be easily achieved by symbolic software like Mathematica.

    Proof According to the symplectic orthogonal relationship(16)and(17),we take

    Thus,we have

    where the eight components in the above expression are the Fourier series expansions of functionsfi(x) (i= 1,2,...,8)under the orthogonal systemorin Hilbert spaceL2(0,h).Accordingly,

    is valid,and the proof is completed.

    5.Analytic solution of the original problem

    According to Theorem 1 and the principle of superposition of solutions, the general solution of Eq.(8)can be given in the form

    Let the Fourier expansion of the inhomogeneous termf(x,y)=(q4,q3,q1,q2,0,0,0,0)Tin Eq.(8)be

    where

    The details of(i= 1,2,3,4) are expressed in Appendix A.

    Substituting Eqs.(18)and(19)into Eq.(8),and by simple calculations,we obtain

    According to the form of the state vectorU(x,y),the analytic solutions ofHxy,Hyy,σxy,σyy,wx,wy,ux, anduycan be obtained by taking the first component through the eighth component of Eq.(20).For the sake of brevity,we do not write out their specific expressions.

    6.Numerical examples

    This section presents the behavior of solutions of the QC plates under the concentrated load,uniform load,and mechanical load based on the symplectic analytical solution obtained in Section 5.To this end,we consider the following boundary conditions in they-direction:

    For convenience of numerical simulation,we assume that the body forcesq1=q2=q3=q4.Due to the lack of comparative data, we introduce the FITM for the displacementsux,uy,wx,andwyto show the validity of the symplectic elasticity approach.The expressions of phonon and phason displacements given by the FITM can be found in Appendix B.The material constantsL=0.5741 GPa,M=0.88445 GPa,K1=1.22 GPa,K2=0.24 GPa, andK3=0.6 GPa are taken as those in Ref.[13].

    6.1.Concentrated load and uniformly distributed load

    The central concentrated loadq1=q2=q3=q4=Pδ(x ?x0,y ?y0) is examined at the (x0,y0)=(h/2,l/2)of plate,wherePis the intensity,andδ(·,·)denotes the wellknown Dirac function.As the ratio of length and width varies,the results of numerical tests under central concentrated load are shown in Tables 1 and 2 for the displacement responses at fixed horizontal coordinates (x,y)=(h/4,l/4) and (x,y)=(h/4,h/4),respectively.The uniformly distributed load of intensityqis examined, and the numerical results are given in Table 3.

    Table 1 shows that the symplectic elasticity approach performs better than the FITM since it gets a reasonable convergence rate with only 20 terms.Also,we use the first 20 terms of Eq.(20)to show the phonon and phason displacements with different length–width ratios(1≤l/h ≤2)in Fig.2.

    As shown in Fig.2, the tendency of change in displacements with a change in aspect length–width ratios of the QCs plate is different for the responses at two fixed horizontal coordinates.For the fixed valueh,the changes ofuxandwx(uyandwy)at(h/4,l/4)are increasing(decreasing)aslgoes up.This trend depends on the influences of boundary conditions (10)and (21), and the variations of distance between (h/4,l/4)and (h/2,l/2).However, the responsesux,wx,uyandwyat the fixed point (h/4,h/4) are decreasing aslbecomes larger because of the influence of boundary conditions is unchanged,and the effect of the load is gradually weakening.

    In addition,whenh=l,we have the phason displacementux=uyand the phonon displacementwx=wyfor the centralized load, which is in agreement with the case for uniformly distributed load.

    Fig.2.The phonon and phason displacements of the QC plate under a centrally concentrated load: (a) the response at (x,y)=(h/4,l/4),(b)the response at(x,y)=(h/4,h/4).

    Table 1.The calculation results under central concentrated load(x,y)=(h/4,l/4).

    Table 2.Calculation results under central concentrated load(x,y)=(h/4,h/4).

    6.2.Mechanical load

    In this subsection we analyze the effect of the phason elastic constants on the displacements and stresses.In the absence of body forces,we assume that the right side of the QC plate is subjected to the phonon and phason mechanical loads,i.e.,

    whereH0andσ0are the amplitude of the loading.Meanwhile,all other components on the left and right sides of the plate are zero.Consequently, the boundary conditions along theydirection are

    wherepandqare expressed in Eqs.(3)and(6),respectively.

    Following the previous work,[33]we takeH0=σ0=1 N/m2,α=π/h, the dimensions of the plate areh×l=0.3 m×0.3 m,and consider the responses wheny=0.75l.

    Based on the above loads, we analyze the effect of the phase elastic constantsKi(i=1,2,3)on some physical components in the QC plates.We let the phason elastic constants beKi,0.5Ki,0.1Ki(i=1,2,3),and the results of the calculations are shown in Fig.3.It can be seen that the magnitudes of the phason displacementswxandwydecrease with decreasing value of phason elastic constantsKi(i=1,2,3)[see Figs.3(c)and 3(d)], while there is no effect on the trends of the phason and phonon stresses components[see Figs.3(a)and 3(b)].Specifically, the phason displacements are more sensitive to the phason elastic constants than the phason and phonon stress.

    Fig.3.Displacements and stresses with different phason elastic constants: (a) phason stress Hyy, (b) phonon stress σxy, (c) phason displacement wx,and(d)phason displacement wy.

    Table 3.Calculation results under uniform load.

    7.Conclusions

    In summary, we have solved QC equations by employing the symplectic elasticity approach.By introducing a generalized displacement vector, the Hamiltonian system of dodecagonal QCs is derived from the strain energy density and Legendre transformation.Then, the symplectic elasticity approach is adopted to get the general solutions of the Hamiltonian system.It is worth noting that the 1st, 2nd, 3rd, and 4th components of the general solution (20) are the phonon and phason stresses,and the 5th,6th,7th,and 8th components of (20) are the phonon and phason displacements.The displacements and stresses responses of QC plates under the concentrated,uniformly distributed,and mechanical loads are discussed in detail.For the case of concentrated load,the trends of responses at the fixed point and moving point are different from the changes in length–width ratios.The numerical examples of the mechanical load show that the magnitude of the phason displacements decreases with decreasing value of phason elastic constants.The comparison data are constructed by FITM,which justifies calculating of the symplectic elasticity approach.The approach is direct and rational,providing a systematic step to solve the related problems of QCs.

    Appendix A

    Appendix B

    Substituting Eqs.(2a)–(2g)into Eqs.(1a)–(1d),we obtain

    where ?2=?2/?x2+?2/?y2.

    Based on boundary conditions(10)and(21),we can define eight double finite integral transforms with respect towx,wy,ux,uy,q1,q2,q3,andq4as follows:

    whereαm=mπ/handβn=nπ/l(m,n=1,2,3,...).

    The inverse transforms are given by

    By simple calculations, Eq.(B1) is transformed into the following form:

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos.12261064 and 11861048), the Natural Science Foundation of Inner Mongolia,China(Grant Nos.2021MS01004 and 2022QN01008), and the High-level Talents Scientific Research Start-up Foundation of Inner Mongolia University(Grant No.10000-21311201/165).

    猜你喜歡
    侯國(guó)
    一官半職
    鴨綠江(2024年10期)2024-02-28 00:00:00
    一路沖鋒
    軍嫂(2023年9期)2023-10-12 12:52:40
    Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
    西漢沛郡所轄侯國(guó)地理探賾
    三個(gè)老同學(xué)辦了個(gè)招嫖論壇
    方圓(2022年1期)2022-03-01 13:22:44
    復(fù)原西漢侯國(guó)地理全貌的扛鼎之作 《西漢侯國(guó)地理(修訂本)》評(píng)價(jià)
    南朝陳縣級(jí)封國(guó)地理與置省原因探微
    《東漢政區(qū)地理》縣級(jí)政區(qū)補(bǔ)考
    Virtual Property:the Realization of Rights and Value〔* 〕
    松花江上
    国产精品一区www在线观看| 一本精品99久久精品77| 亚洲av中文字字幕乱码综合| 黄色配什么色好看| 人妻制服诱惑在线中文字幕| 午夜精品一区二区三区免费看| 91精品国产九色| 1024手机看黄色片| 人妻少妇偷人精品九色| 国产精品久久久久久精品电影小说 | 亚洲人成网站在线播| 少妇熟女欧美另类| 久久久色成人| 两个人视频免费观看高清| 成人国产麻豆网| 欧美精品一区二区大全| 亚洲自偷自拍三级| a级毛片免费高清观看在线播放| 91aial.com中文字幕在线观看| 日韩欧美一区二区三区在线观看| 亚洲aⅴ乱码一区二区在线播放| 午夜老司机福利剧场| 日韩高清综合在线| 男女视频在线观看网站免费| 精品日产1卡2卡| 老师上课跳d突然被开到最大视频| 啦啦啦韩国在线观看视频| 免费一级毛片在线播放高清视频| 尾随美女入室| 国产av在哪里看| 成人三级黄色视频| 天堂√8在线中文| 色综合站精品国产| 91久久精品国产一区二区成人| 一级黄片播放器| 91精品国产九色| 男女那种视频在线观看| 日本熟妇午夜| 国产色婷婷99| 国产亚洲欧美98| 只有这里有精品99| 2021天堂中文幕一二区在线观| 日日啪夜夜撸| 日韩一本色道免费dvd| 身体一侧抽搐| 国产一级毛片七仙女欲春2| 成年版毛片免费区| 天天一区二区日本电影三级| 日本熟妇午夜| 欧美激情久久久久久爽电影| 国产探花在线观看一区二区| 精品久久久久久久人妻蜜臀av| 成人欧美大片| 国产精品野战在线观看| 国产精品蜜桃在线观看 | 一边摸一边抽搐一进一小说| 日韩制服骚丝袜av| 伊人久久精品亚洲午夜| 狂野欧美白嫩少妇大欣赏| 99国产极品粉嫩在线观看| 亚洲av不卡在线观看| 亚洲欧美日韩无卡精品| 青春草视频在线免费观看| 亚洲婷婷狠狠爱综合网| 亚洲精品日韩av片在线观看| 小说图片视频综合网站| 精品少妇黑人巨大在线播放 | 免费观看的影片在线观看| 嫩草影院新地址| 麻豆国产97在线/欧美| 国产蜜桃级精品一区二区三区| 人人妻人人澡欧美一区二区| eeuss影院久久| 国产精品一区二区三区四区久久| 日本免费a在线| 国产成人影院久久av| 久99久视频精品免费| 一本精品99久久精品77| 国产高清不卡午夜福利| 中文字幕av成人在线电影| www.色视频.com| 五月伊人婷婷丁香| 丰满人妻一区二区三区视频av| 美女xxoo啪啪120秒动态图| 中国美女看黄片| 51国产日韩欧美| 高清在线视频一区二区三区 | 国产亚洲5aaaaa淫片| 婷婷色av中文字幕| 亚洲成a人片在线一区二区| 熟女人妻精品中文字幕| 禁无遮挡网站| 免费搜索国产男女视频| 乱人视频在线观看| 日韩欧美三级三区| 亚洲自拍偷在线| 2022亚洲国产成人精品| 欧美bdsm另类| 日产精品乱码卡一卡2卡三| 国产女主播在线喷水免费视频网站 | av在线亚洲专区| 亚洲人成网站在线观看播放| 日韩一区二区视频免费看| 亚洲欧美日韩高清在线视频| 丝袜喷水一区| 亚洲人成网站在线观看播放| 亚洲成人av在线免费| 美女脱内裤让男人舔精品视频 | 桃色一区二区三区在线观看| 国产久久久一区二区三区| 国产探花在线观看一区二区| 亚洲精品日韩在线中文字幕 | 性色avwww在线观看| 又爽又黄a免费视频| 国产午夜精品论理片| 欧美三级亚洲精品| 久久99热这里只有精品18| 91久久精品国产一区二区三区| 一本久久精品| 亚洲在线观看片| 成人永久免费在线观看视频| 九九在线视频观看精品| 日本免费a在线| 成人永久免费在线观看视频| 午夜视频国产福利| 免费人成在线观看视频色| 少妇的逼水好多| 亚洲成av人片在线播放无| 国语自产精品视频在线第100页| 久久精品91蜜桃| 日本免费一区二区三区高清不卡| 亚洲av中文av极速乱| 在线观看av片永久免费下载| .国产精品久久| 国产精品一区二区三区四区免费观看| 亚洲在久久综合| 国内精品一区二区在线观看| 99久久九九国产精品国产免费| 色综合色国产| 久久久久久久久久久免费av| 伦精品一区二区三区| 国产精品人妻久久久久久| 久久久久久久亚洲中文字幕| 男女那种视频在线观看| 国产成人a区在线观看| 我要看日韩黄色一级片| 日本av手机在线免费观看| 波野结衣二区三区在线| 国产精品av视频在线免费观看| 亚洲图色成人| 如何舔出高潮| 国产视频内射| 一进一出抽搐动态| 亚洲av第一区精品v没综合| 国产精品一区二区在线观看99 | 欧美zozozo另类| 深爱激情五月婷婷| 国产成人91sexporn| 日本与韩国留学比较| 九九久久精品国产亚洲av麻豆| 日韩精品有码人妻一区| 2021天堂中文幕一二区在线观| 2021天堂中文幕一二区在线观| 九九在线视频观看精品| 伦精品一区二区三区| 高清毛片免费看| 亚洲性久久影院| 中文字幕av成人在线电影| 特级一级黄色大片| 日韩在线高清观看一区二区三区| 亚洲在线观看片| 亚洲内射少妇av| 中文字幕av成人在线电影| 小说图片视频综合网站| 国产伦一二天堂av在线观看| 国产 一区 欧美 日韩| 久久久午夜欧美精品| 一级毛片aaaaaa免费看小| 久久午夜亚洲精品久久| 国产一区二区激情短视频| 日韩精品青青久久久久久| 中文资源天堂在线| 日韩欧美精品免费久久| 美女国产视频在线观看| 麻豆久久精品国产亚洲av| 国产在线男女| 国产视频内射| 好男人在线观看高清免费视频| 亚洲一级一片aⅴ在线观看| 久久国产乱子免费精品| 国内精品美女久久久久久| 在线a可以看的网站| 国产精品久久电影中文字幕| 久久99热6这里只有精品| 亚洲av免费在线观看| 99久久人妻综合| 晚上一个人看的免费电影| 久久久久九九精品影院| 禁无遮挡网站| 国产一区二区三区在线臀色熟女| 成年女人看的毛片在线观看| 久久久久久久久久成人| 99热全是精品| 在线观看午夜福利视频| 淫秽高清视频在线观看| 国产精品一及| 亚洲欧美精品综合久久99| 欧美日韩精品成人综合77777| 欧美丝袜亚洲另类| 在线a可以看的网站| 69人妻影院| 国产探花在线观看一区二区| 精品久久久久久久久av| 亚洲av中文字字幕乱码综合| 免费大片18禁| 成人高潮视频无遮挡免费网站| 成人午夜高清在线视频| 青春草亚洲视频在线观看| 此物有八面人人有两片| 欧美日韩国产亚洲二区| 欧美成人a在线观看| ponron亚洲| 久久亚洲国产成人精品v| 精品久久久久久久久久免费视频| 最近手机中文字幕大全| 97热精品久久久久久| 日日干狠狠操夜夜爽| 深爱激情五月婷婷| 深夜精品福利| 国产蜜桃级精品一区二区三区| 男人舔奶头视频| 人妻夜夜爽99麻豆av| 亚洲电影在线观看av| 国产黄色视频一区二区在线观看 | av.在线天堂| 国产精品.久久久| 亚洲国产精品久久男人天堂| av卡一久久| 国产成人福利小说| 久久人人精品亚洲av| 欧美最新免费一区二区三区| 熟女人妻精品中文字幕| 日韩一本色道免费dvd| 亚洲美女搞黄在线观看| 亚洲18禁久久av| 搞女人的毛片| 亚洲成a人片在线一区二区| 日韩一本色道免费dvd| 国产伦在线观看视频一区| 一个人免费在线观看电影| 亚洲欧美日韩东京热| 成人三级黄色视频| 亚洲精品乱码久久久v下载方式| 久久久久久久久久黄片| 97超碰精品成人国产| 一级黄片播放器| 国内精品一区二区在线观看| 午夜老司机福利剧场| 男女边吃奶边做爰视频| 免费观看a级毛片全部| 联通29元200g的流量卡| 久久午夜亚洲精品久久| 日韩成人av中文字幕在线观看| www.色视频.com| 哪个播放器可以免费观看大片| 男女下面进入的视频免费午夜| 国产 一区精品| 亚洲一级一片aⅴ在线观看| 久久这里有精品视频免费| 免费观看的影片在线观看| 岛国在线免费视频观看| 久久婷婷人人爽人人干人人爱| 毛片一级片免费看久久久久| 午夜a级毛片| 日韩人妻高清精品专区| 亚洲av中文av极速乱| 99国产极品粉嫩在线观看| 国产精品久久久久久久电影| 一进一出抽搐gif免费好疼| 最好的美女福利视频网| 美女大奶头视频| 亚洲国产精品合色在线| 可以在线观看的亚洲视频| 一区二区三区四区激情视频 | 九色成人免费人妻av| 欧美bdsm另类| 自拍偷自拍亚洲精品老妇| av天堂中文字幕网| 边亲边吃奶的免费视频| 一区福利在线观看| 又粗又爽又猛毛片免费看| 尤物成人国产欧美一区二区三区| 精品日产1卡2卡| 亚洲成人久久爱视频| 91久久精品国产一区二区成人| 综合色丁香网| 欧美日韩乱码在线| 午夜福利在线观看吧| 99riav亚洲国产免费| 最近的中文字幕免费完整| 日本三级黄在线观看| 国产精品蜜桃在线观看 | 禁无遮挡网站| 在线观看午夜福利视频| 99riav亚洲国产免费| videossex国产| 99riav亚洲国产免费| 精品人妻熟女av久视频| 美女内射精品一级片tv| 久久午夜亚洲精品久久| 1024手机看黄色片| 99久国产av精品国产电影| 国产乱人偷精品视频| 国产在线精品亚洲第一网站| 日韩欧美在线乱码| av在线蜜桃| 久久久久久久久大av| 成人无遮挡网站| 日本欧美国产在线视频| 亚洲婷婷狠狠爱综合网| 直男gayav资源| 国产一区亚洲一区在线观看| 亚洲av成人av| 国产黄色小视频在线观看| 午夜亚洲福利在线播放| 久久精品影院6| 国产精品国产高清国产av| 色哟哟哟哟哟哟| 亚洲av二区三区四区| 国内精品一区二区在线观看| 国产午夜精品论理片| 日韩成人伦理影院| 亚洲国产精品合色在线| 波多野结衣高清无吗| 亚洲精品乱码久久久久久按摩| 日韩欧美 国产精品| 日韩人妻高清精品专区| 天天躁夜夜躁狠狠久久av| 男人舔女人下体高潮全视频| 日韩欧美 国产精品| 亚洲精品日韩在线中文字幕 | 成人美女网站在线观看视频| 成人无遮挡网站| 嫩草影院新地址| 国产成人a∨麻豆精品| 日本欧美国产在线视频| 免费在线观看成人毛片| 国产精品久久电影中文字幕| 国产极品天堂在线| av在线观看视频网站免费| 亚洲精品乱码久久久久久按摩| 看十八女毛片水多多多| 神马国产精品三级电影在线观看| 在线观看av片永久免费下载| 热99在线观看视频| 亚洲欧美精品专区久久| 久久精品人妻少妇| 两个人的视频大全免费| 国产午夜精品久久久久久一区二区三区| 久久99热这里只有精品18| 青青草视频在线视频观看| 可以在线观看的亚洲视频| 国产综合懂色| 99视频精品全部免费 在线| 91久久精品电影网| 日韩中字成人| 欧美+日韩+精品| 久久久久久久久久成人| 国内少妇人妻偷人精品xxx网站| 亚洲18禁久久av| 18禁在线无遮挡免费观看视频| 欧美3d第一页| 欧美高清成人免费视频www| 精品一区二区三区人妻视频| 3wmmmm亚洲av在线观看| 午夜老司机福利剧场| 国产精华一区二区三区| 国产视频内射| 久久久国产成人精品二区| 亚洲欧美日韩高清在线视频| 亚洲无线观看免费| 亚洲在线观看片| 大香蕉久久网| 老熟妇乱子伦视频在线观看| 精品国内亚洲2022精品成人| 春色校园在线视频观看| 热99re8久久精品国产| 欧美xxxx性猛交bbbb| 在线播放国产精品三级| 少妇熟女aⅴ在线视频| 日韩av不卡免费在线播放| 国产成人精品久久久久久| 精品久久久久久久人妻蜜臀av| 18+在线观看网站| 国产av在哪里看| 亚洲国产欧洲综合997久久,| or卡值多少钱| 六月丁香七月| 我要搜黄色片| 欧美xxxx黑人xx丫x性爽| 蜜桃亚洲精品一区二区三区| 欧美另类亚洲清纯唯美| 晚上一个人看的免费电影| 国产伦一二天堂av在线观看| 日韩人妻高清精品专区| av免费观看日本| 长腿黑丝高跟| 少妇裸体淫交视频免费看高清| 国产亚洲av嫩草精品影院| 一本精品99久久精品77| 中文字幕免费在线视频6| 一卡2卡三卡四卡精品乱码亚洲| 免费av观看视频| 亚洲第一区二区三区不卡| 又粗又硬又长又爽又黄的视频 | 日韩亚洲欧美综合| 国产乱人偷精品视频| 国产精品99久久久久久久久| 精品国产三级普通话版| 黑人高潮一二区| 亚洲va在线va天堂va国产| 精品无人区乱码1区二区| 99热这里只有精品一区| 搞女人的毛片| 91午夜精品亚洲一区二区三区| 少妇猛男粗大的猛烈进出视频 | 国产乱人偷精品视频| 国产精品嫩草影院av在线观看| 99久国产av精品| 两性午夜刺激爽爽歪歪视频在线观看| 国产一级毛片七仙女欲春2| 熟女电影av网| 亚洲av.av天堂| 青青草视频在线视频观看| 成年av动漫网址| 国产精品电影一区二区三区| 国产极品天堂在线| 此物有八面人人有两片| 深爱激情五月婷婷| 亚洲人与动物交配视频| 亚洲av成人精品一区久久| 国产精品久久久久久久电影| 激情 狠狠 欧美| 一进一出抽搐动态| 国产精品1区2区在线观看.| 日韩欧美三级三区| 99riav亚洲国产免费| 免费观看精品视频网站| 久久久久久九九精品二区国产| 国产成人福利小说| 日本免费a在线| 狠狠狠狠99中文字幕| 久久精品国产鲁丝片午夜精品| 亚洲精品日韩在线中文字幕 | 亚洲熟妇中文字幕五十中出| 桃色一区二区三区在线观看| 国产成人freesex在线| 亚洲精品日韩在线中文字幕 | 精品久久久久久久久亚洲| 村上凉子中文字幕在线| 日本av手机在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 少妇熟女aⅴ在线视频| 亚洲综合色惰| 久久精品夜夜夜夜夜久久蜜豆| 国产高清有码在线观看视频| 插阴视频在线观看视频| 日本三级黄在线观看| 国产黄片美女视频| or卡值多少钱| 99久国产av精品| 日韩欧美 国产精品| 国产国拍精品亚洲av在线观看| 99久久精品国产国产毛片| 在线播放无遮挡| 久久久午夜欧美精品| 长腿黑丝高跟| 99久国产av精品| 国产毛片a区久久久久| 自拍偷自拍亚洲精品老妇| 18禁在线无遮挡免费观看视频| 精品99又大又爽又粗少妇毛片| 欧美+日韩+精品| 国产私拍福利视频在线观看| 成人无遮挡网站| 精品人妻一区二区三区麻豆| 91久久精品电影网| 有码 亚洲区| 一级黄片播放器| 亚洲国产高清在线一区二区三| 18禁在线播放成人免费| 看黄色毛片网站| 五月伊人婷婷丁香| 欧美一区二区国产精品久久精品| 亚洲国产精品久久男人天堂| 一个人看的www免费观看视频| a级毛片免费高清观看在线播放| 人妻久久中文字幕网| 黄色配什么色好看| 变态另类丝袜制服| 国产片特级美女逼逼视频| 变态另类成人亚洲欧美熟女| 国产精品av视频在线免费观看| 亚洲五月天丁香| 久久久久久久久久成人| 91av网一区二区| or卡值多少钱| 久久精品国产鲁丝片午夜精品| 国产极品精品免费视频能看的| 嫩草影院新地址| 亚洲第一电影网av| 日本黄大片高清| 欧美在线一区亚洲| 国产精品永久免费网站| 美女大奶头视频| 亚洲五月天丁香| av黄色大香蕉| 亚洲乱码一区二区免费版| 欧美日韩乱码在线| 国产亚洲欧美98| 两性午夜刺激爽爽歪歪视频在线观看| 波多野结衣高清无吗| 午夜精品在线福利| 在线国产一区二区在线| 人人妻人人澡人人爽人人夜夜 | 日本免费a在线| 麻豆精品久久久久久蜜桃| 日韩一区二区视频免费看| 婷婷六月久久综合丁香| 美女cb高潮喷水在线观看| 18+在线观看网站| 变态另类丝袜制服| 国产久久久一区二区三区| 日本成人三级电影网站| 在线免费观看的www视频| 亚洲人成网站在线播| 精品熟女少妇av免费看| 国产精品av视频在线免费观看| 久久九九热精品免费| 国产成人精品一,二区 | 成人二区视频| 成年女人看的毛片在线观看| 99在线人妻在线中文字幕| 国产成人影院久久av| 国产毛片a区久久久久| 久久精品久久久久久噜噜老黄 | 久久精品国产鲁丝片午夜精品| 久久99精品国语久久久| 国产精品三级大全| 日本黄色片子视频| 黄色日韩在线| av在线天堂中文字幕| 国产精品永久免费网站| 亚洲成人精品中文字幕电影| 亚洲五月天丁香| 特大巨黑吊av在线直播| av.在线天堂| 亚洲国产欧美人成| 美女xxoo啪啪120秒动态图| 国产麻豆成人av免费视频| av在线亚洲专区| 少妇的逼好多水| 免费看av在线观看网站| 国产乱人视频| 一个人免费在线观看电影| 国产精品久久久久久久久免| 亚洲激情五月婷婷啪啪| av在线播放精品| 伦精品一区二区三区| 精品人妻偷拍中文字幕| 天天躁日日操中文字幕| 国产真实乱freesex| 免费看光身美女| 亚洲精品色激情综合| 成人国产麻豆网| 国产精品久久久久久精品电影小说 | 精品少妇黑人巨大在线播放 | 欧美色欧美亚洲另类二区| 91午夜精品亚洲一区二区三区| 可以在线观看的亚洲视频| 人体艺术视频欧美日本| 国国产精品蜜臀av免费| 男人狂女人下面高潮的视频| 日本五十路高清| 18禁在线无遮挡免费观看视频| www.av在线官网国产| 国产国拍精品亚洲av在线观看| 国产大屁股一区二区在线视频| 日本与韩国留学比较| 在线免费十八禁| 欧美高清成人免费视频www| 国产精品av视频在线免费观看| 成人亚洲精品av一区二区| 成年女人看的毛片在线观看| 午夜福利视频1000在线观看| 国内精品一区二区在线观看| 嫩草影院新地址| 精品久久久久久久人妻蜜臀av| 亚洲精品粉嫩美女一区| 亚洲国产精品久久男人天堂| 久久精品国产自在天天线| 国产亚洲精品久久久com| 国产精品不卡视频一区二区| 成人特级av手机在线观看| 国产在视频线在精品| 日本色播在线视频| 国产真实乱freesex| 在线观看av片永久免费下载| 嫩草影院入口| 国产精品一区二区三区四区免费观看| 国产伦精品一区二区三区视频9| 一级毛片久久久久久久久女| 啦啦啦观看免费观看视频高清| 成人午夜精彩视频在线观看| 久久欧美精品欧美久久欧美|