• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hamiltonian system for the inhomogeneous plane elasticity of dodecagonal quasicrystal plates and its analytical solutions

    2024-01-25 07:14:16ZhiqiangSun孫志強(qiáng)GuolinHou侯國(guó)林YanfenQiao喬艷芬andJincunLiu劉金存
    Chinese Physics B 2024年1期
    關(guān)鍵詞:侯國(guó)

    Zhiqiang Sun(孫志強(qiáng)), Guolin Hou(侯國(guó)林), Yanfen Qiao(喬艷芬), and Jincun Liu(劉金存)

    School of Mathematical Sciences,Inner Mongolia University,Hohhot 010021,China

    Keywords: Hamiltonian system,symplectic elasticity,quasicrystals,analytic solution,state function

    1.Introduction

    Quasicrystals (QCs) are a kind of solid intermediate between crystal and amorphous materials, which were first discovered by Shechtmanet al.[1]The unique quasi-periodic structure makes QCs become a new kind of functional materials and structural materials.[2,3]

    QCs have many excellent properties, such as high strength, abrasion resistance, hardness, thermal conductivity,and low adhesion.[4,5]It should be noted that the properties of QCs are affected by defects such as dislocations,cracks,holes,and inclusions.[6–12]Many methods and techniques have been developed to address the problems of elasticity and defects in QCs.Among them, symplectic elasticity approach,[13–15]the pseudo-Stroh formalism method,[16,17]the state-space method,[18,19]the integral transformation method,[20]the differential quadrature method,[21,22]the complex variable function method,[23–26]and the state-space based differential quadrature method[27]are practical to construct the analytical or numerical solutions of QCs.The integral transformation and differential quadrature methods are numerical and have been approved to be highly efficient for the rapid solution.The state-space-based differential quadrature method[27]inherits the advantages of the state-space method and the differential quadrature method.Its convergence speed is fast and can apply to different boundary conditions.However,the state-space method must be revised to solve the clamped-supported and mixed boundary conditions.The complex variable function method often leads to high-order partial differential equations,which puts forward higher requirements for the smoothness of solutions and may be difficultly solved further by separating variables.[23]The symplectic elasticity approach is the method of separating variables based on the Hamiltonian system.It can construct the general solution of the considered problem without any assumptions about the solution forms.According to the Vainberg theorem[28]in variational theory,a symmetric differential system can continually be transformed into a suitable Hamiltonian system, which provides the possibility for applications of the symplectic elasticity approach in elasticity mechanical problems because the considered mechanical equations are primarily symmetric.Recently, the symplectic elasticity approach has been applied to establish the final governing equation of Laue class 15,[14]which provides a feasible idea for solving some complex quasicrystal problems.

    This paper aims to extend the symplectic elasticity approach to solve the inhomogeneous dodecagonal QC plates.In the geometry of symplectic space, the phonon stress, phason stress, and displacements are set as unknown functions and included in the state vector, and then the formed first-order differential system,a Hamiltonian system,is introduced.Additionally, using the symplectic orthogonality relations of the eigenvectors,the general solutions of phonon and phason displacement under the given boundary conditions are obtained.Finally, the accuracy of the symplectic elasticity approach is verified by numerical examples of QC plates under uniform and concentrated loads, and the effects of different phason elastic constants on displacements and stresses are analyzed.The numerical results show that the symplectic elasticity approach is an effective tool for analyzing the mechanical behavior of QC plates.The presented method in the current paper can also be used to solve other boundary conditions.

    2.Hamiltonian system of dodecagonal QCs

    According to the linear elastic theory of QCs, the basic equations for the inhomogeneous plane elasticity problem of dodecagonal QCs are described in the following.[29]The equilibrium equations are

    and generalized Hooke’s laws have the following form:

    whereux,uyandwx,wydenote the phonon displacements and phason displacements;σxx,σxy,σyx, andσyyare the phonon stresses;Hxx,Hxy,Hyx,andHyyare the phason stresses;q1,q2,q3, andq4are the body forces;L,M,K1,K2, andK3are the elastic constants.For simplicity,K1+K2+K3is abbreviated toK4.

    To establish the Hamiltonian system,define the displacement vector as

    where the superscript T represents the transpose.The strain energy densityU(q, ˙q)can be expressed as

    where ˙()≡?/?y.Moreover,we introduce the Lagrange density function as

    Consider a dodecagonal QC rectangular domain with lengthl(0≤y ≤l)and widthh(0≤x ≤h).To build the variational operation,the equilibrium Eqs.(1a)–(1d) can be obtained by taking the variation with respect toux,uy,wx,andwy,respectively.Applying the Legendre transformation, the corresponding dual vector is given as follows:

    According to Eqs.(3)and(6),defining a state vector

    the Hamiltonian system can be expressed as

    where the Hamiltonian operator reads

    f(x,y)=?(q3,q4,q1,q2,0,0,0,0)Tis an inhomogeneous term related to body forces.Moreover, we consider Eq.(8)to satisfy the following boundary conditions shown in Fig.1,

    Remark 1 The Hamiltonian system (8) derived here is also applicable to other complex boundary conditions,such as clamped or free.The solution to those problems may require the use of the symplectic superposition methods,[30,31]which are not covered in this study.

    Fig.1.Geometry of boundary conditions(10).

    3.Eigenvalues and eigenvectors of H

    According to the theory of linear differential equations,we should first solve the following homogeneous form of Eq.(8):

    Equation (11) can be solved by the method of separating variables.[32]Assuming

    and substituting it into Eq.(11),we arrive at

    whereψ(y)is easy to get,andΦ(x)is an unknown eignvector corresponding to the unknown eigenvalueμ.The eigenvalue problem

    with the boundary condition (10) is needed to take a lot of effort to solve.According to Eq.(10),we find that the eigenvector has the following form:

    whereαandAi(i=1,2,...,8)are unknown constants which depend onμand can be calculated from Eq.(14).

    Combining Eqs.(10)and(14),the characteristic polynomial is derived as follows:

    From Eq.(15),we obtain the eigenvaluesμn=αn=±nπ/h,μ?n=?μn(n= 1,2,...), and corresponding eigenvectors with respect toμnare given by

    Similarly,the basic eigenvectors ofμ?n=?μn(n=1,2,...)are

    and first-order Jordan form eigenvectors ofμ?n=?μn(n=1,2,...)are

    Additionally,μ=0 is also a multiple eigenvalue ofH.The eigenvectors ofHwith respect to eigenvalueμ=0 include basic eigenvectors

    and first-order Jordan form eigenvectors

    4.Symplectic orthogonality and completeness

    The symplectic orthogonality of the generalized eigenvectors of the Hamiltonian operatorHis analyzed first since it plays an important role in representing the solution of the Hamiltonian system.[32]

    In addition,we have

    The following theorem is one of the main results in this paper, which characterizes the completeness of the generalized eigenvector system ofHand also ensures the feasibility of separating variables in the Hamiltonian system.It is worth noting that all of the calculations in this section can be easily achieved by symbolic software like Mathematica.

    Proof According to the symplectic orthogonal relationship(16)and(17),we take

    Thus,we have

    where the eight components in the above expression are the Fourier series expansions of functionsfi(x) (i= 1,2,...,8)under the orthogonal systemorin Hilbert spaceL2(0,h).Accordingly,

    is valid,and the proof is completed.

    5.Analytic solution of the original problem

    According to Theorem 1 and the principle of superposition of solutions, the general solution of Eq.(8)can be given in the form

    Let the Fourier expansion of the inhomogeneous termf(x,y)=(q4,q3,q1,q2,0,0,0,0)Tin Eq.(8)be

    where

    The details of(i= 1,2,3,4) are expressed in Appendix A.

    Substituting Eqs.(18)and(19)into Eq.(8),and by simple calculations,we obtain

    According to the form of the state vectorU(x,y),the analytic solutions ofHxy,Hyy,σxy,σyy,wx,wy,ux, anduycan be obtained by taking the first component through the eighth component of Eq.(20).For the sake of brevity,we do not write out their specific expressions.

    6.Numerical examples

    This section presents the behavior of solutions of the QC plates under the concentrated load,uniform load,and mechanical load based on the symplectic analytical solution obtained in Section 5.To this end,we consider the following boundary conditions in they-direction:

    For convenience of numerical simulation,we assume that the body forcesq1=q2=q3=q4.Due to the lack of comparative data, we introduce the FITM for the displacementsux,uy,wx,andwyto show the validity of the symplectic elasticity approach.The expressions of phonon and phason displacements given by the FITM can be found in Appendix B.The material constantsL=0.5741 GPa,M=0.88445 GPa,K1=1.22 GPa,K2=0.24 GPa, andK3=0.6 GPa are taken as those in Ref.[13].

    6.1.Concentrated load and uniformly distributed load

    The central concentrated loadq1=q2=q3=q4=Pδ(x ?x0,y ?y0) is examined at the (x0,y0)=(h/2,l/2)of plate,wherePis the intensity,andδ(·,·)denotes the wellknown Dirac function.As the ratio of length and width varies,the results of numerical tests under central concentrated load are shown in Tables 1 and 2 for the displacement responses at fixed horizontal coordinates (x,y)=(h/4,l/4) and (x,y)=(h/4,h/4),respectively.The uniformly distributed load of intensityqis examined, and the numerical results are given in Table 3.

    Table 1 shows that the symplectic elasticity approach performs better than the FITM since it gets a reasonable convergence rate with only 20 terms.Also,we use the first 20 terms of Eq.(20)to show the phonon and phason displacements with different length–width ratios(1≤l/h ≤2)in Fig.2.

    As shown in Fig.2, the tendency of change in displacements with a change in aspect length–width ratios of the QCs plate is different for the responses at two fixed horizontal coordinates.For the fixed valueh,the changes ofuxandwx(uyandwy)at(h/4,l/4)are increasing(decreasing)aslgoes up.This trend depends on the influences of boundary conditions (10)and (21), and the variations of distance between (h/4,l/4)and (h/2,l/2).However, the responsesux,wx,uyandwyat the fixed point (h/4,h/4) are decreasing aslbecomes larger because of the influence of boundary conditions is unchanged,and the effect of the load is gradually weakening.

    In addition,whenh=l,we have the phason displacementux=uyand the phonon displacementwx=wyfor the centralized load, which is in agreement with the case for uniformly distributed load.

    Fig.2.The phonon and phason displacements of the QC plate under a centrally concentrated load: (a) the response at (x,y)=(h/4,l/4),(b)the response at(x,y)=(h/4,h/4).

    Table 1.The calculation results under central concentrated load(x,y)=(h/4,l/4).

    Table 2.Calculation results under central concentrated load(x,y)=(h/4,h/4).

    6.2.Mechanical load

    In this subsection we analyze the effect of the phason elastic constants on the displacements and stresses.In the absence of body forces,we assume that the right side of the QC plate is subjected to the phonon and phason mechanical loads,i.e.,

    whereH0andσ0are the amplitude of the loading.Meanwhile,all other components on the left and right sides of the plate are zero.Consequently, the boundary conditions along theydirection are

    wherepandqare expressed in Eqs.(3)and(6),respectively.

    Following the previous work,[33]we takeH0=σ0=1 N/m2,α=π/h, the dimensions of the plate areh×l=0.3 m×0.3 m,and consider the responses wheny=0.75l.

    Based on the above loads, we analyze the effect of the phase elastic constantsKi(i=1,2,3)on some physical components in the QC plates.We let the phason elastic constants beKi,0.5Ki,0.1Ki(i=1,2,3),and the results of the calculations are shown in Fig.3.It can be seen that the magnitudes of the phason displacementswxandwydecrease with decreasing value of phason elastic constantsKi(i=1,2,3)[see Figs.3(c)and 3(d)], while there is no effect on the trends of the phason and phonon stresses components[see Figs.3(a)and 3(b)].Specifically, the phason displacements are more sensitive to the phason elastic constants than the phason and phonon stress.

    Fig.3.Displacements and stresses with different phason elastic constants: (a) phason stress Hyy, (b) phonon stress σxy, (c) phason displacement wx,and(d)phason displacement wy.

    Table 3.Calculation results under uniform load.

    7.Conclusions

    In summary, we have solved QC equations by employing the symplectic elasticity approach.By introducing a generalized displacement vector, the Hamiltonian system of dodecagonal QCs is derived from the strain energy density and Legendre transformation.Then, the symplectic elasticity approach is adopted to get the general solutions of the Hamiltonian system.It is worth noting that the 1st, 2nd, 3rd, and 4th components of the general solution (20) are the phonon and phason stresses,and the 5th,6th,7th,and 8th components of (20) are the phonon and phason displacements.The displacements and stresses responses of QC plates under the concentrated,uniformly distributed,and mechanical loads are discussed in detail.For the case of concentrated load,the trends of responses at the fixed point and moving point are different from the changes in length–width ratios.The numerical examples of the mechanical load show that the magnitude of the phason displacements decreases with decreasing value of phason elastic constants.The comparison data are constructed by FITM,which justifies calculating of the symplectic elasticity approach.The approach is direct and rational,providing a systematic step to solve the related problems of QCs.

    Appendix A

    Appendix B

    Substituting Eqs.(2a)–(2g)into Eqs.(1a)–(1d),we obtain

    where ?2=?2/?x2+?2/?y2.

    Based on boundary conditions(10)and(21),we can define eight double finite integral transforms with respect towx,wy,ux,uy,q1,q2,q3,andq4as follows:

    whereαm=mπ/handβn=nπ/l(m,n=1,2,3,...).

    The inverse transforms are given by

    By simple calculations, Eq.(B1) is transformed into the following form:

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos.12261064 and 11861048), the Natural Science Foundation of Inner Mongolia,China(Grant Nos.2021MS01004 and 2022QN01008), and the High-level Talents Scientific Research Start-up Foundation of Inner Mongolia University(Grant No.10000-21311201/165).

    猜你喜歡
    侯國(guó)
    一官半職
    鴨綠江(2024年10期)2024-02-28 00:00:00
    一路沖鋒
    軍嫂(2023年9期)2023-10-12 12:52:40
    Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
    西漢沛郡所轄侯國(guó)地理探賾
    三個(gè)老同學(xué)辦了個(gè)招嫖論壇
    方圓(2022年1期)2022-03-01 13:22:44
    復(fù)原西漢侯國(guó)地理全貌的扛鼎之作 《西漢侯國(guó)地理(修訂本)》評(píng)價(jià)
    南朝陳縣級(jí)封國(guó)地理與置省原因探微
    《東漢政區(qū)地理》縣級(jí)政區(qū)補(bǔ)考
    Virtual Property:the Realization of Rights and Value〔* 〕
    松花江上
    热re99久久精品国产66热6| 人人妻人人添人人爽欧美一区卜| 18在线观看网站| 欧美xxⅹ黑人| 波野结衣二区三区在线| 尾随美女入室| 国产探花极品一区二区| 另类亚洲欧美激情| 久久久久久久亚洲中文字幕| 自线自在国产av| 久久精品久久久久久久性| 亚洲精品成人av观看孕妇| 日韩 亚洲 欧美在线| 激情五月婷婷亚洲| 人人妻人人澡人人看| 亚洲精品美女久久av网站| 精品人妻熟女毛片av久久网站| 国产精品不卡视频一区二区| 精品一品国产午夜福利视频| 精品视频人人做人人爽| 99久久精品一区二区三区| 国产高清三级在线| 久久精品国产a三级三级三级| 国产精品一二三区在线看| 青春草国产在线视频| 欧美丝袜亚洲另类| 熟妇人妻不卡中文字幕| 18禁观看日本| 久久久久久久国产电影| 亚洲不卡免费看| 在线观看人妻少妇| 黄色欧美视频在线观看| 熟女av电影| 亚洲精品一二三| 人人妻人人爽人人添夜夜欢视频| 麻豆成人av视频| 亚洲精品美女久久av网站| av有码第一页| 夜夜看夜夜爽夜夜摸| 永久网站在线| 免费观看在线日韩| 大陆偷拍与自拍| 夫妻性生交免费视频一级片| 精品国产一区二区三区久久久樱花| 欧美日韩一区二区视频在线观看视频在线| 日韩人妻高清精品专区| 观看av在线不卡| 爱豆传媒免费全集在线观看| 又粗又硬又长又爽又黄的视频| a级毛片免费高清观看在线播放| 国产精品无大码| 99热国产这里只有精品6| 亚洲国产av影院在线观看| 久久午夜综合久久蜜桃| 国精品久久久久久国模美| 插阴视频在线观看视频| 欧美日韩av久久| 晚上一个人看的免费电影| 精品人妻一区二区三区麻豆| 免费看不卡的av| 女人久久www免费人成看片| 久久人妻熟女aⅴ| 满18在线观看网站| freevideosex欧美| 看非洲黑人一级黄片| 少妇人妻久久综合中文| 亚洲av男天堂| 中国三级夫妇交换| 国产国拍精品亚洲av在线观看| 九色成人免费人妻av| 一级a做视频免费观看| 制服人妻中文乱码| 精品少妇久久久久久888优播| 国产成人免费无遮挡视频| 国产综合精华液| 亚洲精品av麻豆狂野| 成人无遮挡网站| 久久久久网色| 老司机影院成人| 一级黄片播放器| 18禁动态无遮挡网站| 精品人妻一区二区三区麻豆| 久久精品熟女亚洲av麻豆精品| 免费黄频网站在线观看国产| 久热这里只有精品99| 亚洲在久久综合| 国产女主播在线喷水免费视频网站| 日本午夜av视频| 成人国产av品久久久| 日韩成人av中文字幕在线观看| av在线播放精品| 最后的刺客免费高清国语| 亚洲欧美一区二区三区国产| 91精品国产九色| 热99久久久久精品小说推荐| 国产成人精品在线电影| 两个人的视频大全免费| 精品国产乱码久久久久久小说| 久久久久视频综合| 一区二区三区四区激情视频| 性色avwww在线观看| 国产黄色视频一区二区在线观看| 国产精品久久久久久精品古装| 日日啪夜夜爽| 在线播放无遮挡| 女人久久www免费人成看片| 国产成人精品久久久久久| 国产精品成人在线| 久久久久久伊人网av| 国产高清国产精品国产三级| 亚洲精品久久午夜乱码| 在线观看美女被高潮喷水网站| 丰满少妇做爰视频| 成年人午夜在线观看视频| 亚洲四区av| a 毛片基地| 国产日韩欧美视频二区| 国产日韩欧美亚洲二区| 黄色欧美视频在线观看| 成人综合一区亚洲| 日韩精品免费视频一区二区三区 | 亚洲国产最新在线播放| 国内精品宾馆在线| 欧美xxxx性猛交bbbb| 午夜精品国产一区二区电影| h视频一区二区三区| 国产成人精品在线电影| 精品人妻偷拍中文字幕| 夫妻性生交免费视频一级片| 久久人妻熟女aⅴ| 久久久亚洲精品成人影院| 黄片无遮挡物在线观看| 亚洲av成人精品一二三区| 男女边吃奶边做爰视频| 日本爱情动作片www.在线观看| 美女cb高潮喷水在线观看| 日本黄色片子视频| 内地一区二区视频在线| 99国产精品免费福利视频| 男女免费视频国产| 最新中文字幕久久久久| 精品午夜福利在线看| av在线播放精品| 少妇 在线观看| 伊人久久国产一区二区| 赤兔流量卡办理| 国产男女超爽视频在线观看| 日韩人妻高清精品专区| 精品午夜福利在线看| 人人妻人人添人人爽欧美一区卜| 国产免费一区二区三区四区乱码| 中文字幕精品免费在线观看视频 | 少妇丰满av| 国产欧美日韩综合在线一区二区| 国产男人的电影天堂91| 91精品伊人久久大香线蕉| 女性被躁到高潮视频| 老熟女久久久| 国产精品国产av在线观看| 国产高清不卡午夜福利| 2022亚洲国产成人精品| 中国三级夫妇交换| 欧美日韩视频高清一区二区三区二| 成年人午夜在线观看视频| 亚洲av不卡在线观看| 国产一区有黄有色的免费视频| 人妻一区二区av| 美女脱内裤让男人舔精品视频| 永久网站在线| 亚洲精品日韩av片在线观看| 国产一区亚洲一区在线观看| 国产日韩一区二区三区精品不卡 | 精品人妻一区二区三区麻豆| 国产精品人妻久久久久久| av.在线天堂| 美女主播在线视频| √禁漫天堂资源中文www| 一区二区三区免费毛片| 亚洲精品成人av观看孕妇| 少妇精品久久久久久久| 久久久久久久久久成人| 美女大奶头黄色视频| 日韩大片免费观看网站| 免费观看性生交大片5| 少妇 在线观看| 青春草视频在线免费观看| 国产一区二区三区综合在线观看 | 日本与韩国留学比较| 自拍欧美九色日韩亚洲蝌蚪91| 美女福利国产在线| 欧美3d第一页| 免费人成在线观看视频色| 日本免费在线观看一区| 国产伦精品一区二区三区视频9| 青青草视频在线视频观看| 欧美精品高潮呻吟av久久| 老司机亚洲免费影院| 999精品在线视频| 国产成人精品一,二区| .国产精品久久| 日本午夜av视频| 亚洲av电影在线观看一区二区三区| 51国产日韩欧美| 青春草视频在线免费观看| 黑丝袜美女国产一区| 久久精品人人爽人人爽视色| 如日韩欧美国产精品一区二区三区 | 亚洲欧美成人精品一区二区| 亚洲欧美精品自产自拍| 观看av在线不卡| 国产亚洲最大av| 久久国内精品自在自线图片| 熟妇人妻不卡中文字幕| 99国产精品免费福利视频| 这个男人来自地球电影免费观看 | 啦啦啦中文免费视频观看日本| 男人爽女人下面视频在线观看| av线在线观看网站| 黄色一级大片看看| 午夜福利在线观看免费完整高清在| 视频区图区小说| av在线播放精品| 精品99又大又爽又粗少妇毛片| 色5月婷婷丁香| 亚洲精品乱码久久久久久按摩| 男女边吃奶边做爰视频| 亚洲av免费高清在线观看| 午夜福利视频在线观看免费| 人妻制服诱惑在线中文字幕| 街头女战士在线观看网站| √禁漫天堂资源中文www| 性色avwww在线观看| 极品少妇高潮喷水抽搐| av有码第一页| 日韩不卡一区二区三区视频在线| 亚洲高清免费不卡视频| 老熟女久久久| 免费观看在线日韩| 亚洲欧洲日产国产| 国产精品99久久99久久久不卡 | 日韩熟女老妇一区二区性免费视频| 成人国产麻豆网| 热re99久久国产66热| 丝瓜视频免费看黄片| 久久久久久久久久人人人人人人| 成人国产麻豆网| 免费观看无遮挡的男女| 纯流量卡能插随身wifi吗| 女人久久www免费人成看片| 日韩精品有码人妻一区| 成人漫画全彩无遮挡| 国产精品国产三级国产专区5o| 久久久精品免费免费高清| 肉色欧美久久久久久久蜜桃| 各种免费的搞黄视频| 亚洲国产最新在线播放| 黑人巨大精品欧美一区二区蜜桃 | 赤兔流量卡办理| 国产精品 国内视频| 爱豆传媒免费全集在线观看| 精品卡一卡二卡四卡免费| 亚洲av在线观看美女高潮| 中文欧美无线码| 亚州av有码| 中文字幕精品免费在线观看视频 | 91成人精品电影| 午夜福利在线观看免费完整高清在| 大码成人一级视频| 男人爽女人下面视频在线观看| 日韩精品免费视频一区二区三区 | 另类亚洲欧美激情| 男的添女的下面高潮视频| www.色视频.com| 一本久久精品| av黄色大香蕉| 老司机影院毛片| 国产国语露脸激情在线看| 亚洲精品久久午夜乱码| 天堂俺去俺来也www色官网| 亚洲精品久久成人aⅴ小说 | 九色成人免费人妻av| 下体分泌物呈黄色| 久久国产精品男人的天堂亚洲 | 日本与韩国留学比较| 高清不卡的av网站| 蜜桃久久精品国产亚洲av| 女人久久www免费人成看片| 成人手机av| 一级二级三级毛片免费看| 丰满饥渴人妻一区二区三| 亚洲精品乱码久久久v下载方式| 91精品三级在线观看| 久久99蜜桃精品久久| 精品少妇久久久久久888优播| 日本欧美国产在线视频| 亚洲国产欧美日韩在线播放| 80岁老熟妇乱子伦牲交| 五月开心婷婷网| 亚洲国产av新网站| 亚洲精品国产av成人精品| 日日啪夜夜爽| 亚洲欧美一区二区三区黑人 | kizo精华| 一区二区三区精品91| 最近中文字幕高清免费大全6| 久久久久久人妻| 大陆偷拍与自拍| 中文精品一卡2卡3卡4更新| 日本欧美国产在线视频| 精品久久久噜噜| 纵有疾风起免费观看全集完整版| 国产成人91sexporn| 日本欧美国产在线视频| 91精品一卡2卡3卡4卡| 最新中文字幕久久久久| 亚洲四区av| 少妇被粗大的猛进出69影院 | 精品国产一区二区三区久久久樱花| 亚洲av男天堂| 亚洲欧美日韩另类电影网站| 99re6热这里在线精品视频| 久久久久久伊人网av| 水蜜桃什么品种好| 国产不卡av网站在线观看| 美女主播在线视频| 欧美日韩国产mv在线观看视频| 男女无遮挡免费网站观看| 亚洲熟女精品中文字幕| av国产久精品久网站免费入址| 午夜免费观看性视频| 五月伊人婷婷丁香| av国产久精品久网站免费入址| 青春草视频在线免费观看| 亚洲国产精品一区二区三区在线| 黑人猛操日本美女一级片| 欧美丝袜亚洲另类| 精品熟女少妇av免费看| 久久影院123| 欧美成人午夜免费资源| 成人毛片60女人毛片免费| 成人国产av品久久久| av有码第一页| 18禁裸乳无遮挡动漫免费视频| av不卡在线播放| 成年女人在线观看亚洲视频| 大香蕉久久成人网| 亚洲成人手机| 中文字幕人妻熟人妻熟丝袜美| 91久久精品电影网| 亚洲精品国产色婷婷电影| 久久精品久久久久久久性| 欧美激情国产日韩精品一区| 精品久久久久久电影网| 我要看黄色一级片免费的| 久久久精品免费免费高清| 看非洲黑人一级黄片| 五月天丁香电影| 久久av网站| 九九久久精品国产亚洲av麻豆| 五月天丁香电影| 日本黄色日本黄色录像| 日韩大片免费观看网站| 国产老妇伦熟女老妇高清| 欧美精品高潮呻吟av久久| 看十八女毛片水多多多| 亚洲av国产av综合av卡| 精品久久蜜臀av无| 国产成人免费无遮挡视频| 日韩一区二区三区影片| 又黄又爽又刺激的免费视频.| 欧美激情极品国产一区二区三区 | 两个人免费观看高清视频| 美女脱内裤让男人舔精品视频| av网站免费在线观看视频| 亚洲国产av影院在线观看| 国产精品一区二区在线不卡| 少妇猛男粗大的猛烈进出视频| 国产日韩欧美视频二区| 亚洲少妇的诱惑av| 中国美白少妇内射xxxbb| 亚洲经典国产精华液单| 另类精品久久| 亚洲欧美色中文字幕在线| 高清视频免费观看一区二区| 亚洲av日韩在线播放| 亚洲av男天堂| 久久国产亚洲av麻豆专区| 亚洲国产精品国产精品| 男的添女的下面高潮视频| 最近中文字幕高清免费大全6| 少妇精品久久久久久久| 在线观看免费日韩欧美大片 | 久久久久久久久久久免费av| 黑人高潮一二区| 在线观看www视频免费| 久久精品国产亚洲av涩爱| 成人国语在线视频| 曰老女人黄片| 欧美日本中文国产一区发布| 国产成人免费观看mmmm| 午夜激情福利司机影院| 人人妻人人澡人人爽人人夜夜| a级毛片免费高清观看在线播放| 九九爱精品视频在线观看| 日韩人妻高清精品专区| 卡戴珊不雅视频在线播放| 久久婷婷青草| 26uuu在线亚洲综合色| 色婷婷久久久亚洲欧美| 国产伦理片在线播放av一区| 女人精品久久久久毛片| 天堂俺去俺来也www色官网| 国产成人精品在线电影| 色哟哟·www| 欧美成人午夜免费资源| 亚洲精品亚洲一区二区| 国产免费视频播放在线视频| 日韩精品免费视频一区二区三区 | 不卡视频在线观看欧美| 各种免费的搞黄视频| 国产精品一二三区在线看| 天堂中文最新版在线下载| 观看美女的网站| 黄色欧美视频在线观看| 看非洲黑人一级黄片| 少妇人妻精品综合一区二区| 久久女婷五月综合色啪小说| 亚洲国产精品一区三区| 中文字幕人妻熟人妻熟丝袜美| 免费人妻精品一区二区三区视频| 王馨瑶露胸无遮挡在线观看| 欧美老熟妇乱子伦牲交| 我的女老师完整版在线观看| 妹子高潮喷水视频| 制服丝袜香蕉在线| 青青草视频在线视频观看| 欧美精品高潮呻吟av久久| 3wmmmm亚洲av在线观看| 亚洲欧美一区二区三区国产| 女性生殖器流出的白浆| 亚洲精品中文字幕在线视频| 黑人高潮一二区| 天天躁夜夜躁狠狠久久av| 99九九在线精品视频| 99国产精品免费福利视频| 精品久久久久久久久av| 亚洲av在线观看美女高潮| 欧美日韩成人在线一区二区| 亚洲av免费高清在线观看| 国产成人精品福利久久| av天堂久久9| 欧美97在线视频| 亚洲国产av影院在线观看| 超碰97精品在线观看| 成人毛片a级毛片在线播放| 大片免费播放器 马上看| 日韩成人伦理影院| xxx大片免费视频| 久久精品国产亚洲av天美| 亚洲美女黄色视频免费看| av线在线观看网站| 国产精品一国产av| 啦啦啦视频在线资源免费观看| 国产精品国产三级国产专区5o| 国产色婷婷99| 国产精品一区二区在线观看99| 99视频精品全部免费 在线| 亚洲人成77777在线视频| 蜜桃久久精品国产亚洲av| 老女人水多毛片| 亚洲人与动物交配视频| a级片在线免费高清观看视频| 各种免费的搞黄视频| 欧美丝袜亚洲另类| 国产永久视频网站| av一本久久久久| 久久久久久久亚洲中文字幕| 国产欧美日韩综合在线一区二区| 秋霞在线观看毛片| 男的添女的下面高潮视频| 一本大道久久a久久精品| 99视频精品全部免费 在线| 91精品国产国语对白视频| 欧美日本中文国产一区发布| 国产视频首页在线观看| 久久精品熟女亚洲av麻豆精品| 日韩大片免费观看网站| 丝瓜视频免费看黄片| 看非洲黑人一级黄片| 热re99久久精品国产66热6| 母亲3免费完整高清在线观看 | 亚洲成人手机| 国产成人freesex在线| 精品一区在线观看国产| 亚洲三级黄色毛片| 亚洲av男天堂| 国产在线一区二区三区精| 看非洲黑人一级黄片| 国产无遮挡羞羞视频在线观看| 母亲3免费完整高清在线观看 | 午夜福利,免费看| 伦理电影免费视频| 亚洲精品久久成人aⅴ小说 | 午夜激情av网站| 纵有疾风起免费观看全集完整版| 最后的刺客免费高清国语| 亚洲成色77777| 亚洲色图综合在线观看| 午夜福利,免费看| 久久午夜综合久久蜜桃| 日韩一区二区视频免费看| 国产成人精品婷婷| tube8黄色片| 日本wwww免费看| 久久精品国产亚洲av天美| 国产国语露脸激情在线看| 中文字幕亚洲精品专区| 男人操女人黄网站| 国产精品久久久久久久久免| 国产午夜精品久久久久久一区二区三区| 成人午夜精彩视频在线观看| 最新的欧美精品一区二区| 又粗又硬又长又爽又黄的视频| 又粗又硬又长又爽又黄的视频| 欧美xxxx性猛交bbbb| 日本黄色日本黄色录像| 亚洲伊人久久精品综合| 狂野欧美激情性bbbbbb| 黄色一级大片看看| 国产伦精品一区二区三区视频9| av一本久久久久| 日本黄色片子视频| 夜夜看夜夜爽夜夜摸| 啦啦啦视频在线资源免费观看| 99热这里只有精品一区| 日韩人妻高清精品专区| 国产精品熟女久久久久浪| 大香蕉久久网| 国产高清国产精品国产三级| 乱人伦中国视频| 国产精品一区二区在线观看99| 2018国产大陆天天弄谢| 久久久久久人妻| 大话2 男鬼变身卡| 国产精品久久久久久av不卡| 国产在线视频一区二区| 黄片播放在线免费| 亚洲国产精品999| 777米奇影视久久| 在线观看人妻少妇| 亚洲国产av新网站| 午夜精品国产一区二区电影| 纵有疾风起免费观看全集完整版| 视频中文字幕在线观看| 男人添女人高潮全过程视频| 搡女人真爽免费视频火全软件| 超碰97精品在线观看| 一级,二级,三级黄色视频| 欧美日韩av久久| 你懂的网址亚洲精品在线观看| 综合色丁香网| 麻豆成人av视频| av天堂久久9| 赤兔流量卡办理| 丰满乱子伦码专区| 久久婷婷青草| 色哟哟·www| 秋霞伦理黄片| 97在线视频观看| 男人添女人高潮全过程视频| 色婷婷av一区二区三区视频| 亚洲av综合色区一区| 91aial.com中文字幕在线观看| 午夜激情福利司机影院| 视频在线观看一区二区三区| 亚洲高清免费不卡视频| 熟女av电影| 亚洲国产欧美在线一区| 新久久久久国产一级毛片| 最近最新中文字幕免费大全7| 亚洲少妇的诱惑av| 国产伦精品一区二区三区视频9| av在线app专区| 日韩三级伦理在线观看| 在线观看人妻少妇| 亚洲精品色激情综合| 亚洲欧美色中文字幕在线| 美女主播在线视频| 久久精品久久久久久久性| 高清黄色对白视频在线免费看| 大片免费播放器 马上看| av有码第一页| av国产精品久久久久影院| 国产一区二区三区综合在线观看 | 亚洲怡红院男人天堂| 久久精品久久久久久久性| 欧美日韩成人在线一区二区| 久久人人爽人人片av| 国产精品 国内视频| 美女国产高潮福利片在线看| 中文字幕人妻丝袜制服| 午夜老司机福利剧场| 波野结衣二区三区在线| 91精品伊人久久大香线蕉| 免费大片黄手机在线观看| 校园人妻丝袜中文字幕| 高清视频免费观看一区二区| 国产日韩一区二区三区精品不卡 | 波野结衣二区三区在线| 一本久久精品| 亚洲国产精品一区二区三区在线| 日韩亚洲欧美综合| 欧美精品人与动牲交sv欧美| a级毛片黄视频| 久久99一区二区三区|