• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells

    2022-09-24 08:04:08XiufangYang楊秀芳ShengshengZhao趙生盛QianHuang黃茜CaoYu郁超JiakaiZhou周佳凱XiaoningLiu柳曉寧XianglinSu蘇祥林YingZhao趙穎andGuofuHou侯國付
    Chinese Physics B 2022年9期
    關(guān)鍵詞:侯國祥林

    Xiufang Yang(楊秀芳) Shengsheng Zhao(趙生盛) Qian Huang(黃茜) Cao Yu(郁超)Jiakai Zhou(周佳凱) Xiaoning Liu(柳曉寧) Xianglin Su(蘇祥林)Ying Zhao(趙穎) and Guofu Hou(侯國付)

    1Institute of Photoelectronic Thin Film Devices and Technology of Nankai University,Tianjin 300350,China

    2Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin,Tianjin 300350,China

    3Collaborative Innovation Center of Chemical Science and Engineering(Tianjin),Tianjin 300072,China

    4Engineering Center of Thin Film Photoelectronic Technology of Ministry of Education,Tianjin 300350,China

    5Suzhou Maxwell Automation Equipment Co. Ltd,Suzhou 215299,China

    Keywords: radio-frequency magnetron sputtering,silicon heterojunction(SHJ)solar cell,MoOx,hole transport layer

    1. Introduction

    In the past decades, amorphous/crystalline silicon heterojunction solar cells have been one of the most promising candidates for low-cost and highly-efficient solar cells.[1,2]Intrinsically hydrogenated amorphous silicon (a-Si:H(i)) films have been widely adopted as the passivating layer and emitting layer in the silicon heterojunction(SHJ)solar cells,which effectively enhance the open circuit voltage(Voc). Kaneka Co.Ltd has reported heterojunction interdigitated back contact(HJ-IBC) cell with the record efficiency of 26.63%.[3]However, the unavoidable parasitic absorption caused by a-Si:H passivating layer and emitting layer is considered as the main limitation to further improve the SHJ device performance. In order to get p-type or n-type a-Si:H layers, highly toxic PH3or B2H6dopants are usually adopted. In addition,the heavily doped carrier selective layer (n+, p+) leads to serious carrier combination. Therefore, hydrogenated amorphous silicon alloyed with carbon,oxygen and nitrogen etc. are used to obtain wide bandgap silicon films to partially decrease the parasitic absorption.[4-6]Many researchers have tried to adjust the work function of the n+/p+layers by optimizing doping techniques to achieve better band matching effects with c-Si.[7-9]Other studies have proven that it is a more convenient and effective way to insert a buffer layer with high work function to further extract carriers at the c-Si interface.[10-14]

    Recently, novel carrier-selective passivating materials have been extensively developed, especially nonstoichiometric transition metal oxides with high work function including WOx(x <3),[7]V2Ox(x <5),[15,16]CrOx(x <3)[17,18]and MoOx(x <3).[7,19-21]Among them, MoOxhas attracted extensive attention as a hole selective transport layer (HTL) in organic solar cells and undoped asymmetric heterogeneous contact (DASH) silicon solar cells due to its high work function and unique electrical and optical properties.[21-25]The combination of high work function MoOxwith lightly doped c-Si(n) substrate will lead to upward band bending at the c-Si interface, and the Fermi level of MoOxclose to the valence band of c-Si absorber, forming a favorable level alignment for band to band (B2B) hole transport.[26-28]

    Various deposition techniques such as thermal evaporation,[29]electron beam evaporation,[30]pulsed laser deposition,[31]and sputtering[32-35]and sol-gel process[36]were employed for the growth of MoOxfilms. Compared with the traditional coating technology, magnetron sputtered films have stronger adhesion with the substrate,and it is more convenient to fabricate the films with high melting point materials. It is easy to control the composition of the films by varying the target material and to realize reactive sputtering,which can be more convenient for plating a variety of films.RF sputtered is preferred to other deposition methods for large area and good reproducibility, too. Recently, several groups reported MoOxfilms by reactive sputtering from the Mo metal target and applying MoOxfilms as hole-selective contacts in SHJ cells.Boccardet al.observed a barrier for hole extraction due to the stoichiometric issues. It has been demonstrated that TMOs thin films with low average oxidation state present better transport properties,while moderate carrier selectivity.[37]Bivouret al.demonstrated the suitability of sputtered MoOxthin film as a carrier-selective contact for the n-type silicon(n-Si) wafer, and highlighted the importance of higher work function MoOxfilm to improve the hole-selectivity due to c-Si upward band bending at the n-Si/MoOxinterface.[38]So far,several groups have reported MoOx-based SHJ solar cells with efficiencies up to 22% or even the highest one of 23.5%.[39]In most cases the evaporation method is adopted to deposit MoOxfilms. Truth to be told that the evaporation is not a popular method in industrial production, at least not as good as the sputtering one.It is worth mentioning that sputtered MoOxfilms as HTL for c-Si SHJ solar cell has not been reported with efficiency over than 15%up to now.

    Fig.1. Schematic structures of SHJ solar cells with MoOx as buffer layer(a)and hole transport layer(b),respectively.

    In this experiment,we demonstrated magnetron sputtered MoOxfilms and applications in SHJ solar cells. The results show that the MoOxfilm as a buffer layer effectively improve the SHJ device efficiency to 19.1%. Meanwhile, we demonstrated that MoOxcan replace p-type a-Si:H emitting layer as a hole selective transport layer, resulting in a conversion efficiency of 17.5%,which is the highest one for the MoOxfilm as HTL by RF sputtering,to the best of our knowledge.

    2. Experimental details

    2.1. Film and device fabrication

    All the solar cells were fabricated on CZ n-type c-Si(5 cm×5 cm, 1-3 Ω, 180μm)substrates. A stack composed of a-Si:H(i)/a-Si:H(n or p) was deposited at the both sides by plasma enhanced chemical vapor deposition (PECVD) at 300°C on all substrates. The MoOxfilms were deposited on n-type c-Si and Eagle glass substrates by 13.56 MHz RF magnetron sputtering from a MoO3(>99.95%)target. MoOxsputtering process was done in a vacuum chamber(base pressure before deposition~2×10-4Pa), from a stoichiometric MoO3target at 160°C, with argon flow of 60 sccm,working pressure at 2×10-4Pa and RF power density with 1.75 W/cm2. In order to ensure the same experimental conditions, the target was pre-sputtered in argon for about 30 minutes before the formal deposition. Then,ITO films with thickness about 80-100 nm were prepared on passivated selective contacts by using thermal evaporated method. Finally,800 nm thick Ag+Al gridlines were deposited on the front surface by using thermal evaporated,and Al electrodes of the same thickness were deposited on the rear field. In our work,the performances of solar cells with MoOxfilm as buffer layer and HTL are analyzed, respectively. The schematic structures of fabricated solar cells are shown in Fig.1. During the test,a reticle was used to block the redundant part,and the illumination area was 1 cm×1 cm.

    2.2. Film and device characteristics

    Top-view of scanning electron microscopy (SEM) images were characterized by Jeol JSM-6700F scanning electron microscope. The quasi-steady state photoconductivity decay(QSSPC) method was used to measure the minority carrier lifetime of the samples by the WCT-120 minority carrier lifetime tester from Sinton Instruments company. The x-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) measurements of the MoOxfilms coated on indium tin oxides(ITO)were performed in an ESCALAB 250Xi. Finally,the solar cells were tested with a Wacom solar simulator(WXS-156S-L2,AM1.5GMM)under the room temperature of 25°C,standard spectrum AM1.5 and power density of 100 mW/cm2. The quantum efficiency of the devices was tested by the QEX10 quantum efficiency system from PV Measurements company.

    3. Results and discussion

    3.1. Surface morphology of MoOx film

    The MoOxfilms were prepared by magnetron sputtering process of specific target and deposited on a-Si:H(i)/c-Si with film thickness of 5 nm and 30 nm, respectively. Morphology of MoOxfilms is a crucial factor to affect the performance of as-fabricated devices. The SEM images of MoOxfilms reveal uniform and dense surface morphologies, where no obvious cracks can be observed for the sample,indicating the positive effect on the devices (Figs. 2(a) and 2(b)). Moreover, it can be seen that an ultrathin MoOxfilm can fully cover the pyramidally textured surface. Fortunately, no cracks appeared at the bottoms of the pyramids when the MoOxfilm thickness increased to 30 nm.

    Fig.2. SEM images of(a)5 nm MoOx and(b)30 nm MoOx films. All scale bars are 5μm.

    3.2. The passivation quality of sputtered MoOx layer

    As we all know,sputtered damage is inevitable in the thin film fabrication process. When the precursors migrate through the deposition chamber and reach the c-Si substrate,the sputtered particle groups or atoms from the target usually have enough energy to damage passivation layer. Therefore, this has prompted scientists to develop new techniques to circumvent the bombardment on passivation layer during sputtering process.Studies have shown that environmental annealing can effectively change the stoichiometric ratio of Mo/O ratio and reduce the defect density states in MoOxfilms.[24]For samples subjected to ion bombardment,annealing is an effective way to restore the passivation quality. In general,the minority carrier lifetime was used to characterize the passivation performance.Minority carrier lifetime as a function of minority carrier density of samples without MoOx,with as-sputtered 5 nm MoOxand with post-annealed 5 nm MoOxwere measured and the results are shown in Fig. 3. For the sample with only 5 nm a-Si:H(i) passivating layer, the minority carrier lifetime is as high as 3911 μs at minority carrier density of 1×1015cm-3and implied open circuit voltage(iVoc)of 725 mV.Then 5 nm MoOxwere subsequently sputtered, which dramatically decrease the minority carrier lifetime to 2119 μs and iVocof 710 mV. The following post-annealing with temperature of 200°C and process duration of 60 min was performed on the sample,the minority carrier lifetime was 3752μs and iVocof 721 mV, which is nearly as good as the original one. Since the thermal annealing can almost totally recover the passivation quality, the above results demonstrate the feasibility of application of sputtered MoOxinto SHJ solar cells to a large extent.

    Fig. 3. Minority carrier lifetime as a function of minority carrier density of samples without MoOx,with as-sputtered 5 nm MoOx and with post-annealed 5 nm MoOx.

    3.3. The characteristics of MoOx films

    Affected by the preparation method and deposition conditions,the as-deposited transition metal oxide film is usually non-stoichiometric. The chemical state,element composition and electronic properties determine the work function of the transition metal oxides. Furthermore,the energy level matching of each functional layer is an important prerequisite to get better device performance. XPS was used to analyze the as-sputtered and post-annealed MoOxfilms. The corresponding Mo 3d and O 1s XPS spectra are shown in Fig. 4, while the composition and binding energy positions of the oxidation state are listed in Table 1. As we all know that even if a fully stoichiometric MoO3target is adopted,it is still impossible to get fully stoichiometric MoO3films by the sputtering process.Usually, MoOxfilms were obtained withxin the range from two to three, which mean that both Mo6+and Mo5+oxidation states exist in the films. For the as-sputtered MoOxfilm in our experiments,the O/Mo ratio was calculated to be~2.83.The deconvolution of the spectra was calibrated by referencing to the well-known adventitious hydrocarbon C 1s peak at~284.8 eV. The spectra of Mo 3d core level energy was deconvoluted into two shoulders positioned at~232.6 eV and~231.1 eV, which correspond to Mo6+and Mo5+oxidation state with the Mo 3d 5/2 peak,respectively(Fig.4(a)). Similarly,another doublet splitting represents the Mo6+oxidation state with the Mo 3d 3/2 peak centered at~235.8 eV and the Mo5+oxidation state with the Mo 3d 3/2 at~234.5 eV. For the post-annealed MoOxfilm(Fig.4(b)),the annealing process results with increased oxygen concentration in the film, were also revealed in the O 1s XPS (Figs. 4(c) and 4(d)). The Mo 3d curve consists of two sub-curves centered at~232.9 eV and at~231.8 eV,which represent the Mo6+and Mo5+oxidation state with the Mo 3d 5/2,respectively. On the contrary,shoulders peaked at~236.0 eV and at~234.9 eV represent the Mo6+and Mo5+oxidation state with the Mo 3d 3/2, respectively. (ΔB.E.=E(Mo3d3/2)-E(Mo3d5/2)=3.15 eV).

    Fig.4. XPS analysis of as-sputtered and annealed MoOx films: (a)as-sputtered Mo 3d,(b)annealed Mo 3d,(c)as-sputtered O 1s,(d)annealed O 1s,respectively.

    Table 1. Peak positions of the XPS spectra of as-sputtered and annealed MoOx films.

    Fig.5. UPS analysis of(a)the as-sputtered MoOx film and(b)the post-annealed MoOx film.

    To further confirm the influence of the annealed atmosphere on the work function and oxygen vacancies of the MoOxfilms,UPS measurements were performed for the corresponding films,as shown in Fig.5. Similar to the XPS results,the UPS spectra showed an increase of the oxygen concentration in the film during annealing process. The as-sputtered MoOxsample demonstrated a work function of 4.88 eV,while the work function of the post-annealed MoOxincreased to a much higher value of 5.16 eV, which was also much higher than that of transparent conductive oxide(TCO)(4.7 eV).[26]From the above-mentioned XPS and UPS results, the postannealing process proved to be an effective method to control the oxygen vacancies and the existence of the Mo5+and/or Mo6+cation in the MoOxfilm,as well as to increase the work function.

    3.4. MoOx as a buffer layer between p-a-Si:H/ITO interface

    Fig.6. Comparison of conventional SHJ solar cells with or without sputtered 5 nm MoOx buffer layer with(a)J-V curves,(b)EQE spectra.

    In this section, the above-mentioned MoOxfilms were applied into SHJ solar cells to study their influence on device performance. In the first step, the MoOxfilm was inserted as a buffer layer between TCO and p-type a-Si:H emitting layer in a conventional SHJ cell. As can be seen from Fig.6(a),the conversion efficiency of the reference SHJ solar cell is 18%withVocof 715.9 mV,Jscof 38.33 mA/cm2andFFof 65.58%.On the contrary, the insertion of 5 nm MoOxbetween TCO and a-Si:H(p)can effectively increaseVocup to 719.6 mV andFFup to 70.24%, respectively. However, theJscslightly decreased to 37.75 mA/cm2,which can be contributed to the parasitic absorption of MoOxbecause of its relatively low optical transmittance.It can be seen from Fig.6(b)that although these two solar cells behave very similar to EQE spectral responses in the infrared band, the EQE spectral response in the visible region of the reference SHJ solar cell is obviously higher than that of the device with MoOxbuffer layer. Finally, the conversion efficiency was improved to 19.1%, which can be attributed to the decrease of contact barrier and improvement of energy level matching between TCO and a-Si:H(p) interface by inserting the MoOxbuffer layer.

    3.5. MoOx as the hole selective transport layer

    Fig. 7. Contact resistivity ρc measurements of MoOx-based contacts to ntype c-Si. (a) A series of I-V measurements of the samples with optimal thickness of MoOx films,and(b)the ρc with different thickness. Schematics of the contact resistivity test structure samples is included in inset.

    In the following step, the MoOxfilm as a hole selective transport layer was applied into a SHJ solar cell to replace the a-Si:H(p) emitting layer. To evaluate the hole-selective contact behavior of the i-a-Si:H/MoOx, the contact resistivityρcwas measured by using the method devised by Cox and Strack.A series of current-voltage(I-V)measurements of the samples with optimal thickness of MoOxfilms and theρcwith different thickness are presented in Fig.7,with the test structure in the inset. As can be seen in Fig.7(a),the sample with Ag directly deposited MoOxexhibited Schottky contacts for different sizes area pads. We determined the extracted contact resistivityρcfor the structure with n-Si/a-Si:H/MoOx/Ag to be 0.8 Ω·cm2.

    Fig.8. The influence of MoOx thickness on J-V output parameters(a)Voc,(b)Jsc,(c)FF and(d)Eff.

    The influence of MoOxthickness onJ-Vparameters of SHJ solar cells with MoOxas the hole selective layers are shown in Fig. 8. In fact, the increase of MoOxthickness has two opposite effects: the positive one is to improve the passivating quality and built-in electric field because of fully covered c-Si surface by thick enough MoOxlayer,while the negative one is to increase the series resistance and parasitic absorption. The increase of series resistance would hinder the carrier transport and then lead toVocandFFdecrease,while the increase of parasitic absorption will result inJscdecrease.The results in Fig. 8 indicate that with the increase of MoOxthickness theJscmonotonically decrease. On the contrary,theVocandFFdemonstrate peak values when the MoOxthickness is 17 nm, which can be contributed by balancing the abovementioned positive and negative effects. Eventually, a 17 nm MoOxfilm prepared by sputtering method is successfully used as the hole transport layer in SHJ solar cell, and the conversion efficiency reach the maximum value of 15.69%.Based on the above results,the MoOxfilms with sufficient thickness are able to obtain good passivating quality and build a high built-in electric field to achieve carrier selectivity. In order to further improve the passivation effect, we try to increase the thickness of the a-Si:H(i)passivation layer and reduce the deposition temperature of thermal evaporated ITO films. Although the thicker a-Si:H layer limiting the short-circuit current density, theVocandFFare significantly improved. Finally, a champion conversion efficiency of 17.5%withVocof 711 mV,Jscof 32.8 mA/cm2andFFof 74.9% is currently obtained,as shown in Fig. 9. As mentioned above, a relatively thick(17 nm) MoOxfilm results in a decrease ofJsc. This is consistent with the optical results,where 17-nm-thick MoOxfilm demonstrated the poor optical transmittance around 75%(the red curve)in the visible spectrum region,as shown in Fig.10.We infer that the lower transmittance may be related to the ion bombardment on MoOxfilms and deteriorate the film quality during the sputtering process. Further optimization will be carried out including pre-treatment, post-annealing in various gaseous environments,mesh electrode with bias voltage,etc. to control the ion damage on the films and interfaces and then ultimately improve the device performance. Moreover,oxygen vacancies in TMOs appear during film deposition or exposure to air.[28]According to the UPS test results,the factors affecting the work function of the oxygen concentration in the metal oxide should be taken into consideration. The main factors that reduce the device performance with the sputtered MoOxfilm require further intensive research.

    Fig.9. The champion SHJ solar cell with 17 nm MoOx hole transport layer: (a)J-V curve,(b)EQE spectra.

    Fig. 10. The transmittance of MoOx films prepared under various RF sputtering power.

    4. Conclusion

    The effects of MoOxas buffer layer and hole transport layer on the performance of SHJ solar cells were investigated.The results show that the high work function of MoOxlayer enable to significantly improve the performance of solar cells.By inserting a 5 nm MoOxbuffer layer between a-Si:H(p)/ITO interface result in an efficiency of 19.1%withVocof 719.6 mV,Jscof 37.75 mA/cm2, andFFof 70.24%. In addition, the best conversion efficiency of 17.5% andFFof 74.9% were obtained by using 17 nm MoOxfilm as the hole selective layer to replace the p-type a-Si:H emitting layer. These results in this manuscript confirm the feasibility of a sputtering process of MoOxfilms and their application in SHJ solar cells. Further optimization of magnetron sputtered MoOxis urgently deserved to improve SHJ solar cell performance.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 62074084), the National Key Research and Development Program of China (Grant No.2018YFB1500402),and Key Research and Development Program of Hebei Province,China(Grant No.20314303D).

    猜你喜歡
    侯國祥林
    一官半職
    鴨綠江(2024年10期)2024-02-28 00:00:00
    Hamiltonian system for the inhomogeneous plane elasticity of dodecagonal quasicrystal plates and its analytical solutions
    賀祥林兄展覽“云”
    中華詩詞(2023年5期)2023-02-06 08:48:18
    西漢沛郡所轄侯國地理探賾
    “四層”:引導(dǎo)數(shù)學(xué)高考的一面旗
    逢山開路、遇水搭橋
    數(shù)學(xué)高考路上的導(dǎo)航燈
    《東漢政區(qū)地理》縣級政區(qū)補考
    松花江上
    示兒書—趙一曼就義前留給兒子的信
    男人爽女人下面视频在线观看| 2022亚洲国产成人精品| 日韩熟女老妇一区二区性免费视频| 看十八女毛片水多多多| 日本-黄色视频高清免费观看| 国产永久视频网站| freevideosex欧美| 91午夜精品亚洲一区二区三区| 午夜av观看不卡| 精品国产一区二区久久| 3wmmmm亚洲av在线观看| 在线观看三级黄色| 久久韩国三级中文字幕| 另类精品久久| 人妻一区二区av| 我的老师免费观看完整版| 亚洲伊人久久精品综合| 男男h啪啪无遮挡| 男人狂女人下面高潮的视频| 不卡视频在线观看欧美| 欧美日韩在线观看h| 国产高清国产精品国产三级| 最近的中文字幕免费完整| 中文字幕久久专区| 大话2 男鬼变身卡| 国产亚洲午夜精品一区二区久久| 午夜福利影视在线免费观看| 国产一区有黄有色的免费视频| 色94色欧美一区二区| 精品国产乱码久久久久久小说| 嫩草影院新地址| 日本黄色片子视频| 日韩,欧美,国产一区二区三区| 自拍偷自拍亚洲精品老妇| 亚洲欧洲精品一区二区精品久久久 | 国产在线免费精品| 国产欧美日韩综合在线一区二区 | 日韩一区二区视频免费看| 大话2 男鬼变身卡| 丰满乱子伦码专区| 日本黄色片子视频| 欧美日本中文国产一区发布| 精品国产乱码久久久久久小说| 久久精品久久精品一区二区三区| 老熟女久久久| 免费观看在线日韩| 一级a做视频免费观看| 在现免费观看毛片| 日韩欧美一区视频在线观看 | 性色av一级| 国产毛片在线视频| 精品国产乱码久久久久久小说| 亚洲欧美日韩卡通动漫| 中文字幕免费在线视频6| 国产一区二区三区综合在线观看 | 亚洲一区二区三区欧美精品| 欧美性感艳星| 免费看日本二区| 亚洲在久久综合| 欧美日韩视频精品一区| 一级a做视频免费观看| 日本av手机在线免费观看| 亚洲国产最新在线播放| 国产亚洲精品久久久com| 水蜜桃什么品种好| 亚洲美女搞黄在线观看| 国产伦精品一区二区三区四那| 亚洲欧美日韩东京热| 夜夜看夜夜爽夜夜摸| 这个男人来自地球电影免费观看 | 在线天堂最新版资源| av网站免费在线观看视频| 精品国产乱码久久久久久小说| 97在线视频观看| 亚洲国产最新在线播放| 热re99久久国产66热| 99九九在线精品视频 | 亚洲成色77777| 中文字幕精品免费在线观看视频 | 熟妇人妻不卡中文字幕| 国产欧美日韩精品一区二区| 国产在线免费精品| 久久99蜜桃精品久久| 2018国产大陆天天弄谢| 嫩草影院新地址| 精品卡一卡二卡四卡免费| 国产成人aa在线观看| 99热这里只有精品一区| 国产淫语在线视频| 久久久久国产网址| 永久免费av网站大全| 又大又黄又爽视频免费| 国产亚洲最大av| 亚洲综合精品二区| 另类精品久久| 美女中出高潮动态图| 女人久久www免费人成看片| 男人舔奶头视频| 亚洲av男天堂| a级毛色黄片| 一本大道久久a久久精品| 极品少妇高潮喷水抽搐| 大话2 男鬼变身卡| 国产精品女同一区二区软件| av黄色大香蕉| 国产免费福利视频在线观看| 中国国产av一级| 99热6这里只有精品| 亚洲欧美成人精品一区二区| 日本午夜av视频| 免费观看无遮挡的男女| 亚洲国产精品国产精品| 大话2 男鬼变身卡| 青春草亚洲视频在线观看| 欧美丝袜亚洲另类| 亚洲电影在线观看av| 中文精品一卡2卡3卡4更新| 女性被躁到高潮视频| 久久久精品免费免费高清| 我的老师免费观看完整版| 免费久久久久久久精品成人欧美视频 | 麻豆成人av视频| 精品久久久久久久久亚洲| 国产成人a∨麻豆精品| 精品亚洲成a人片在线观看| 亚洲欧美精品自产自拍| 久久综合国产亚洲精品| 老女人水多毛片| 国产免费福利视频在线观看| 欧美性感艳星| 亚洲精品国产av蜜桃| 黑丝袜美女国产一区| 成人国产av品久久久| 国产在线一区二区三区精| 你懂的网址亚洲精品在线观看| 欧美精品国产亚洲| 婷婷色av中文字幕| 日本-黄色视频高清免费观看| 色哟哟·www| 国产日韩欧美视频二区| 日韩,欧美,国产一区二区三区| 日韩制服骚丝袜av| 一级黄片播放器| 欧美日本中文国产一区发布| 各种免费的搞黄视频| 狂野欧美激情性bbbbbb| 亚洲,欧美,日韩| 日本wwww免费看| 久久国产亚洲av麻豆专区| 人妻人人澡人人爽人人| 精品一区二区免费观看| 一边亲一边摸免费视频| 国产成人a∨麻豆精品| 桃花免费在线播放| 高清午夜精品一区二区三区| 婷婷色综合大香蕉| 日韩欧美一区视频在线观看 | 亚洲天堂av无毛| 自拍欧美九色日韩亚洲蝌蚪91 | 中文资源天堂在线| 国产永久视频网站| 亚洲激情五月婷婷啪啪| 国产精品无大码| 91aial.com中文字幕在线观看| 国产欧美日韩综合在线一区二区 | 亚洲欧美清纯卡通| 日本色播在线视频| 亚洲精品日韩av片在线观看| 18禁裸乳无遮挡动漫免费视频| 久久午夜综合久久蜜桃| 中文乱码字字幕精品一区二区三区| 自线自在国产av| 在线播放无遮挡| 日韩一本色道免费dvd| 九九久久精品国产亚洲av麻豆| 青青草视频在线视频观看| av女优亚洲男人天堂| 免费黄频网站在线观看国产| 久久久国产精品麻豆| 免费观看a级毛片全部| 亚洲欧洲精品一区二区精品久久久 | 91久久精品电影网| 国产黄片视频在线免费观看| 美女中出高潮动态图| 中文欧美无线码| 插阴视频在线观看视频| 亚洲国产日韩一区二区| 男女国产视频网站| 免费黄频网站在线观看国产| 3wmmmm亚洲av在线观看| 国产中年淑女户外野战色| 麻豆成人av视频| 色吧在线观看| 亚洲精品国产av成人精品| 51国产日韩欧美| av免费观看日本| 十分钟在线观看高清视频www | 91久久精品国产一区二区成人| 国产视频内射| 欧美变态另类bdsm刘玥| 天天躁夜夜躁狠狠久久av| 日韩av免费高清视频| 精品卡一卡二卡四卡免费| 久久久久久人妻| 欧美激情极品国产一区二区三区 | 亚洲精品乱码久久久v下载方式| 女性生殖器流出的白浆| 精品久久久久久久久亚洲| 久久青草综合色| 中文字幕免费在线视频6| 成人免费观看视频高清| 精品久久久久久电影网| 黄色毛片三级朝国网站 | 日本av手机在线免费观看| 欧美精品高潮呻吟av久久| 亚洲精品,欧美精品| 王馨瑶露胸无遮挡在线观看| 少妇的逼水好多| 少妇人妻久久综合中文| 日韩一区二区三区影片| 欧美精品一区二区大全| 久久午夜福利片| 欧美高清成人免费视频www| 国产精品秋霞免费鲁丝片| 国产 精品1| 麻豆成人av视频| 欧美bdsm另类| 亚洲成人手机| 美女视频免费永久观看网站| 成人午夜精彩视频在线观看| 三级国产精品欧美在线观看| 爱豆传媒免费全集在线观看| 中文字幕精品免费在线观看视频 | 在线观看免费高清a一片| 在线观看三级黄色| 午夜91福利影院| 两个人免费观看高清视频 | 男人和女人高潮做爰伦理| 免费看不卡的av| 日韩精品有码人妻一区| 亚洲成人手机| 黄色欧美视频在线观看| 永久免费av网站大全| 国产一区亚洲一区在线观看| 精品少妇内射三级| 亚洲国产精品国产精品| 美女大奶头黄色视频| 国产亚洲最大av| 日韩亚洲欧美综合| 久久毛片免费看一区二区三区| 中文欧美无线码| 亚洲婷婷狠狠爱综合网| 精品人妻一区二区三区麻豆| 久久久久久久久久人人人人人人| 免费高清在线观看视频在线观看| 久久影院123| 热re99久久精品国产66热6| 久久精品国产亚洲av涩爱| 免费播放大片免费观看视频在线观看| 性色avwww在线观看| 丁香六月天网| 这个男人来自地球电影免费观看 | 哪个播放器可以免费观看大片| 91在线精品国自产拍蜜月| 免费黄网站久久成人精品| 亚洲成人av在线免费| 一级片'在线观看视频| 最近的中文字幕免费完整| 高清视频免费观看一区二区| 精品久久久久久久久亚洲| 一区二区三区免费毛片| 国产色爽女视频免费观看| 中文天堂在线官网| 美女xxoo啪啪120秒动态图| 婷婷色av中文字幕| 国产精品不卡视频一区二区| 精品亚洲成国产av| 欧美三级亚洲精品| a级毛片免费高清观看在线播放| 欧美xxxx性猛交bbbb| 免费看av在线观看网站| 另类亚洲欧美激情| 欧美日本中文国产一区发布| 日本欧美视频一区| 男女免费视频国产| 国产男人的电影天堂91| 曰老女人黄片| 伦精品一区二区三区| 免费人妻精品一区二区三区视频| 精品一区在线观看国产| 亚洲精品中文字幕在线视频 | 天天躁夜夜躁狠狠久久av| 一级毛片久久久久久久久女| 亚洲美女搞黄在线观看| 国产av码专区亚洲av| 多毛熟女@视频| 成人二区视频| 国产黄片美女视频| 五月玫瑰六月丁香| 一级黄片播放器| 性高湖久久久久久久久免费观看| 国产欧美另类精品又又久久亚洲欧美| 最近的中文字幕免费完整| 成年人免费黄色播放视频 | 色婷婷久久久亚洲欧美| 97超碰精品成人国产| 亚洲怡红院男人天堂| 青春草国产在线视频| 国产高清不卡午夜福利| 中文精品一卡2卡3卡4更新| 国产深夜福利视频在线观看| 精品国产乱码久久久久久小说| 丰满饥渴人妻一区二区三| 亚洲精品aⅴ在线观看| 一本久久精品| 黄色日韩在线| 免费观看无遮挡的男女| 大香蕉久久网| 亚洲色图综合在线观看| 日日摸夜夜添夜夜添av毛片| 日韩精品有码人妻一区| 午夜免费鲁丝| 99精国产麻豆久久婷婷| 国产一区二区在线观看av| videossex国产| 国产免费又黄又爽又色| 日韩欧美 国产精品| 欧美日韩视频高清一区二区三区二| 国产欧美日韩一区二区三区在线 | 亚洲性久久影院| 国产一区二区在线观看av| 亚洲av免费高清在线观看| 日韩在线高清观看一区二区三区| 久久久久精品久久久久真实原创| 亚洲av免费高清在线观看| 伦精品一区二区三区| 久久久久久久久大av| 狂野欧美白嫩少妇大欣赏| 亚洲欧美日韩东京热| 免费不卡的大黄色大毛片视频在线观看| 国产精品国产三级国产专区5o| av天堂中文字幕网| 王馨瑶露胸无遮挡在线观看| 99精国产麻豆久久婷婷| 一本大道久久a久久精品| 欧美区成人在线视频| 亚洲成人手机| 人体艺术视频欧美日本| 国产亚洲精品久久久com| 99视频精品全部免费 在线| 久久韩国三级中文字幕| 欧美最新免费一区二区三区| 国模一区二区三区四区视频| 全区人妻精品视频| av不卡在线播放| 最近中文字幕2019免费版| 亚洲高清免费不卡视频| 大陆偷拍与自拍| 王馨瑶露胸无遮挡在线观看| 大香蕉久久网| 国产免费一区二区三区四区乱码| 99精国产麻豆久久婷婷| 久久国内精品自在自线图片| 亚洲欧美精品自产自拍| av女优亚洲男人天堂| 高清黄色对白视频在线免费看 | av在线观看视频网站免费| 久久人人爽人人片av| 国内少妇人妻偷人精品xxx网站| 五月天丁香电影| 日本黄大片高清| 国产精品嫩草影院av在线观看| 欧美三级亚洲精品| 国产片特级美女逼逼视频| 国产精品一区二区性色av| 99久久精品国产国产毛片| 日本免费在线观看一区| 国产老妇伦熟女老妇高清| 大话2 男鬼变身卡| 精品人妻熟女av久视频| 最新的欧美精品一区二区| 99热全是精品| 亚洲色图 男人天堂 中文字幕| 妹子高潮喷水视频| 亚洲人成电影免费在线| 亚洲av成人不卡在线观看播放网 | 男女无遮挡免费网站观看| av网站在线播放免费| 青春草视频在线免费观看| 欧美另类亚洲清纯唯美| 他把我摸到了高潮在线观看 | 日韩中文字幕欧美一区二区| 欧美日韩视频精品一区| 亚洲全国av大片| 日本一区二区免费在线视频| av天堂在线播放| 免费不卡黄色视频| 欧美精品高潮呻吟av久久| 亚洲国产欧美在线一区| 久热这里只有精品99| 伦理电影免费视频| www.999成人在线观看| 啦啦啦中文免费视频观看日本| 国产一区二区激情短视频 | 美女大奶头黄色视频| 久久久久国产精品人妻一区二区| 国产精品成人在线| 亚洲专区中文字幕在线| 操美女的视频在线观看| 久久国产精品男人的天堂亚洲| 亚洲第一欧美日韩一区二区三区 | 高清视频免费观看一区二区| 国产1区2区3区精品| 老司机影院毛片| 中文字幕精品免费在线观看视频| 国产精品久久久久久人妻精品电影 | 老司机影院成人| cao死你这个sao货| 一区二区三区激情视频| 亚洲一卡2卡3卡4卡5卡精品中文| 美女视频免费永久观看网站| 午夜福利在线观看吧| 一边摸一边抽搐一进一出视频| av有码第一页| 欧美日韩亚洲国产一区二区在线观看 | 亚洲欧美日韩另类电影网站| 黑丝袜美女国产一区| 免费在线观看日本一区| 国产欧美日韩一区二区三 | 欧美国产精品va在线观看不卡| 女人久久www免费人成看片| av一本久久久久| 亚洲国产看品久久| 亚洲色图 男人天堂 中文字幕| 日日摸夜夜添夜夜添小说| 国产主播在线观看一区二区| 18禁黄网站禁片午夜丰满| 国产日韩欧美视频二区| 男女之事视频高清在线观看| 国精品久久久久久国模美| 国产真人三级小视频在线观看| 久久香蕉激情| 97精品久久久久久久久久精品| 91av网站免费观看| 欧美精品高潮呻吟av久久| 久久久久网色| 91精品三级在线观看| 久久久精品94久久精品| 新久久久久国产一级毛片| 亚洲七黄色美女视频| e午夜精品久久久久久久| 777久久人妻少妇嫩草av网站| 午夜福利,免费看| 国产麻豆69| 99久久综合免费| 1024香蕉在线观看| 在线观看免费午夜福利视频| 欧美 亚洲 国产 日韩一| kizo精华| 操出白浆在线播放| 一区二区三区激情视频| 亚洲黑人精品在线| 欧美性长视频在线观看| 亚洲人成77777在线视频| 久久午夜综合久久蜜桃| 亚洲 国产 在线| 久久九九热精品免费| 国产精品欧美亚洲77777| 欧美av亚洲av综合av国产av| 男人操女人黄网站| 中文字幕制服av| 亚洲精品中文字幕一二三四区 | 少妇的丰满在线观看| 精品亚洲乱码少妇综合久久| 天天操日日干夜夜撸| 国产免费一区二区三区四区乱码| 国产欧美日韩精品亚洲av| 欧美人与性动交α欧美精品济南到| av电影中文网址| 久久精品人人爽人人爽视色| 久久久久久久精品精品| 久久亚洲国产成人精品v| 国产亚洲午夜精品一区二区久久| 午夜福利视频在线观看免费| 日韩制服骚丝袜av| 久久久久久久大尺度免费视频| 中文欧美无线码| 高清欧美精品videossex| 久久久久久人人人人人| 在线观看免费日韩欧美大片| 日韩 亚洲 欧美在线| 亚洲欧美精品自产自拍| 王馨瑶露胸无遮挡在线观看| 午夜福利,免费看| √禁漫天堂资源中文www| 欧美精品高潮呻吟av久久| 两人在一起打扑克的视频| 成人国产一区最新在线观看| 亚洲人成电影免费在线| 飞空精品影院首页| 日本av免费视频播放| 亚洲精品成人av观看孕妇| 日韩人妻精品一区2区三区| 久久久久网色| 最近最新中文字幕大全免费视频| 高清欧美精品videossex| 肉色欧美久久久久久久蜜桃| 国产成人精品久久二区二区免费| 国产在线免费精品| av在线播放精品| 国产又色又爽无遮挡免| 爱豆传媒免费全集在线观看| 国产亚洲av片在线观看秒播厂| 三级毛片av免费| 国产欧美日韩一区二区三区在线| 欧美日韩福利视频一区二区| 久久久久久人人人人人| 欧美日韩一级在线毛片| 蜜桃国产av成人99| 欧美精品一区二区免费开放| 99国产精品一区二区三区| 亚洲九九香蕉| 中文字幕最新亚洲高清| 国产欧美日韩一区二区三 | 国产不卡av网站在线观看| 热99久久久久精品小说推荐| 国产熟女午夜一区二区三区| 午夜激情av网站| 国产福利在线免费观看视频| 高清欧美精品videossex| 国产精品一区二区在线观看99| 精品国产乱子伦一区二区三区 | 69精品国产乱码久久久| 欧美精品高潮呻吟av久久| 我的亚洲天堂| 久久国产精品大桥未久av| 日韩 亚洲 欧美在线| 视频区图区小说| 午夜免费观看性视频| 美女福利国产在线| 视频在线观看一区二区三区| 精品人妻一区二区三区麻豆| 亚洲av电影在线观看一区二区三区| 天天添夜夜摸| 一级黄色大片毛片| 国产一区二区三区av在线| 亚洲精品国产av蜜桃| 亚洲第一欧美日韩一区二区三区 | 国产淫语在线视频| 我的亚洲天堂| 大型av网站在线播放| 每晚都被弄得嗷嗷叫到高潮| 免费久久久久久久精品成人欧美视频| 国产在线免费精品| 国产精品免费视频内射| 亚洲伊人久久精品综合| 亚洲,欧美精品.| 午夜福利影视在线免费观看| 日本av免费视频播放| 欧美在线黄色| 在线观看免费高清a一片| 1024视频免费在线观看| videos熟女内射| 黄色a级毛片大全视频| 亚洲av日韩在线播放| 午夜精品国产一区二区电影| 一级毛片电影观看| 丝袜美腿诱惑在线| 久热爱精品视频在线9| 99热网站在线观看| 99精品欧美一区二区三区四区| 超碰成人久久| 欧美日韩福利视频一区二区| av视频免费观看在线观看| 欧美乱码精品一区二区三区| 成年人黄色毛片网站| 久久狼人影院| 国产成人精品久久二区二区免费| 18在线观看网站| 亚洲欧美色中文字幕在线| 国精品久久久久久国模美| 一级,二级,三级黄色视频| 国产亚洲精品第一综合不卡| 高潮久久久久久久久久久不卡| 国产成人精品无人区| 成年av动漫网址| 国产人伦9x9x在线观看| 免费女性裸体啪啪无遮挡网站| 12—13女人毛片做爰片一| 免费久久久久久久精品成人欧美视频| 亚洲av电影在线进入| 热re99久久精品国产66热6| 一级片'在线观看视频| 人人妻人人澡人人爽人人夜夜| 国产日韩欧美视频二区| 777米奇影视久久| 日韩熟女老妇一区二区性免费视频| 99热全是精品| 国产男人的电影天堂91| 国产免费现黄频在线看| 激情视频va一区二区三区| 2018国产大陆天天弄谢| 国产男女超爽视频在线观看| 欧美日韩黄片免| 夫妻午夜视频| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久久大尺度免费视频| 伦理电影免费视频| 性色av乱码一区二区三区2| 中文字幕制服av| 中国国产av一级| 男女下面插进去视频免费观看| 国产精品影院久久| 精品少妇久久久久久888优播| 日本a在线网址|