• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resistive switching behavior and mechanism of HfOx films with large on/off ratio by structure design

    2024-01-25 07:14:36XianglinHuang黃香林YingWang王英HuixiangHuang黃慧香LiDuan段理andTingtingGuo郭婷婷
    Chinese Physics B 2024年1期
    關(guān)鍵詞:王英

    Xianglin Huang(黃香林), Ying Wang(王英), Huixiang Huang(黃慧香), Li Duan(段理), and Tingting Guo(郭婷婷)

    School of Materials Science and Engineering,Chang’an University,Xi’an 710061,China

    Keywords: HfOx film,resistive switching,structure design,interface modulation

    1.Introduction

    For decades,great efforts have been devoted to seeking a novel non-volatile memory as the alternative to flash memory since its device size can not be reduced continuously to meet the requirements of portable devices with high storage density,considering the issue of increased leakage current.Recently,much attention has been paid to resistive random access memory (RRAM) as one of the most competitive candidates owing to its merits such as simple device structure, high storage density, and good compatibility with conventional complementary metal-oxide-semiconductor (CMOS) process, in which the resistances can be changed by an external electric field or magnetic field.[1–3]Through the study of a series of switching characteristics, several kinds of switching mechanism for RRAM have been proposed, such as the conductive filament model, space charge limited current effect, Schottky emission,and Poole–Franck effect.[4,5]Although the origin of resistive switching of RRAM device is still under investigation and debate, the significant role of the migration of ions and the redox reactions,which result in formation and rupture of conductive paths in switching layer, on the state of resistances has been widely accepted.[6,7]For binary oxide-based RRAM, migration of oxygen ions leaves an oxygen-deficient region in the film,which is mainly responsible for the resistive switching.[8–10]Research indicates that HfOxmaterials have shown some advantages as a promising switching layer for future nonvolatile memory due to their large band gap with high dielectric constant, easily controlled composition, nice scalability, and good switching performance.[11,12]However,similarly to most switching materials, HfOx-based RRAMs face several challenges in their applications,including random switching behaviors and an ambiguous switching mechanism.A clear understanding of microscopic physical mechanisms is the key point for improving the switching performance.Recently, employing bilayer instead of single-layered switching materials has attracted increasing attention owing to the low power consumption,more stable and controllable resistive switching.[13,14]Methods such as designing bilayer structures or inserting a buffer layer as an oxygen reservoir have been attempted to modulate the defects(mainly oxygen vacancies)in the films or at the interface,[15,16]which would be beneficial to suppressing the random formation of conductive path and to improving the device reliability owing to the modulation of defects.Nevertheless,the switching mechanism and effective method for improving the uniformity and reliability of switching behaviors have been under exploration.

    In this work, different device structures of HfOx/Ti and HfOx/TiOxare designed to improve switching performance and understand switching mechanisms of hafniumbased RRAM.The chemical composition and oxygen vacancies of HfOx-based samples are analyzed by x-ray photoelectron spectroscopy (XPS) technology.The switching characteristics in terms of memory window,distribution of switching parameters, and reliable properties are comparatively investigated.The switching mechanisms are illustrated based on the formation and rupture of oxygen vacancy filaments with the variation of barrier height.

    2.Experimental details

    In our experiment,the n+Si wafers were used as the bottom electrode and soaked in HF solution firstly to remove the oxides at the surface before cleaning, then cleaned by alcohol, acetone, and deionized water sequentially.Then HfOxfilms were deposited on Si substrates by radio-frequency magnetron sputtering using an Hf metal target as the source of Hf atoms with O2as the reactive gas.During the deposition,the Ar/O2was 12/3, the working pressure was 0.3 Pa, and the sputtering power was 70 W.Two different bilayer structures were designed for HfOx-based memory devices.After the fabrication of HfOxfilms, a thin Ti metal layer or TiOxlayer as an oxygen reservoir was deposited on HfOxfilms to form HfOx/Ti and HfOx/TiOx(15 nm/5 nm)structures.Ti layer and TiOxlayer were prepared with the gas flux for Ar of 15 SCCM and Ar/O2of 15/3, respectively.In addition, singlelayer HfOxfilms(20 nm)were also fabricated for comparison.All prepared films were post-annealed at 200°C for 10 min in a nitrogen atmosphere.Finally, the top electrodes of Cu were evaporated with a metal mask to pattern the size to form an MIM structure for measurement.The chemical composition of the films was characterized by XPS technology.The electrical measurements were carried out by an Agilent 4155C semiconductor parameter analyzer using a two-probe method.The voltage was applied on Cu electrode with the Si bottom electrode always grounded.

    3.Results and discussion

    Figure 1 shows the resistive switching characteristics of HfOx, HfOx/Ti, and HfOx/TiOxsamples.The initial states of the fresh samples are in a high resistance state (HRS) and an electroforming process is required to initiate the switching behavior, as presented in Fig.1(a).Compared with the HfOxsample, the forming voltage is reduced by designing a bilayer structure, which may be due to the modulation of defects at the interface.After the forming process,the reversible bipolar switching behavior can be realized by applying the voltage in a counterclockwise direction, as indicated by arrows in Fig.1(b).The currents increase abruptly at the set voltage, switching the sample from HRS to a low resistance state(LRS).During the reset process, the resistance switches back to HRS.The switching behaviors of HfOx,HfOx/Ti,and HfOx/TiOxsamples are displayed in Figs.1(b) and 1(d), respectively,and the corresponding cross-sectional TEM images are shown in the insets.The enlarged memory window and much better repeatability ofI–Vcurves can be observed for the HfOx/Ti and HfOx/TiOxsamples compared to the HfOxsample.It is worth noting that the lowest current for all samples is observed at non-zero voltage but the negative voltage.As seen from Fig.1(b),the minimum current in the HRS of the HfOxsample is not at 0 V,behaving an open circuit voltage of 0.06 V,which is likely due to the fixed charge or accumulated electrons at the surface of the Si substrate.In addition, the open circuit voltage increases for the bilayer structure,as seen in Figs.1(c) and 1(d).This phenomenon may be due to the displacement of current and related to the bulk heterojunction composite and the capacitance of the sandwich structure,[17,18]and further investigations are needed.

    To analyze the chemical bonding states of the prepared samples, the XPS measurements were carried out.All peaks were calibrated by Au 4f peak(83.8 eV).Figure 2(a)shows the XPS spectrum of Hf 4f in the bulk of HfOxfilm,which can be fitted as a double peak of Hf7/2and Hf5/2peaks,corresponding to Hf–O bond.[19]In Fig.2(b),the O 1s peak in the bulk of HfOxfilm can be deconvoluted into two peaks,lattice oxygen with lower binding energy(530.58 eV)and non-lattice oxygen with slightly higher energy(532.28 eV).[20]The concentration of oxygen vacancies is qualitatively estimated by non-lattice oxygen.[21,22]The XPS depth profile of the HfOx/Ti structure is performed to analyze the O 1s peak near the interface of the HfOx/Ti structure, as presented in Fig.2(c).In Fig.2(c),the fitted result of the O 1s peak is similar to that in Fig.2(b).The calculated result of oxygen vacancies near the interface of the HfOx/Ti structure(8.18%)is larger than that in the bulk of HfOxfilm(6.72%), which can be attributed to the absorption of oxygen atoms from the HfOxlayer to Ti layer.The inset of Fig.2(d)shows the XPS spectrum of Ti 2p in TiOxfilm.The Ti 2p spectrum can be fitted as a double peak of Ti 2p3/2and Ti 2p1/2with the binding energies of 458.25 eV and 464.25 eV,in agreement with the reported Ti4+/Ti3+.[23,24]In addition,the oxygen vacancies in TiOxfilm (10.27%) are larger than those in HfOxfilm, as shown in Fig.2(d).It can be inferred that the oxygen vacancies near the interface of the HfOx/TiOxstructure can be modulated as well.

    Figure 3(a)shows the distributions of switching voltages for HfOx,HfOx/Ti,and HfOx/TiOxsamples.Compared to the HfOxsample, better distributions ofVsetandVresetcan be obtained for HfOx/Ti and HfOx/TiOxsamples.However,no obvious reduced switching voltages are observed for the bilayer structure, except for the reset voltage of the HfOx/Ti sample,which may be due to the formation of an interfacial layer although more oxygen vacancies are created near the interface.Since defects can be produced by a higher operating current which is the primary source for the device breakdown,[14]the variations of reset currents are also studied, as displayed in the inset of Fig.3(a).As can be seen, decreasing reset current can be observed for bilayer structure samples,particularly for the HfOx/Ti sample,which is beneficial to the decrease of power consumption.Moreover, the HfOx/Ti sample exhibits a much-scattered distribution of reset current.The distributions of resistances in LRS and HRS for all samples are presented in Fig.3(b).Excellent uniformity of resistances can be observed for HfOx/Ti and HfOx/TiOxsamples compared to the HfOxsample.Furthermore, the memory window also improves greatly (>100) by designing the bilayer structure,which mainly results from the increasing resistance in HRS and may be related to the formation of an interfacial layer in the bilayer structure.Compared to the similar research,[25,26]a larger memory window and smaller switching voltages can be observed,indicating a promising application in the future.

    Fig.1.(a) The forming process of the prepared samples and the typical I–V curves of (b) HfOx, (c) HfOx/Ti, and (d) HfOx/TiOx samples.The insets in(b),(c),and(d)show the cross-sectional TEM images of HfOx,HfOx/Ti,and HfOx/TiOx samples,respectively.

    Fig.2.The XPS spectrum of(a)Hf 4f and(b)O 1s in HfOx film,(c)O 1s near the interface of the HfOx/Ti structure,and(d)O 1s in TiOx film.The inset of(c)shows the XPS depth profile of the HfOx/Ti structure.The inset of(d)shows the XPS spectrum of Ti 2p in TiOx film.

    Fig.3.The distributions of switching parameters of HfOx,HfOx/Ti,and HfOx/TiOx samples: (a)switching voltages,(b)resistances.The inset of(a)shows the corresponding distribution of reset current.

    Fig.4.The fitted I–V curves of HfOx,HfOx/Ti,and HfOx/TiOx samples.

    To explore the current conduction mechanism of the prepared samples,the correspondingI–Vcurves are replotted and fitted in a double-log scale,as displayed in Figs.4(a)–4(d).For the LRS of the HfOxsample,the current and voltage can be fitted as a straight line with a slope of about 1 in a low-voltage region, as shown in Fig.4(a), exhibiting ohmic conduction behavior.In the high-voltage region, the current is proportional to the square of the voltage,following Child’s law.For HRS, the conductive mechanism is slightly complicated and includes three regions: slope~1 at low voltage, slope~2 at higher voltage,and the current increased abruptly with the increased voltage(slope>3)due to the formation of conducting paths in the switching layer.Such carrier conduction behaviors can be well understood by the SCLC effect,[4,27,28]and are attributed to the trapping and de-trapping process of defects in the film,which are most likely associated with the oxygen vacancies.Similar fitted results can be observed for HfOx/Ti and the HRS of HfOx/TiOxsamples,as presented in Figs.4(b)and 4(c).However,it is found that the region of abruptly increasing current at high voltage can not be observed for the HRS of the HfOx/Ti sample.Other possible conduction mechanisms have been attempted, and the curve of the HfOx/Ti sample in HRS can be well fitted by Schottky emission, which was an interface-related mechanism, as indicated in Fig.4(d).The higher barrier height may lead to a larger memory window.Moreover,it is observed that the results of the fittedI–Vcurve in LRS for the HfOx/TiOxsamples are also different and the slope is much larger (in Fig.4(c)), which may be ascribed to the fact that partial traps are unfilled and the current density of unfilled ones varies more steeply with the voltage,[29]and the further investigation is required.Overall, the formation and rupture of oxygen vacancy filaments are responsible for the switching behavior of HfOx-based memory.

    To further investigate the reliability of the prepared samples,the endurance and retention properties are demonstrated,as presented in Figs.5(a) and 5(b).In Fig.5(a), large fluctuations are observed for the HfOxsample during switching cycles,which may be related to the random formation of oxygen vacancies during fabrication, and the least memory window is only 10.Better cycling characteristics can be observed for HfOx/Ti and HfOx/TiOxsamples,in which the resistances in two states can steadily switch over 120 cycles with the on/off ratio larger than 104,mainly attributed to the higher off states due to the higher barrier heights suppressing the electron leaps.Results show some performance advantages of our samples especially in on/off ratio by comparing with other similar bilayer-structured devices.[30–33]Good retention properties can be observed for all prepared samples, as displayed in Fig.5(b).The currents in LRS and HRS can maintain for 104s without obvious degeneration,showing the non-volatile property of the samples.

    Fig.5.(a)Endurance and(b)retention properties of HfOx,HfOx/Ti,and HfOx/TiOx samples.The read voltage was at 1 V.

    Fig.6.The physical model of(a)HfOx,(b)HfOx/Ti,and(c)HfOx/TiOx samples.

    Based on the above analysis, the physical models of the switching behaviors of HfOx, HfOx/Ti, and HfOx/TiOxsamples are proposed.For HfOxsamples, the movement of oxygen ions towards the anode under positive voltage leads to the creation of oxygen vacancies which form the oxygen vacancy chains connecting the top and bottom electrodes,assisting the transition of electrons and turning the samples into LRS,as indicated in Fig.6(a).By applying a negative voltage,the oxygen vacancy chains recovered with oxygen ions,rupturing the conductive paths,and switching the sample back to HRS.Owing to the random formation of oxygen vacancies in the film,the formation and rupture of filaments during each cycle are stochastic, resulting in the poor uniformity of switching parameters.

    For the bilayer structure of HfOx/Ti and HfOx/TiOxsamples, due to the interface modulation, the resistive switching characteristics are mainly dominated by a redox reaction or Joule heat near the interface, and the schematic diagrams are presented in Figs.6(b)and 6(c).Ti and TiOxlayers can act as an oxygen-reservoir layer.During the set process,the oxygen ions move towards the anode under the driving force of a positive electrical field and left oxygen vacancies in the film, especially creating more oxygen vacancies near the interface of the HfOx/Ti sample,as shown in Fig.6(b).The filaments are formed through the accumulation of oxygen vacancies gradually at the set process and then rupture at the weak points near the interface during the reset process.Furthermore,the higher barrier height was achieved during the reset process, which was contributed to the enlarged memory window.For the HfOx/TiOxsample,the different filaments are formed in TiOxand HfOxfilms,[34]the asymmetric conductive filaments lead to the weak points near the interface.On the other hand, due to the different dielectric constants of HfOxand TiOx,the filaments at the interface may be the weaker ones.[35]Therefore,under the negative voltage, larger currents at the weak point lead to the first rupture of filaments by the recovery of oxygen vacancies, accompanied by Joule heat at the same time,as displayed in the reset process of Fig.6(c).In addition, for bilayer structure,it is inferred that the filaments are not completely ruptured during the reset process and the residual filaments can act as lightning rods and promote the re-formation of fixed filaments along the last path during the subsequent set process.Therefore, much uniform and reliable switching performance can be observed for bilayer structure, which is consistent with Huang’ study that the heterostructure and its interface can improve the switching behaviors in multilayer structures.[20]Overall,the results indicate the improvement of switching performance by designing the device structure.

    4.Conclusions

    In summary, better switching performance including a larger on/off ratio (~104), uniform distribution of switching parameters, and lower reset current is obtained in the bilayer structures, especially in the HfOx/Ti sample due to the modulation of oxygen vacancies near the interface and barrier height.Different conduction mechanisms of Schottky emission are observed for the HfOx/Ti sample, which are closely related to the large memory window and the uniform distribution of the switching parameters.A filamentary model is proposed to clarify the switching behaviors of HfOx-based samples.Since the weak points of the filaments near the interface are firstly ruptured by the recovery of oxygen vacancies, the residual filaments can act as lightning rods to promote the reformation of fixed filaments, and better endurance properties can be observed for bilayer structure.Results indicate that the growth of oxygen vacancy filaments can be better controlled by designing a bilayer structure.

    Acknowledgements

    This work was financially supported by the National Natural Science Foundation of China(Grant No.51802025)and the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2020JQ-384).

    猜你喜歡
    王英
    分析規(guī)范化介入護(hù)理配合在TAVR手術(shù)患者中的應(yīng)用
    少年陰陽師(九)
    充滿友誼的水筆
    大衛(wèi)上學(xué)去
    呼叫的良辰(中篇)
    櫻花雨
    吵架
    小說月刊(2017年9期)2017-09-13 18:26:35
    “走錯路”的交通局局長
    每當(dāng)我回到故鄉(xiāng)
    悼詩魂王英
    成人三级做爰电影| 韩国精品一区二区三区| 国产精品国产高清国产av | 99国产极品粉嫩在线观看| 极品少妇高潮喷水抽搐| 亚洲成av片中文字幕在线观看| 国产精品免费一区二区三区在线 | 三级毛片av免费| 成人18禁在线播放| 曰老女人黄片| 欧美精品高潮呻吟av久久| 国产精品国产av在线观看| 欧美黑人精品巨大| 99re6热这里在线精品视频| 乱人伦中国视频| 99久久国产精品久久久| 少妇裸体淫交视频免费看高清 | 亚洲av欧美aⅴ国产| 高清视频免费观看一区二区| 亚洲男人天堂网一区| av欧美777| 男女午夜视频在线观看| 老熟女久久久| 日韩成人在线观看一区二区三区| 天天影视国产精品| 欧美午夜高清在线| 99国产精品免费福利视频| 久久精品国产亚洲av高清一级| 欧美日韩一级在线毛片| 看免费av毛片| 一区二区三区激情视频| 老熟女久久久| 免费高清在线观看日韩| 99香蕉大伊视频| 在线播放国产精品三级| 水蜜桃什么品种好| 久久亚洲精品不卡| 日韩视频一区二区在线观看| 色精品久久人妻99蜜桃| 国产精品欧美亚洲77777| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩黄片免| 精品视频人人做人人爽| 亚洲性夜色夜夜综合| 高清黄色对白视频在线免费看| 国产欧美日韩综合在线一区二区| 国产激情欧美一区二区| 国产一区二区三区视频了| 国产精品香港三级国产av潘金莲| 亚洲黑人精品在线| av网站在线播放免费| 色播在线永久视频| 国产精品影院久久| 亚洲熟妇熟女久久| 欧美人与性动交α欧美精品济南到| 高清在线国产一区| 手机成人av网站| 午夜福利视频在线观看免费| 欧美激情高清一区二区三区| 99久久精品国产亚洲精品| 欧美最黄视频在线播放免费 | 成人三级做爰电影| 好看av亚洲va欧美ⅴa在| 美女视频免费永久观看网站| 亚洲av美国av| 久久精品91无色码中文字幕| 国产人伦9x9x在线观看| 757午夜福利合集在线观看| 午夜免费成人在线视频| 亚洲九九香蕉| 18禁裸乳无遮挡动漫免费视频| 国产成人免费无遮挡视频| 天堂俺去俺来也www色官网| 搡老岳熟女国产| 亚洲 国产 在线| 国产极品粉嫩免费观看在线| 免费人成视频x8x8入口观看| 欧美激情高清一区二区三区| 99国产综合亚洲精品| 18禁美女被吸乳视频| 亚洲五月天丁香| 如日韩欧美国产精品一区二区三区| 亚洲精华国产精华精| 两性夫妻黄色片| 午夜老司机福利片| 久久精品国产99精品国产亚洲性色 | 免费少妇av软件| a级片在线免费高清观看视频| 亚洲熟妇中文字幕五十中出 | 久久这里只有精品19| 国产成人av激情在线播放| 女同久久另类99精品国产91| 久热这里只有精品99| 人成视频在线观看免费观看| 国产精品亚洲av一区麻豆| 久久 成人 亚洲| 999久久久精品免费观看国产| 一区二区日韩欧美中文字幕| 中国美女看黄片| 法律面前人人平等表现在哪些方面| 欧美性长视频在线观看| 国产深夜福利视频在线观看| 丝袜美腿诱惑在线| 欧美中文综合在线视频| 12—13女人毛片做爰片一| 色94色欧美一区二区| 夜夜夜夜夜久久久久| 午夜精品在线福利| 欧美日韩亚洲国产一区二区在线观看 | 国产极品粉嫩免费观看在线| 男人操女人黄网站| 亚洲一区高清亚洲精品| 怎么达到女性高潮| 亚洲精品久久午夜乱码| 黄色怎么调成土黄色| 真人做人爱边吃奶动态| 国产免费男女视频| 水蜜桃什么品种好| 国产欧美日韩一区二区三区在线| 欧美亚洲日本最大视频资源| 男女午夜视频在线观看| 国产不卡av网站在线观看| 亚洲熟妇熟女久久| 男女之事视频高清在线观看| 又大又爽又粗| 最新在线观看一区二区三区| 国产人伦9x9x在线观看| 91九色精品人成在线观看| 国产精品亚洲一级av第二区| 99久久人妻综合| 宅男免费午夜| 老司机影院毛片| 俄罗斯特黄特色一大片| 精品免费久久久久久久清纯 | 一进一出抽搐动态| 国产精品免费大片| 女人爽到高潮嗷嗷叫在线视频| 亚洲熟女毛片儿| 久久精品aⅴ一区二区三区四区| 久久人妻熟女aⅴ| 日本wwww免费看| 欧美另类亚洲清纯唯美| 久久久久久亚洲精品国产蜜桃av| 91麻豆av在线| 精品第一国产精品| 国产乱人伦免费视频| 水蜜桃什么品种好| 无限看片的www在线观看| 不卡av一区二区三区| 岛国在线观看网站| 亚洲三区欧美一区| videos熟女内射| 黄片小视频在线播放| 国产免费现黄频在线看| 国产精品久久视频播放| x7x7x7水蜜桃| 久久ye,这里只有精品| 亚洲av片天天在线观看| 又紧又爽又黄一区二区| 99久久人妻综合| 亚洲男人天堂网一区| 亚洲av熟女| 国产精品成人在线| 脱女人内裤的视频| 国产日韩欧美亚洲二区| 久久亚洲真实| 91老司机精品| 少妇粗大呻吟视频| 亚洲九九香蕉| 多毛熟女@视频| 侵犯人妻中文字幕一二三四区| 1024香蕉在线观看| 十八禁人妻一区二区| 久久久久国产一级毛片高清牌| 欧美激情久久久久久爽电影 | 可以免费在线观看a视频的电影网站| 少妇的丰满在线观看| 精品电影一区二区在线| 国产欧美日韩一区二区三| 精品人妻在线不人妻| 90打野战视频偷拍视频| 别揉我奶头~嗯~啊~动态视频| 久久久久视频综合| 国产精品 欧美亚洲| 99精品在免费线老司机午夜| 欧美不卡视频在线免费观看 | 好看av亚洲va欧美ⅴa在| 久久久久久免费高清国产稀缺| 精品国产一区二区三区四区第35| 日本精品一区二区三区蜜桃| 在线看a的网站| 精品久久久久久电影网| 一级毛片女人18水好多| 老司机在亚洲福利影院| 三上悠亚av全集在线观看| 露出奶头的视频| 女人被狂操c到高潮| 又黄又爽又免费观看的视频| 日韩欧美一区二区三区在线观看 | 国产亚洲欧美精品永久| 老汉色∧v一级毛片| 成人亚洲精品一区在线观看| 欧美国产精品一级二级三级| 久久久久久人人人人人| 大型av网站在线播放| 国产高清videossex| 亚洲中文字幕日韩| 国产欧美亚洲国产| 无人区码免费观看不卡| 中文字幕精品免费在线观看视频| 一进一出好大好爽视频| 男人操女人黄网站| 咕卡用的链子| 啦啦啦免费观看视频1| 免费看十八禁软件| 黑人欧美特级aaaaaa片| 99国产极品粉嫩在线观看| 99精国产麻豆久久婷婷| 黄色a级毛片大全视频| 成人av一区二区三区在线看| 国内毛片毛片毛片毛片毛片| 成人影院久久| 国产aⅴ精品一区二区三区波| 不卡一级毛片| 最近最新免费中文字幕在线| 亚洲va日本ⅴa欧美va伊人久久| 人人妻人人爽人人添夜夜欢视频| 国产精品欧美亚洲77777| 亚洲av成人不卡在线观看播放网| 久久午夜亚洲精品久久| 精品福利观看| 久久中文字幕一级| 一级毛片精品| 亚洲,欧美精品.| 可以免费在线观看a视频的电影网站| 欧美亚洲日本最大视频资源| 久久精品成人免费网站| 一本综合久久免费| 国产一区二区激情短视频| 日韩欧美在线二视频 | 日韩一卡2卡3卡4卡2021年| 国产亚洲精品久久久久久毛片 | 侵犯人妻中文字幕一二三四区| 国产三级黄色录像| 精品第一国产精品| av视频免费观看在线观看| 国产精品秋霞免费鲁丝片| 一级黄色大片毛片| 亚洲av日韩在线播放| 啦啦啦视频在线资源免费观看| 国产蜜桃级精品一区二区三区 | 久久天堂一区二区三区四区| 国产激情久久老熟女| 日韩制服丝袜自拍偷拍| 久9热在线精品视频| 777久久人妻少妇嫩草av网站| 亚洲av日韩精品久久久久久密| 国产精品永久免费网站| av有码第一页| 99精品久久久久人妻精品| 97人妻天天添夜夜摸| videosex国产| xxx96com| 亚洲国产看品久久| 亚洲第一欧美日韩一区二区三区| 大型黄色视频在线免费观看| 别揉我奶头~嗯~啊~动态视频| 黄色成人免费大全| 狠狠狠狠99中文字幕| 精品高清国产在线一区| 精品人妻熟女毛片av久久网站| 多毛熟女@视频| 亚洲成人免费av在线播放| 国产av又大| 午夜激情av网站| 黑丝袜美女国产一区| 国产在线精品亚洲第一网站| 日韩欧美一区二区三区在线观看 | 久久久久久人人人人人| 成人手机av| 国产精品国产高清国产av | 九色亚洲精品在线播放| 大型av网站在线播放| 9191精品国产免费久久| 亚洲av日韩精品久久久久久密| xxx96com| 在线免费观看的www视频| 亚洲第一欧美日韩一区二区三区| 午夜福利视频在线观看免费| 久久这里只有精品19| 欧美亚洲日本最大视频资源| 如日韩欧美国产精品一区二区三区| 欧美精品亚洲一区二区| 欧美精品人与动牲交sv欧美| 欧美日韩av久久| 中文字幕另类日韩欧美亚洲嫩草| 女人爽到高潮嗷嗷叫在线视频| 国产一区二区激情短视频| 最近最新中文字幕大全电影3 | aaaaa片日本免费| 免费在线观看影片大全网站| 十八禁人妻一区二区| 成年版毛片免费区| 国产精品久久久久久人妻精品电影| 亚洲欧美一区二区三区久久| 国产男女超爽视频在线观看| 国产激情欧美一区二区| 黄色视频不卡| 黄色毛片三级朝国网站| 国产一区二区激情短视频| 亚洲情色 制服丝袜| 久久亚洲精品不卡| √禁漫天堂资源中文www| 在线视频色国产色| 亚洲一区高清亚洲精品| 波多野结衣av一区二区av| 一进一出抽搐动态| 久久人人97超碰香蕉20202| 如日韩欧美国产精品一区二区三区| 亚洲五月色婷婷综合| 亚洲七黄色美女视频| netflix在线观看网站| 国产欧美亚洲国产| 国产成人免费无遮挡视频| 亚洲精品美女久久久久99蜜臀| 国内久久婷婷六月综合欲色啪| 搡老岳熟女国产| 欧美黄色淫秽网站| 91成人精品电影| 三级毛片av免费| ponron亚洲| 国产欧美日韩一区二区精品| 丝袜在线中文字幕| 亚洲熟女精品中文字幕| 老熟妇仑乱视频hdxx| 男人操女人黄网站| 国产精品综合久久久久久久免费 | 啦啦啦 在线观看视频| 国产aⅴ精品一区二区三区波| 午夜福利一区二区在线看| 美女扒开内裤让男人捅视频| 成年动漫av网址| 狂野欧美激情性xxxx| 亚洲少妇的诱惑av| 免费在线观看亚洲国产| 精品电影一区二区在线| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久人人人人人| 精品国产一区二区久久| 每晚都被弄得嗷嗷叫到高潮| 别揉我奶头~嗯~啊~动态视频| 身体一侧抽搐| 欧美色视频一区免费| 精品国产超薄肉色丝袜足j| 这个男人来自地球电影免费观看| 日韩中文字幕欧美一区二区| 久久九九热精品免费| 在线观看免费视频日本深夜| 久久人妻熟女aⅴ| 免费在线观看视频国产中文字幕亚洲| 国产精品.久久久| 啦啦啦视频在线资源免费观看| 在线天堂中文资源库| 高潮久久久久久久久久久不卡| 99热只有精品国产| 国产高清国产精品国产三级| 高清视频免费观看一区二区| 日日夜夜操网爽| 亚洲精品粉嫩美女一区| 亚洲av片天天在线观看| 少妇裸体淫交视频免费看高清 | 午夜两性在线视频| 制服诱惑二区| 午夜视频精品福利| 日本一区二区免费在线视频| 国产欧美日韩一区二区三区在线| 亚洲人成伊人成综合网2020| 欧美av亚洲av综合av国产av| 美女扒开内裤让男人捅视频| 国产一卡二卡三卡精品| 啦啦啦 在线观看视频| 黑人欧美特级aaaaaa片| 19禁男女啪啪无遮挡网站| 黄色毛片三级朝国网站| 久久中文字幕人妻熟女| 丝袜美足系列| 亚洲第一青青草原| 人妻久久中文字幕网| 亚洲av成人不卡在线观看播放网| 久久人人97超碰香蕉20202| 午夜激情av网站| 亚洲精品中文字幕一二三四区| 精品国产乱子伦一区二区三区| 午夜福利一区二区在线看| 欧美另类亚洲清纯唯美| 免费看a级黄色片| 亚洲五月婷婷丁香| 色婷婷久久久亚洲欧美| 亚洲中文av在线| 搡老乐熟女国产| 免费黄频网站在线观看国产| 在线观看免费午夜福利视频| 精品国产超薄肉色丝袜足j| 国产精品 国内视频| 老司机深夜福利视频在线观看| 大陆偷拍与自拍| 中文字幕av电影在线播放| 99精品欧美一区二区三区四区| www.熟女人妻精品国产| 亚洲成人免费av在线播放| 久久久精品国产亚洲av高清涩受| 欧美日韩亚洲高清精品| 91国产中文字幕| 一级a爱视频在线免费观看| 欧美日韩亚洲综合一区二区三区_| 精品第一国产精品| 日韩精品免费视频一区二区三区| 两人在一起打扑克的视频| 成人特级黄色片久久久久久久| 久久精品国产亚洲av高清一级| 久久国产亚洲av麻豆专区| 国产av一区二区精品久久| 在线av久久热| 精品电影一区二区在线| 亚洲人成电影观看| 两性午夜刺激爽爽歪歪视频在线观看 | 在线播放国产精品三级| 大型黄色视频在线免费观看| 国产97色在线日韩免费| 久久精品熟女亚洲av麻豆精品| av一本久久久久| 午夜福利,免费看| 久久青草综合色| 久久久久精品人妻al黑| 欧美日韩国产mv在线观看视频| 免费观看人在逋| 亚洲色图av天堂| 男人的好看免费观看在线视频 | 成年人免费黄色播放视频| 丝袜美足系列| 国产成人精品久久二区二区91| 变态另类成人亚洲欧美熟女 | av超薄肉色丝袜交足视频| 国产亚洲av高清不卡| 老鸭窝网址在线观看| 黑人欧美特级aaaaaa片| 国产精品 国内视频| 成年版毛片免费区| 久久午夜亚洲精品久久| 国产男靠女视频免费网站| 夜夜夜夜夜久久久久| 亚洲国产看品久久| 久久人人爽av亚洲精品天堂| 视频区欧美日本亚洲| av电影中文网址| 啪啪无遮挡十八禁网站| 在线观看www视频免费| 黄色片一级片一级黄色片| 久久国产乱子伦精品免费另类| 国产亚洲欧美精品永久| 一进一出好大好爽视频| 99国产精品99久久久久| 国产成人精品无人区| 又紧又爽又黄一区二区| 日本一区二区免费在线视频| 国产又爽黄色视频| 国产在线精品亚洲第一网站| 黄色视频,在线免费观看| 欧美精品啪啪一区二区三区| 亚洲人成电影观看| 国产精品影院久久| 日韩欧美在线二视频 | 91在线观看av| av网站免费在线观看视频| 日韩中文字幕欧美一区二区| 极品人妻少妇av视频| 午夜福利视频在线观看免费| av天堂久久9| 在线天堂中文资源库| 国产亚洲精品一区二区www | 亚洲专区中文字幕在线| 亚洲综合色网址| 宅男免费午夜| 一区二区三区国产精品乱码| 久久中文字幕一级| 变态另类成人亚洲欧美熟女 | 18在线观看网站| 午夜视频精品福利| 中文字幕色久视频| 人妻一区二区av| 午夜91福利影院| 最近最新免费中文字幕在线| 亚洲全国av大片| 大码成人一级视频| 丰满的人妻完整版| 久久久国产成人精品二区 | 国产亚洲精品久久久久5区| 亚洲专区国产一区二区| 无人区码免费观看不卡| 一区二区日韩欧美中文字幕| 久久 成人 亚洲| 满18在线观看网站| 悠悠久久av| 99久久国产精品久久久| 精品一区二区三卡| 脱女人内裤的视频| 高清黄色对白视频在线免费看| 久久久久久免费高清国产稀缺| 色婷婷av一区二区三区视频| 午夜免费观看网址| 午夜91福利影院| 视频在线观看一区二区三区| 亚洲全国av大片| 熟女少妇亚洲综合色aaa.| 日本精品一区二区三区蜜桃| 亚洲自偷自拍图片 自拍| 久久久久国内视频| 女人高潮潮喷娇喘18禁视频| www.熟女人妻精品国产| 午夜福利在线免费观看网站| 亚洲欧美日韩另类电影网站| 老司机午夜十八禁免费视频| 国产不卡一卡二| 99精品在免费线老司机午夜| 男女下面插进去视频免费观看| 国产亚洲一区二区精品| 欧美丝袜亚洲另类 | av有码第一页| 欧美日韩精品网址| 三级毛片av免费| 久久久精品免费免费高清| 国产成人免费无遮挡视频| 最近最新中文字幕大全免费视频| 12—13女人毛片做爰片一| 国产单亲对白刺激| 亚洲熟妇中文字幕五十中出 | 一级a爱片免费观看的视频| 欧美久久黑人一区二区| 丝袜美腿诱惑在线| 热re99久久精品国产66热6| 国产成人欧美在线观看 | 9191精品国产免费久久| 国产成人影院久久av| 免费看a级黄色片| 国产日韩一区二区三区精品不卡| 日韩欧美免费精品| 身体一侧抽搐| 久久久国产一区二区| 大香蕉久久网| 国产精品一区二区精品视频观看| 国产成人一区二区三区免费视频网站| 另类亚洲欧美激情| 女人爽到高潮嗷嗷叫在线视频| 一区二区三区精品91| 日韩成人在线观看一区二区三区| 高潮久久久久久久久久久不卡| 午夜亚洲福利在线播放| 婷婷成人精品国产| 高清av免费在线| 亚洲精品粉嫩美女一区| 一二三四在线观看免费中文在| 国产成人av教育| 国产欧美日韩一区二区三| 国产亚洲精品一区二区www | 免费看a级黄色片| 亚洲情色 制服丝袜| 日本a在线网址| 国产高清视频在线播放一区| 多毛熟女@视频| 久久国产精品大桥未久av| 国产精品亚洲一级av第二区| 国产精品亚洲av一区麻豆| 亚洲精品美女久久久久99蜜臀| 色老头精品视频在线观看| 黄色片一级片一级黄色片| 精品国产美女av久久久久小说| 韩国av一区二区三区四区| 欧美精品一区二区免费开放| 国产又爽黄色视频| 在线观看免费高清a一片| 国产亚洲av高清不卡| 欧美黄色淫秽网站| 亚洲熟妇熟女久久| 一二三四在线观看免费中文在| 日本撒尿小便嘘嘘汇集6| 日韩欧美三级三区| 女性被躁到高潮视频| 热99re8久久精品国产| 日韩欧美一区二区三区在线观看 | 国产精品二区激情视频| 欧美不卡视频在线免费观看 | 在线观看免费高清a一片| 丝袜人妻中文字幕| 丁香欧美五月| 亚洲 欧美一区二区三区| 久久精品91无色码中文字幕| 色在线成人网| 中文字幕av电影在线播放| 国产黄色免费在线视频| 韩国精品一区二区三区| 9色porny在线观看| cao死你这个sao货| 亚洲av成人不卡在线观看播放网| 欧美久久黑人一区二区| 免费人成视频x8x8入口观看| 99国产极品粉嫩在线观看| 黄片播放在线免费| cao死你这个sao货| 亚洲精品在线观看二区| 亚洲在线自拍视频| 亚洲av欧美aⅴ国产| 女人高潮潮喷娇喘18禁视频| 国产99久久九九免费精品| 国产精品 国内视频| 国产日韩欧美亚洲二区|