摘要:在多艘水面艦艇編隊控制中,為了彌補較強的不確定性,并降低控制器對系統(tǒng)信號的測量負擔(dān),提出水面艦艇編隊的時變控制設(shè)計方案。首先,通過引入光滑函數(shù)來處理飽和約束,同時通過構(gòu)造含有時變增益的狀態(tài)變換,將原系統(tǒng)的跟蹤控制問題轉(zhuǎn)化為一個新的時變系統(tǒng)的鎮(zhèn)定問題。然后,結(jié)合向量反推控制設(shè)計方法,給出時變反饋控制器的顯式形式,保證閉環(huán)系統(tǒng)所有信號都有界且所有跟隨船以期望的時變編隊隊形漸近跟蹤到領(lǐng)導(dǎo)船。最后,仿真算例驗證理論結(jié)果的有效性。
關(guān)鍵詞:時變編隊控制;不確定性;輸入飽和;時變反饋
中圖分類號:O231.2
文獻標(biāo)志碼:A
水面艦艇編隊在海洋工程中具有廣泛應(yīng)用,如海上救援、勘探和監(jiān)視等,因而其相關(guān)控制問題在過去十年間受到廣泛關(guān)注。實際工程中,由于測量設(shè)備的不準(zhǔn)確性以及受海洋環(huán)境中風(fēng)、浪、流等影響,描述水面艦艇動態(tài)的模型不可避免地存在不確定性(例如存在未知系統(tǒng)參數(shù)或受外部擾動影響),給控制設(shè)計和性能分析帶來本質(zhì)困難。因而,水面艦艇編隊的控制理論結(jié)果多是基于對系統(tǒng)不確定性的不同假設(shè),進而給出不同的控制方法。例如,當(dāng)只有外部擾動但系統(tǒng)參數(shù)全部已知時,基于預(yù)測模塊[1]和擾動觀測器[2-3]的控制方法被提出;當(dāng)具有外部擾動且系統(tǒng)參數(shù)部分已知時,時變[4]和滑模[5]控制方法被提出;當(dāng)具有外部擾動且系統(tǒng)參數(shù)完全未知時,神經(jīng)網(wǎng)絡(luò)[6]和模糊[7]等一些近似方法被提出。
上述文獻僅考慮常值編隊控制,其控制結(jié)果在理論和實踐上具有一定的局限性。然而,實際工程中的多數(shù)情形往往需要根據(jù)實際情況隨著時間靈活改變隊形。理論上,由于領(lǐng)導(dǎo)者和每個跟隨者之間的相對距離是時變的而非常值,新的時變特性將被引入控制設(shè)計,導(dǎo)致上述文獻中針對常值編隊的控制方法失效。因此,需要發(fā)展新的控制方法來解決時變編隊控制問題。盡管現(xiàn)有文獻[8-16]在這一問題上取得了一些初步的成果,但在系統(tǒng)不確定性和隊形信息可測性兩個方面受到嚴(yán)格限制。文獻[8]要求系統(tǒng)不含有不確定性(即系統(tǒng)參數(shù)全部已知且無外部擾動),文獻[9]~[14]雖然考慮外部干擾,但要求系統(tǒng)參數(shù)必須全部已知[9-10],或具有已知標(biāo)稱部分 [11-12],亦或部分參數(shù)已知(例如慣性矩陣) [13-14]。此外,文獻[8]~[16]提出的控制器需要編隊相對距離或領(lǐng)導(dǎo)者輸出信號的二階導(dǎo)數(shù)用于反饋,測量代價較大。
在工程中,執(zhí)行器自身的物理特性常導(dǎo)致輸入不可避免地受到約束。輸入約束的忽略將導(dǎo)致設(shè)備元器件的損壞,同時破壞系統(tǒng)性能,甚至導(dǎo)致系統(tǒng)不穩(wěn)定[17-18]。然而,現(xiàn)有大多相關(guān)文獻忽略了輸入約束[1,3-8,10,12,14,16]。部分文獻雖然考慮了輸入飽和約束[2,9,11,13,15],但均在前述所提及的系統(tǒng)不確定性和隊形信息可測性兩個方面受到限制。對于水面艦艇系統(tǒng)的時變編隊控制,當(dāng)系統(tǒng)受飽和約束并且放寬前述兩個方面的限制時,現(xiàn)有文獻中的控制方法失效,因此需要發(fā)展新的強不確定性補償方法,并在此基礎(chǔ)上建立控制設(shè)計和性能分析的新框架。
本文研究多艘水面艦艇輸入飽和約束下的時變編隊控制。與相關(guān)文獻對不確定性嚴(yán)格的限制(排除外部擾動或系統(tǒng)參數(shù)必須完全/部分已知)不同的是,本文所研究系統(tǒng)受外部擾動影響且參數(shù)全部未知,因此具有更強的不確定性。此外,編隊相對距離和領(lǐng)導(dǎo)者輸出的二階導(dǎo)數(shù)都不需要用于反饋。為此,本文首先對系統(tǒng)引入一個含有重要的時變增益的狀態(tài)變換,通過時變增益隨時間增長而趨于無窮大的性質(zhì)來補償系統(tǒng)的不確定性。然后,結(jié)合向量反推控制設(shè)計方法設(shè)計時變狀態(tài)反饋控制器。最后,理論分析證明該控制器保證控制目標(biāo)的實現(xiàn)。值得指出的是,在系統(tǒng)不確定性較強和隊形較弱的假設(shè)下,本文設(shè)計的控制器不需要額外引入神經(jīng)網(wǎng)絡(luò)、模糊、自適應(yīng)技術(shù)等復(fù)雜動態(tài)機制,更容易實施。
1 問題描述
2 控制器設(shè)計
3 閉環(huán)系統(tǒng)性能分析
4 仿真算例
系統(tǒng)的初始狀態(tài)為q10=(2.5,-1.2,0.1)T,q20=(3,8,-1.5,-0.1)T,q30=(3.2,-2.9,-0.2)T,q40=( 2.2,-2.3,0.2)T,ν10=(0.1,0.3,0.2)T,ν20=(0.4,0.2,0.5)T,ν30=(0.3,-0.2,0.2)T,ν40=(-0.1,0.3,0.1)T,ν50=(0.2,0.3,0.4)T。
實施時變控制器"""" (14),其中時變函數(shù)κ=1+t,控制器參數(shù)為 c11=2,c12=4,c13=2,c14=3,c21=8,c22=9,c23=8,c24=10。通過MATLAB 進行仿真實驗,得到圖2~5。具體地,圖2顯示所有跟隨船以期望的時變編隊隊形漸近跟蹤到領(lǐng)導(dǎo)船(從給出的四個時刻中可以看出)。圖3表明跟蹤誤差曲線漸近收斂到零。圖4表明所有跟隨船的系統(tǒng)狀態(tài)νi是有界的。圖5表明每個跟隨船的控制輸入τi是有界的,并且滿足給定的飽和約束。
5 總 結(jié)
本文解決了帶有輸入飽和的多個不確定水面艦艇的時變編隊控制問題。通過巧妙地將向量反推控制設(shè)計方法與時變反饋控制設(shè)計方法相結(jié)合,顯式設(shè)計了時變反饋控制器,保證了期望的控制目標(biāo)。未來將在此基礎(chǔ)上考慮事件觸發(fā)機制下的水面艦艇編隊控制問題。為此,需要設(shè)計適當(dāng)?shù)氖录|發(fā)機制,通過結(jié)合觸發(fā)機制和系統(tǒng)不確定性的補償機制,建立一種新的控制框架。
參考文獻:
[1] PENG Z H, WANG D, WANG J. Cooperative dynamic positioning of multiple marine offshore vessels: a modular design[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(3): 1210-1221.
[2] WANG N, LI H. Leader-follower formation control of surface vehicles: A fixed-time control approach[J]. ISA Transactions, 2022, 124: 356-364.
[3] XIA G Q, SUN C, ZHAO B, et al. Cooperative control of multiple dynamic positioning vessels with input saturation based on finite-time disturbance observer[J]. International Journal of Control, Automation and Systems, 2019, 17(2): 370-379.
[4] DAI S L, HE S D, MA Y F, et al. Cooperative learning-based formation control of autonomous marine surface vessels with prescribed performance[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(4): 2565-2577.
[5] LIANG C D, GE M F, LIU Z W, et al. Predefined-time formation tracking control of networked marine surface vehicles[J]. Control Engineering Practice, 2021, 107: 104682.
[6] PENG Z H, WANG D, LI T S, et al. Leaderless and leader-follower cooperative control of multiple marine surface vehicles with unknown dynamics[J]. Nonlinear Dynamics, 2013, 74(1-2): 95-106.
[7] PENG Z H, WANG J, WANG D. Distributed maneuvering of autonomous surface vehicles based on neurodynamic optimization and fuzzy approximation[J]. IEEE Transactions on Control Systems Technology, 2018, 26(3): 1083-1090.
[8] YIN S, YANG H Y, KAYNAK O. Coordination task triggered formation control algorithm for multiple marine vessels[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 4984-4993.
[9] FU M Y, YU L L. Finite-time extended state observer-based distributed formation control for marine surface vehicles with input saturation and disturbances[J]. Ocean Engineering, 2018, 159: 219-227.
[10] JIAO J F, LIU W X. Guided leaderless coordinated formation algorithm for multiple surface vessels[J]. Journal of the Franklin Institute, 2015, 352(9): 3843-3857.
[11] ZHU C, HUANG B, SU Y M, et al. Finite-time time-varying formation control for marine surface vessels[J]. Ocean Engineering, 2021, 239: 109817.
[12] FU M Y, YU L L, WANG Y H, et al. A cross-coupling control approach for coordinated formation of surface vessels with uncertain disturbances[J]. Asian Journal of Control, 2018, 20(6): 2370-2379.
[13] FU M Y, WANG L L. A fixed-time distributed formation control of marine surface vehicles with actuator input saturation and time-varying ocean currents[J]. Ocean Engineering, 2022, 251: 111067.
[14] LIU L, WANG D, PENG Z H. Direct and composite iterative neural control for cooperative dynamic positioning of marine surface vessels[J]. Nonlinear Dynamics, 2015, 81(3): 1315-1328.
[15] HUANG B, SONG S, ZHU C, et al. Finite-time distributed formation control for multiple unmanned surface vehicles with input saturation[J]. Ocean Engineering, 2021, 233: 109158.
[16] XU K T, GE M F, LIANG C D, et al. Predefined-time time-varying formation control of networked autonomous surface vehicles: a velocity-and model-free approach[J]. Nonlinear Dynamics, 2022, 108(4): 3605-3622.
[17] 沈智鵬, 畢艷楠, 王宇, 等. 輸入輸出受限船舶的軌跡跟蹤自適應(yīng)遞歸滑??刂疲跩]. 控制理論與應(yīng)用, 2020, 37(6): 1419-1427.
[18] 王旭陽, 高迪駒, 王天真, 等. 未知時變擾動和輸入飽和下的智能船舶魯棒非線性控制[J]. 船舶工程, 2020, 42(4): 102-108.
Time-Varying Formation Control for Surface Vessels with Input Saturation
LIANG Yuqi, LI Jian
(School of Mathematics and Information Sciences, Yantai University, Yantai 264005, China)
Abstract:" In formation control for multiple marine surface vessels, in order to make up serious uncertainties and reduce the burden in signal measurement of controller, a time-varying control scheme is proposed in this paper. First, a smooth function is introduced to deal with the saturation constraint, while a state transformation with a key time-varying gain is introduced to change the tracking of the original system into the stabilization of a time-varying system. Then, by the vector backstepping method, a time-varying feedback controller is explicitly designed which guarantees that all the states of the resulting closed-loop system are bounded while all the follower vessels asymptotically track the leader vessel with an expected time-varying formation pattern. Finally, simulation results are provided to validate the effectiveness of the proposed theoretical results.
Keywords:time-varying formation control; uncertainty; input saturation; time-varying feedback
(責(zé)任編輯 李春梅)