• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      Ag摻雜In2O3薄膜的制備及其光電性能

      2024-01-01 00:00:00韓夢瑤孫輝周鷗翔齊東麗李同輝沈龍海
      關(guān)鍵詞:磁控濺射

      摘要: 為研究Ag的摻雜濃度對氧化銦薄膜禁帶寬度、 光開關(guān)比及光探測率等光電性能的影響, 采用磁控濺射方法在石英(SiO2)襯底上制備不同濃度的Ag摻雜氧化銦(In2O3∶Ag)薄膜, 并利用X射線衍射、 X射線光電子能譜、 掃描電子顯微鏡、 紫外-可見分光光度計分析In2O3∶Ag薄膜的晶體結(jié)構(gòu)、 元素含量和價態(tài)、 表面形貌、 禁帶寬度及光電性能. 結(jié)果表明: 隨著Ag摻雜濃度的增加, In2O3∶Ag薄膜的透過率逐漸降低, 禁帶寬度由2.47 eV減小至2.08 eV, 光探測率和光開關(guān)比增大; 隨著摻雜濃度的增加, 光譜響應(yīng)范圍增加.

      關(guān)鍵詞: 氧化銦; Ag摻雜; 磁控濺射; 禁帶寬度; 光電性能

      中圖分類號: O484.4" 文獻標(biāo)志碼: A" 文章編號: 1671-5489(2024)04-0985-07

      Preparation and Photoelectric Performance ofAg Doped In2O3 Thin Films

      HAN Mengyao, SUN Hui, ZHOU Ouxiang, QI Dongli, LI Tonghui, SHEN Longhai

      (School of Science, Shenyang Ligong University, Shenyang 110159, China)

      Abstract: In order to investigate the effects of Ag doping concentration on the photoelectric performance of In2O3 thin films, such as bandgap width, optical switching ratio and optical detectivity, Ag doped In2O3 (In2O3∶Ag) thin films with different concentrations were prepared by magnetron sputtering method on quartz (SiO2) substrate. The crystal structure, elemental content and valence state, surface morphology, bandgap width and photoelectric performance of In2O3∶Ag thin films were analyzed by using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and ultraviolet-visible spectrophotometer. The results show that with the increase of Ag doping concentration, the transmittance of In2O3∶Ag thin films gradually decreases, the bandgap width decreases from 2.47 eV to 2.08 eV, and the optical detectivity and optical switching ratio increase. The spectral response range increases with the increase of doping concentration.

      Keywords: indium oxide; Ag doping; magnetron sputtering; bandgap width; photoelectric performance

      氧化銦(In2O3)是一種寬帶隙(3.6 eV)金屬氧化物半導(dǎo)體[1-2], 具有較高的電子遷移率[3]、 優(yōu)異的氣體靈敏性[4]、 良好的催化性以及較高的可見光透明度[5], 在平板顯示器、 傳感器[6-7]、 光催化[8]、 有機發(fā)光二極管(OLEDs)[9]、 太陽能電池[10]、 數(shù)據(jù)存儲以及光電探測[11]等領(lǐng)域應(yīng)用廣泛.摻雜可改變In2O3薄膜的缺陷類型[12], 調(diào)節(jié)禁帶寬度[13]和電導(dǎo)率[14]. 使用射頻磁控濺射方法, Tchenka等[15]制備了低電阻率的錫(Sn)摻雜In2O3薄膜; Krishnan等[16]在室溫下制備了高結(jié)晶度的鎢(W)摻雜In2O3薄膜; Krishnan等[17]制備了高透過率的鈮(Nb)摻雜In2O3薄膜. 使用電子束蒸發(fā)方法, Islam等[2]制備了具有較高近紅外透射率的釩(V)摻雜In2O3薄膜; Jiang等[18]研究表明, Fe摻雜In2O3納米點陣列的鐵磁性和能帶隙顯著增強; Zhang等[19]采用復(fù)合軟模板法制備了In2O3空心球, 并通過浸漬和退火的方法在復(fù)合材料中摻入Ag以提高其氣敏和傳感性能; Nath等[20]用掠射角沉積技術(shù)制備了Ag修飾In2O3納米線, 其光導(dǎo)增強、 光敏性能提高; Ding等[21]用溶劑熱路線與后續(xù)熱處理相結(jié)合研制了一種Ag摻雜海膽空心球In2O3層狀納米結(jié)構(gòu), 提高了氣敏性能; Nath等[22]用電子束蒸發(fā)法制備了Ag納米粒子遮蔽In2O3納米線, 在紫外區(qū)和可見光區(qū)光吸收增強. 由于In2O3∶Ag納米粉體材料具有優(yōu)異的光導(dǎo)、 氣敏和光敏性能, 因此其相應(yīng)的薄膜結(jié)構(gòu)更有利于與功能器件集成. 磁控濺射方法具有操作簡便、 低成本、 低溫沉積、 良好的膜黏附性、 良好的均勻性等優(yōu)點, 有利于大規(guī)模生產(chǎn), 廣泛應(yīng)用于薄膜制備. Subrahmanyam等[23]用磁控濺射方法, 在氬氣和氧氣氛圍下對Ag和In合金靶材濺射制備了In2O3∶Ag薄膜; Cho等[24]采用雙靶共濺射方法對Ag靶材和In2O3靶材進行濺射, 制備了In2O3∶Ag薄膜.本文利用磁控濺射方法, 對In2O3靶材和放置于靶材上不同質(zhì)量金屬Ag顆粒進行濺射, 在石英襯底上制備不同Ag摻雜濃度的 In2O3∶Ag薄膜, 并分析銀摻雜濃度對In2O3∶Ag薄膜的禁帶寬度、 光開關(guān)比以及光探測率等光電性能的影響.

      1 實 驗

      1.1 制備方法

      利用磁控濺射儀器在石英襯底上制備 In2O3∶Ag薄膜. 實驗材料是質(zhì)量分?jǐn)?shù)為99.999%、 直徑和厚度分別為50.8 mm和3 mm的圓形In2O3靶及質(zhì)量分?jǐn)?shù)為99.999%的Ag顆粒. 工作氣體是體積分?jǐn)?shù)為99.999%的氧氣和氬氣. 石英基片在超聲清洗去污后置于反應(yīng)腔體內(nèi), 抽真空至5.0×10-4 Pa, 通入氬氣輝光清洗石英基片, 通入氧氣和氬氣的混合氣體對In2O3靶材預(yù)濺射10 min后正式濺射. 改變放置Ag的質(zhì)量制備出不同摻雜濃度的In2O3∶Ag薄膜, In2O3∶Ag薄膜的生長參數(shù)列于表1.

      1.2 樣品表征

      采用Cu Kα輻射、 波長為0.154 1 nm Hitachi D/max 2500PC型X射線衍射(XRD)儀表征晶體結(jié)構(gòu). 采用Thermo Scientific ESCALAB250 Xi型X射線光電子能譜(XPS)分析薄膜元素成分. 采用Zeiss Sigma 300型掃描電子顯微鏡(SEM)表征薄膜形貌. 采用PerkinElmer LAMBDA 950型紫外-可見分光光度計分析薄膜的光學(xué)透過率和禁帶寬度. 采用Keithley4200-SCS型半導(dǎo)體分析儀(光源為365 nm和532 nm的LED)分析樣品的光電性能.

      2 結(jié)果和討論

      2.1 薄膜的XRD分析

      圖1為不同Ag摻雜濃度的In2O3∶Ag薄膜樣品的XRD譜. 所有樣品XRD譜可指標(biāo)化為立方晶系的In2O3晶體(JCPDS 06-0416), XRD譜中未出現(xiàn)其他衍射峰, 表明實驗過程中未生成其他雜質(zhì)相. In2O3∶Ag薄膜的衍射峰向小角度偏移, 一方面是因為Ag+替換In3+摻入In2O3晶格內(nèi)(Ag+的半徑為126 nm, In3+的半徑為80 nm), 另一方面是因為Ag摻入In2O3晶格間隙使晶格的間距增大, 晶格常數(shù)變大, 導(dǎo)致衍射峰向小角度偏移. 衍射峰偏移說明Ag已成功摻入In2O3晶體中. (440)衍射峰強度明顯增強, 說明Ag摻入加快了晶粒沿(440)方向的生長速度. In2O3∶Ag薄膜的半峰寬和晶粒尺寸列于表2. 由表2可見: 隨著Ag質(zhì)量的增加, Ag彌補了更多In2O3晶格中存在的缺陷[25], 導(dǎo)致In2O3∶Ag薄膜的半峰寬逐漸減??; Ag摻入使In2O3更易聚集形成晶粒, 導(dǎo)致In2O3∶Ag薄膜晶粒尺寸增大, 結(jié)晶質(zhì)量提高[26-27].

      2.2 薄膜的XPS分析

      為進一步證實Ag摻入In2O3中, 對In2O3∶Ag薄膜進行元素含量及價態(tài)分析. 圖2為In2O3∶Ag薄膜的XPS(以284.8 eV的C 1s峰校正). 由圖2(A)可見, In2O3∶Ag薄膜含有C,Ag,In,O元素, 其中Ag1,Ag3,Ag5樣品的Ag摻雜濃度(原子比)分別為0.55%,1.03%和1.96%. 由圖2(B)~(D)可見, Ag 3d光譜可擬合為4個特征峰, Ag0 3d3/2和Ag0 3d5/2的結(jié)合能與單質(zhì)Ag一致, 由單質(zhì)Ag進入In2O3晶格間隙所致[28], Ag+ 3d3/2和Ag+ 3d5/2與Ag離子有關(guān), 由Ag離子取代In2O3晶格中的In離子所致[21,29], 說明In2O3∶Ag中Ag以單質(zhì)和離子兩種形式存在. In2O3∶Ag薄膜Ag 3d的XPS擬合結(jié)果列于表3. 由表3可見, 隨著摻雜濃度的增加, In2O3∶Ag薄膜中銀離子(Ag+)和銀單質(zhì)(Ag0)含量均增加, In2O3∶Ag薄膜中Ag主要以單質(zhì)的形式存在, 以離子的形式存在較少, 說明Ag以間隙式摻雜比例多、 替位式摻雜比例少.

      2.3 薄膜的形貌分析

      圖3為不同Ag摻雜濃度的In2O3∶Ag薄膜表面形貌SEM照片. 由圖3可見, In2O3∶Ag薄膜表面顆粒分布均勻、 連接緊密. 隨著Ag摻雜濃度的增加, 晶粒尺寸更均勻, 顆粒更緊湊, 形態(tài)更清晰. 由圖3(A)可見, 當(dāng)摻雜濃度為0.55%時, 樣品呈球狀顆粒. 由圖3(B)可見, 當(dāng)摻雜濃度為1.03%時, 樣品表面形貌呈長條狀顆粒較多, 顆粒的平均尺寸為46 nm.

      由圖3(C)可見, 當(dāng)摻雜濃度為1.96%時, 樣品表面形貌呈球狀顆粒較多, 顆粒的平均尺寸約為40 nm.

      2.4 薄膜的光電性能分析

      圖4為In2O3∶Ag薄膜的紫外-可見光透射光譜. 由圖4可見, Ag1,Ag3,Ag5在450~800 nm內(nèi)的平均透過率分別為60.19%,44.57%,36.07%, In2O3∶Ag薄膜在可見光范圍明顯高于紫外光范圍的平均透過率. 圖5為In2O3∶Ag薄膜的(αhν)2-hν曲線, 其切線在橫軸截距為薄膜的禁帶寬度值[30]. 由圖5可見, In2O3∶Ag薄膜的禁帶寬度分別為2.47,2.21,2.08 eV. 由于Ag2O的禁帶寬度(1.2 eV)比In2O3的禁帶寬度(3.6 eV)小, 隨著Ag摻雜濃度的增加, Ag替代In比例增高, 因此In2O3∶Ag薄膜的禁帶寬度減?。?5,31].

      圖6為光電探測器的示意圖. 利用光電探測器對低摻雜濃度(Ag1)和高摻雜濃度(Ag5)的In2O3∶Ag薄膜進行光電性能測試. Ag1在365 nm光照、 Ag5在365 nm光照和Ag5在532 nm光照下的光響應(yīng)曲線如圖7所示.

      由圖7可見: Ag1樣品僅對365 nm的紫外光有光響應(yīng); 由于Ag5樣品的禁帶寬度減小, 使得在更低能量532 nm光照下使電子從價帶躍遷至導(dǎo)帶, 因此對365 nm的紫外光和532 nm的綠色可見光均有光響應(yīng), 說明摻雜濃度高的In2O3∶Ag薄膜具有多波長光響應(yīng)特性. Ag1在365 nm光照下的光響應(yīng)上升和下降時間分別為1.91 s和4.20 s, Ag5在365 nm和532 nm光照下的光響應(yīng)上升時間分別為3.59 s和5.34 s, 下降時間分別為4.52 s和6.70 s. 與非金屬元素氮摻雜In2O3薄膜[27]相比, In2O3∶Ag薄膜的暗電流更小, 可達到1 pA, 探測時會產(chǎn)生更少的噪聲干擾, 從而提高信噪比和靈敏度. Ag1在365 nm光照下的光探測率為8.24×109(cm·Hz1/2)/W, Ag5在365,532 nm光照下的光探測率分別為1.07×1010 (cm·Hz1/2)/W和2.55×1010 (cm·Hz1/2)/W, 由Ag摻雜濃度高的In2O3∶Ag薄膜所制備的光電探測器在探測微弱光信號方面具有優(yōu)越的性能提升.

      Ag1和Ag5在365 nm光照與黑暗狀態(tài)下的I-V曲線如圖8所示. 由圖8可見, 在2.5 V電壓下, Ag1和Ag5樣品的光開關(guān)比(Ilight/Idark)分別為1.24和1.42, Ag摻雜濃度高的In2O3∶Ag薄膜具有更大的光開關(guān)比, 光電探測能力更強[31-32].

      綜上, 本文采用磁控濺射法制備了不同摻雜濃度的In2O3∶Ag薄膜. 實驗結(jié)果表明, 隨著Ag摻雜濃度(原子比)由0.55%增大到1.96%, In2O3∶Ag薄膜的晶粒尺寸變大, 結(jié)晶質(zhì)量變好, In2O3∶Ag薄膜的禁帶寬度由2.47 eV減小至2.08 eV, 光探測率和光開光比均得到提升. 摻雜濃度為1.96%的In2O3∶Ag薄膜對365 nm(紫外光)與532 nm(綠光)光源均有響應(yīng), 可用于制作多波長探測器.

      參考文獻

      [1] SARIKET D, SHYAMAL S, HAJRA P, et al. Temperature Controlled Fabrication of Chemically Synthesized Cubic In2O3 Crystallites for Improved Photoelectrochemical Water Oxidation [J]. Materials Chemistry and Physics, 2017, 201: 7-17.

      [2] ISLAM A, MOU R, ROY R, et al. High Near-Infrared Transmittance, High Intense Orange Luminescence in Vanadium Doped Indium Oxide (V∶In2O3) Thin Films Deposited by Electron Beam Evaporation [J]. Optik, 2018, 157: 208-216.

      [3] JOTHIBAS M, MANOHARAN C, JEYAKUMAR J, et al. Study on Structural and Optical Behaviors of In2O3 Nanocrystals as Potential Candidate for Optoelectronic Devices [J]. Journal of Materials Science: Materials in Electronics, 2015, 26: 9600-9606.

      [4] LIU N, LI Y, LI Y N, et al. Tunable NH4F-Assisted Synthesis of 3D Porous In2O3 Microcubes for Outstanding NO2 Gas-Sensing Performance: Fast Equilibrium at High Temperature and Resistant to Humidity at Room Temperature [J]. ACS Applied Materials amp; Interfaces, 2021, 13(12): 14355-14364.

      [5] HAN D, ZHAI L, GU F, et al. Highly Sensitive NO2 Gas Sensor of ppb-Level Detection Based on In2O3 Nanobricks at Low Temperature [J]. Sensors and Actuators B: Chemical, 2018, 262: 655-663.

      [6] KOROTCENKOV G, BRINZARI V, CHO B K. In2O3-and SnO2-Based Ozone Sensors: Design and Characterization [J]. Critical Reviews in Solid State and Materials Sciences, 2018, 43(2): 83-132.

      [7] NGUYEN N, CHOI N, AHEMAD J, et al. Hydrothermal Synthesis of In2O3 Nanocubes for Highly Responsive and Selective Ethanol Gas Sensing [J]. Journal of Alloys and Compounds, 2020, 820: 153133-1-153133-7.

      [8] WANG Q, CHEN Y J, LIU X, et al. Sulfur Doped In2O3-CeO2 Hollow Hexagonal Prisms with Carbon Coating for Efficient Photocatalytic CO2 Reduction [J]. Chemical Engineering Journal, 2021, 421: 129968-1-129968-10.

      [9] TAN S, KEE Y, WONG H, et al. Pulsed Laser Deposition of ITO Nanorods in Argon and OLED Applications [J]. Surface and Coatings Technology, 2013, 231: 98-101.

      [10] ERFURT D, KOIDA T, HEINEMANN M D, et al. Impact of Rough Substrates on Hydrogen-Doped Indium Oxides for the Application in CIGS Devices [J]. Solar Energy Materials and Solar Cells, 2020, 206: 110300-1-110300-10.

      [11] GHOSH A, DWIVEDI D, GHADI H, et al. Boosted UV Sensitivity of Er-Doped In2O3 Thin Films Using Plasmonic Ag Nanoparticle-Based Surface Texturing [J]. Plasmonics, 2017, 13(3): 1105-1113.

      [12] KERITI Y, KEFFOUS A, DIB K, et al. Photoluminescence and Photocatalytic Properties of Er3+-Doped In2O3 Thin Films Prepared by Sol-Gel: Application to Rhodamine B Degradation under Solar Light [J]. Research on Chemical Intermediates, 2017, 44(3): 1537-1550.

      [13] YE F, ZENG J J, CAI X M, et al. Doping Cuprous Oxide with Fluorine and Its Band Gap Narrowing [J]. Journal of Alloys and Compounds, 2017, 721: 64-69.

      [14] QIAO Z, MERGEL D. Comparison of Radio-Frequency and Direct-Current Magnetron Sputtered Thin In2O3∶Sn Films [J]. Thin Solid Films, 2005, 484(1/2): 146-153.

      [15] TCHENKA A, AGDAD A, VALL S, et al. Effect of RF Sputtering Power and Deposition Time on Optical and Electrical Properties of Indium Tin Oxide Thin Film [J]. Advances in Materials Science and Engineering, 2021, 2021: 1-14.

      [16] KRISHNAN R, KAVITHA V, CHALANA R, et al. Effect of Tungsten Doping on the Properties of In2O3 Films [J]. JOM, 2019, 71(5): 1885-1896.

      [17] KRISHNAN R, CHALANA R, SAGADEVAN S, et al. Effect of Nb Doping on the Structural, Morphological, Optical and Electrical Properties of RF Magnetron Sputtered In2O3 Nanostructured Films [J]. Physica Status Solidi C, 2017, 14(1/2): 1600095-1-1600095-9.

      [18] JIANG F X, CHEN D, ZHOU G W, et al. The Dramatic Enhancement of Ferromagnetism and Band Gap in Fe-Doped In2O3 Nanodot Arrays [J]. Scientific Reports, 2018, 8(1): 2417-1-2417-6.

      [19] ZHANG C, HUAN Y, YING L, et al. Low Concentration Isopropanol Gas Sensing Properties of Ag Nanoparticles Decorated In2O3 Hollow Spheres [J]. Journal of Advanced Ceramics, 2022, 11(3): 379-391.

      [20] NATH A, SARKAR B. Surface-Plasmon-Induced Ag Nanoparticles Decorated In2O3 Nanowires for Low Noise Photodetectors [J]. Plasmonics, 2021, 16: 37-48.

      [21] DING M, XIE N, WANG C, et al. Enhanced NO2 Gas Sensing Properties by Ag-Doped Hollow Urchin-Like In2O3 Hierarchical Nanostructures [J]. Sensors and Actuators B: Chemical, 2017, 252: 418-427.

      [22] NATH A, MAHAJAN B K, SARKAR M B. Ag Nanoparticles Sheltered In2O3 Nanowire as a Capacitive MOS Memory Device [J]. IEEE Transactions on Nanotechnology, 2020, 19: 856-863.

      [23] SUBRAHMANYAM A, BARIK K. Electrical and Optical Properties of Silver Doped Indium Oxide Thin Films Prepared by Reactive DC Magnetron Sputtering [J]. Journal of Physics and Chemistry of Solids, 2006, 67(7): 1518-1523.

      [24] CHO D, SHIN Y, KIM S, et al. Highly Transparent Ag Doped In2O3 Electrodes with High Work Function for Organic Solar Cells [J]. Current Applied Physics, 2014, 14(Suppl): S80-S83.

      [25] 李桐, 張林睿, 楊炎翰, 等. 銅鋅錫硫薄膜太陽能電池吸收層的銀摻雜 [J]. 材料工程, 2018, 46(12): 95-100. (LI T, ZHANG L R, YANG Y H, et al. Silver Doping in Absorption Layer of Copper-Zinc-Tin-Sulfur Thin Film Solar Cells [J]. Journal of Materials Engineering, 2018, 46(12): 95-100.)

      [26] 李秀華, 張敏, 楊佳, 等. 薄膜厚度對射頻磁控濺射β-Ga2O3薄膜光電性能的影響 [J]. 物理學(xué)報, 2022, 71(4): 286-297. (LI X H, ZHANG M, YANG J, et al. Effect of Film Thickness on Photoelectric Properties of β-Ga2O3 Films by RF Magnetron Sputtering [J]. Acta Physica Sinica, 2022, 71(4): 286-297.)

      [27] 孫輝, 沈龍海, 劉子童, 等. 擇優(yōu)取向氮摻雜氧化銦薄膜的制備及其光電性能 [J]. 硅酸鹽學(xué)報, 2023, 51(1): 145-151. (SUN H, SHEN L H, LIU Z T, et al. Preparation and Photoelectric Properties of Preferentially Oriented Nitrogen Doped Indium Oxide Films [J]. Journal of the Chinese Ceramic Society, 2023, 51(1): 145-151.)

      [28] POTLOG T, DUCA D, DOBROMIR M. Temperature-Dependent Growth and XPS of Ag-Doped ZnTe Thin Films Deposited by Close Space Sublimation Method [J]. Applied Surface Science, 2015, 352: 33-37.

      [29] 燕音, 魏鑫, 帕提曼·尼扎木丁, 等. Ag摻雜ZnFe2O4納米顆粒的制備及光學(xué)氣敏性能研究 [J]. 化工新型材料, 2022, 50(10): 112-117. (YAN Y, WEI X, NIZHAMUDING P T M, et al. Preparation and Optical Gas Sensitive Properties of Ag Doped ZnFe2O4 Nanoparticles [J]. New Chemical Materials, 2022, 50(10): 112-117.)

      [30] 周樹仁, 張紅, 莫慧蘭, 等. N摻雜對β-Ga2O3薄膜日盲紫外探測器性能的影響 [J]. 物理學(xué)報, 2021, 70(17): 319-327. (ZHOU S R, ZHANG H, MO H L, et al. Effect of N Doping on the Performance of Solar Blind Ultraviolet Detector of β-Ga2O3 Thin Films [J]. Acta Physica Sinica, 2021, 70(17): 319-327.)

      [31] MOSTAFA Y, BADAWI A, AHMED I. Influence of Cu and Ag Doping on Structure and Optical Properties of In2O3 Thin Film Prepared by Spray Pyrolysis [J]. Results in Physics, 2018, 10: 126-131.

      [32] CHEN K Y, HSU C C, YU H C, et al. The Effect of Oxygen Vacancy Concentration on Indium Gallium Oxide Solar Blind Photodetector [J]. IEEE Transactions on Electron Devices, 2018, 65(5): 1817-1822.

      (責(zé)任編輯: 王 ?。?/p>

      猜你喜歡
      磁控濺射
      C/C復(fù)合材料表面磁控濺射ZrN薄膜
      俄用磁控濺射法制造燃料電池電解質(zhì)
      2019高功率脈沖磁控濺射沉積薄膜技術(shù)與應(yīng)用會議將在蘭州召開
      Zr含量對磁控濺射NiCrZr薄膜結(jié)構(gòu)及耐蝕性的影響
      N2氣流量比對磁控濺射Mo-N涂層結(jié)構(gòu)和性能的影響
      復(fù)雜腔體件表面磁控濺射鍍膜關(guān)鍵技術(shù)的研究
      AZO薄膜理想表面形貌的制備與加工工藝優(yōu)化
      工藝參數(shù)對直流磁控濺射法制備氧化鋁薄膜的試驗研究
      調(diào)制中頻高功率脈沖磁控濺射電源的設(shè)計
      微波介質(zhì)陶瓷諧振器磁控濺射金屬化
      英山县| 富川| 石台县| 虞城县| 乐昌市| 米易县| 阿勒泰市| 莫力| 寿宁县| 福鼎市| 舒城县| 大城县| 元阳县| 黔江区| 昭觉县| 益阳市| 紫云| 辽宁省| 阿瓦提县| 贵定县| 福泉市| 阆中市| 遂宁市| 海林市| 太和县| 吴旗县| 贵定县| 永年县| 龙井市| 达尔| 缙云县| 铁岭县| 贺兰县| 永顺县| 夏邑县| 福清市| 历史| 阳新县| 林口县| 芜湖县| 定日县|