• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      二苯氨基脲摻雜g|C3N4的制備及其光催化性能

      2024-01-01 00:00:00邰萌王憶非王瑩車廣波周天瑜
      吉林大學學報(理學版) 2024年4期
      關(guān)鍵詞:降解產(chǎn)氫光催化

      摘要: 針對石墨相氮化碳(g|C3N4或CN)的可見光吸收和活性位點暴露能力有限且光生載流子極易復合, 進而限制CN基光催化材料活性的問題," 采用尿素作為前驅(qū)體, 二苯氨基脲作為摻雜試劑, 通過一步熱聚合法制備一種新型二苯氨基脲摻雜CN(BCN)的光催化劑. 通過氮氣吸附|解吸測試、 Fourier變換紅外(FT|IR)光譜、 X射線衍射(XRD)、 紫外|可見漫反射(UV|Vis DRS)光譜、 光致發(fā)光(PL)光譜和電化學阻抗分析(EIS)對BCN光催化劑進行表征. 結(jié)果表明," 與CN相比, BCN光催化劑可顯著提升可見光吸收能力和光生電子空穴對分離效率, 比表面積約為原來的2倍;" BCN光催化劑在可見光照射下的產(chǎn)氫速率為588.7 μmol/(h·g), 約為原CN的2.0倍, 對四環(huán)素的光降解率為74%, 對應速率常數(shù)約為原CN的1.5倍. 研究結(jié)果可為開發(fā)新型氮化碳光催化劑、 氫能源生產(chǎn)和抗生素污染修復提供有益參考.

      關(guān)鍵詞: 石墨相氮化碳; 光催化; 二苯氨基脲; 產(chǎn)氫; 四環(huán)素; 降解

      中圖分類號: O643" 文獻標志碼: A" 文章編號: 1671-5489(2024)04-0999-09

      Preparation of Diphenylaminourea Doped g|C3N4 and Its Photocatalytic Performance

      TAI Meng1,2," WANG Yifei1,2,3," WANG Ying4," CHE Guangbo1,2,3," ZHOU Tianyu1,3,4

      (1. Key Laboratory of Preparation and Application of Environmental Friendly Materials,"" Ministry of Education," Jilin Normal University," Changchun 130103, China;" 2. College of Chemistry," Jilin Normal University," Siping 136000," Jilin Province," China;3. College of Engineering," Jilin Normal University," Siping 136000," Jilin Province," China;" 4. Jilin Province Product Quality Supervision and Inspection Institute," Changchun 130012," China)

      Abstract:" Aiming at the problem that"" the visible light absorption and active site exposure capacity of graphitic phase carbon nitride (g|C3N4 or CN) were limited," and the photogenerated carriers were easy to recombine," which" limited the activity of CN|based photocatalytic materials. A new type of diphenylaminourea doped CN (BCN) photocatalyst was" prepared by a" one|step thermal polymerization method using urea as a precursor and diphenylaminourea as dopant. The BCN photocatalyst was characterized by using nitrogen adsorption|desorption test," Fourier|transform infrared spectroscopy (FT|IR), X|ray diffraction (XRD), ultraviolet|visible spectroscopy (UV|Vis DRS), photolumine|scence spectroscopy (PL)," electrochemical impedance spectroscopy (EIS). The results show that compared with CN, the BCN photocatalyst can significantly improve visible|light absorption capacity and separation efficiency of photogenerated electron|hole pair," and the specific surface area is about twice that of the original."" The hydrogen production rate of the BCN photocatalyst under visible light irradiation is 588.7 μmol/(h·g)," which is about" twice that of" the original CN," and the photodegradation rate is 74% for tetracycline," corresponding" to rate constant of about" 1.5 times that of the original CN. This research results can provide useful references" for the development of novel CN photocatalysts,"" hydrogen energy production and antibiotic pollution remediation.

      Keywords: graphite phase carbon nitride;" photocatalysis;" diphenylaminourea;" hydrogen production; tetracycline;" degradation

      0 引 言

      目前, 能源短缺和環(huán)境危機問題長期阻礙現(xiàn)代社會的可持續(xù)發(fā)展, 也與碳達峰和碳中和的實現(xiàn)背道而馳. 因此, 亟待開發(fā)可持續(xù)的清潔能源生產(chǎn)和環(huán)境修復技術(shù). 光催化太陽能轉(zhuǎn)換技術(shù)具有高效、 綠色、 經(jīng)濟等優(yōu)勢, 被認為是解決全球能源短缺和環(huán)境危機最有效的策略之一, 該技術(shù)實際應用的關(guān)鍵取決于獲得高效、 耐用、 經(jīng)濟、 環(huán)保、 穩(wěn)定的光催化劑. 在光催化材料中, 石墨相氮化碳(g|C3N4或CN)作為一種無金屬半導體光催化材料受到人們廣泛關(guān)注, 它具有原料價格低廉、 制備簡單、 化學和熱穩(wěn)定性良好、 禁帶寬度(Eg≈2.7 eV)較窄且能帶結(jié)構(gòu)可調(diào)節(jié)等優(yōu)點, 因此在光降解、 光催化產(chǎn)H2和H2O2、 光催化固氮以及CO2還原等領(lǐng)域應用廣泛. 但純CN存在一些缺點, 如比表面積小、 活性位點暴露少、 對太陽光利用率低以及光生電子和空穴易復合等, 從而極大限制了它在光催化領(lǐng)域的應用.

      為克服這些缺點, 可通過摻雜、 構(gòu)建異質(zhì)結(jié)、 調(diào)控形貌和構(gòu)建缺陷等策略改善單一CN的性能. 摻雜可有效調(diào)節(jié)材料的形貌、 光吸收范圍和光生載流子復合程度: 摻雜可調(diào)控CN形貌, 增大比表面積以增加反應活性位點; 種類豐富的摻雜劑能參與CN結(jié)構(gòu), 有利于電子空穴的分離和轉(zhuǎn)移, 有效抑制光生載流子復合;" 摻雜還能調(diào)節(jié)CN能級結(jié)構(gòu), 從而調(diào)節(jié)禁帶寬度, 提升光吸收能力和范圍. 研究表明, 將不同結(jié)構(gòu)的小分子與尿素共融, 所構(gòu)筑的摻雜型CN可顯著提高光催化性能. 如人們利用喹唑啉|2,4|二胺和水楊酸等小分子與尿素聚合制備了性能顯著提升的CN光催化劑." 如圖1所示的二苯氨基脲是一種含有2個苯環(huán)的富氮類物質(zhì), 其上的氨基可通過胺醛縮合與尿素反應, 目前, 采用該物質(zhì)改性CN的研究尚未見文獻報道.

      基于此," 本文以二苯氨基脲為小分子摻雜劑, 尿素為前驅(qū)體, 通過一步熱聚合構(gòu)筑光催化性能降解顯著提升的新型CN光催化劑. 通過對該光催化劑進行結(jié)構(gòu)、 形貌、 光電性質(zhì)和活性物質(zhì)捕獲實驗等表征測試分析, 研究該光催化劑的產(chǎn)氫和降解性能及其提升機制.

      1 實 驗

      1.1 試 劑

      尿素(CH4N2O)、 四環(huán)素(C22H24N2O8)和二苯氨基脲(C13H14N4O)購自美國阿拉丁試劑有限公司, 抗壞血酸(C6H8O6)、 異丙醇(C3H8O)和EDTA|2Na(C10H14N2Na2O8)購自國藥集團化學試劑有限公司, 其他試劑均為國產(chǎn)分析純試劑.

      1.2 儀 器

      UV|2700型紫外可見分光光度儀(日本島津公司); JSM|7800F型掃描電子顯微鏡(日本JEOL公司); F|7100型熒光光譜儀(日本日立公司); ESCALAB250XI型X射線光電子能譜儀(美國Thermo Fisher公司); KSL|1100X|S型馬弗爐(合肥科晶有限公司); 3H|2000PS1型全自動氣體吸附儀(美國康塔公司); CHI660C型電化學工作站(上海辰華儀器公司); GC|2014型氣相色譜(日本島津公司);" IBH|TemPro型熒光壽命測試系統(tǒng)(美國IBH|TemPro JV公司).

      1.3 光催化劑的合成

      采用一步熱誘導共聚法制備光催化劑:" 將20 g尿素和20 mg二苯氨基脲置于坩堝中, 混合物加熱至150" ℃獲得澄清溶液. 冷卻至室溫后, 將混合物置于馬弗爐中, 以5 ℃/min加熱至600 ℃并保持3 h. 冷卻至室溫后, 將固體研磨成粉末即制得二苯氨基脲摻雜的CN, 記為BCN. 采用相同方法制備CN, 但在制備過程中不加入二苯氨基脲. 反應過程如圖2所示.

      1.4 光催化實驗

      為考察制備的光催化劑對四環(huán)素(TC)的光降解效果, 選擇300 W Xe燈(截止濾光片濾除紫外光)為可見光光源, 并在反應過程中通過循環(huán)水以避免Xe燈產(chǎn)熱而影響光降解. 將10 mg的BCN或CN分別分散于TC(10 mg/L, 50 mL)溶液中, 混合后在避光條件下攪拌30 min, 達到吸附|解吸平衡后開燈, 每隔一定時間取1.5 mL混合液用濾頭(0.22 μm)過濾, 濾液用紫外|可見分光光度計在358 nm波長下分析TC吸光度變化.

      利用光催化析氫實驗研究光催化劑在常壓下的活性. 將30 mg樣品均勻加入到含有體積分數(shù)為10%三乙醇胺(TEOA, 犧牲劑)和質(zhì)量分數(shù)為3%Pt(共催化劑)的100 mL水溶液中. 采用300 W、 波長大于420 nm的Xe燈作為可見光源, 循環(huán)水條件下保持系統(tǒng)溫度為20 ℃. 產(chǎn)生的H2通過氣相色譜法檢測.

      1.5 活性物種捕獲實驗

      通過在TC溶液中加入不同猝滅劑以檢測光催化降解過程中產(chǎn)生的活性物質(zhì). 捕獲實驗過程與光催化降解實驗相似, 分別加入1 mmol/L的異丙醇(IPA)、 抗壞血酸(L|AA)和EDTA|2Na作為猝滅劑, 分別捕獲·OH,O·-2和h+.

      2 結(jié)果與討論

      2.1 結(jié)構(gòu)與成分

      通過X射線衍射(XRD)測試分析樣品的晶相, 結(jié)果如圖3所示. 由圖3可見, 2個樣品在13.2°和27.6°處均出現(xiàn)2個典型特征峰, 分別對應CN基材料的100和002晶面.

      這2個特征峰來源于三氮平面上的重復單元和層間堆疊, 表明加入二苯氨基脲未破壞CN的主骨架, 但002晶面的峰值強度降低, 寬度變寬, 表明摻雜二苯氨基脲改變了CN平面的層間堆疊.

      CN和BCN的掃描電子顯微鏡(SEM)照片和X射線能譜(EDS)分別如圖4和圖5所示. 由圖4和圖5可見:" CN呈塊狀堆疊結(jié)構(gòu)(圖4(A)), BCN呈更細碎的塊狀堆疊結(jié)構(gòu)(圖5(A));" 2個樣品均含C,N,O 3種元素(圖 4(B)~(D), 圖5(B)~(D)).

      用氮氣吸附|解吸實驗研究2種材料的比表面積和孔徑情況, 結(jié)果如圖6所示. 由圖6可見, 與純CN (45.0 m2/g)相比, BCN (96.8 m2/g)具有更大的比表面積和孔體積, 顯著增加的比表面積和細碎的邊緣結(jié)構(gòu)非常有利于吸附和催化位點接觸污染物, 從而提升光催化性能. ""CN和BCN的Fourier變換紅外(FT|IR)光譜如圖7所示. 由圖7可見:" 2個樣品在3 000~3 700 cm-1內(nèi)存在明顯吸收, 對應—OH和—NH2的伸縮振動; 在1 250~1 750 cm-1和810 cm-1處的特征峰分別對應芳香CN雜環(huán)單元和三嗪單元的伸縮振動. 這些相似的FT|IR光譜表明, 引入二苯氨基脲未對CN的官能團產(chǎn)生明顯影響.

      2.2 光電性質(zhì)

      采用紫外|可見漫反射(UV|Vis DRS)光譜儀測試材料的光吸收性能, 結(jié)果如圖8(A)所示. 由圖8(A)可見, 與CN相比, BCN在可見光范圍內(nèi)的吸收明顯增強, 且整體吸收峰出現(xiàn)紅移, 進一步表明加入二苯氨基脲有助于提高催化劑對可見光的吸收能力. 根據(jù)公式

      A(hν-Eg)n/2=αhν

      計算得到CN和BCN的帶隙(Eg)如圖8(B)所示, 其值分別為2.67,2.17 eV. 由圖8(B)可見, 加入二苯氨基脲縮小了Eg, 有利于電子從價帶VB向?qū)B躍遷, 促進了光催化反應. 由Mott|Schottky曲線(圖8(C))可見, CN和BCN均為典型的n型半導體, 平帶電位Ef分別為-0.89,-0.77 eV(相對于Ag/AgCl), 因此, CN和BCN的ECB分別為-0.79,-0.67 eV(相對于NHE). 根據(jù)

      Eg = EVB-ECB

      計算CN和BCN的EVB分別為1.88,1.50 eV," CN和BCN的能帶如圖8(D)所示.

      通過光致發(fā)光光譜(PL)技術(shù)研究摻入二苯氨基脲對CN材料中載流子分離和遷移行為的影響. CN和BCN的PL光譜如圖9所示. 由圖9可見, 摻雜二苯氨基脲后, BCN樣品的PL峰被明顯猝滅, 同時在520 nm附近出現(xiàn)另一個明顯的PL猝滅信號, 根據(jù)UV|Vis DRS結(jié)果和文獻分析, 這可能是n|π*躍遷結(jié)果. 表明摻雜二苯氨基脲可有效抑制載流子復合, 同時產(chǎn)生新的電子躍遷模式. 為進一步證明上述觀點, 將CN和BCN粉末和懸浮液在紫外|可見光下照射, 結(jié)果如圖10所示." 由圖10可見, 其結(jié)果與PL光譜結(jié)果一致, 說明與CN相比, BCN粉末和懸浮液的PL明顯較弱, 從而證實了其載體重組效率明顯受到抑制.

      CN和BCN催化劑的電化學阻抗(ELS)光譜如圖11所示, 其中CN和BCN的內(nèi)阻分別為36,38 Ω, 電阻分別為358,20 Ω. 由圖11可見, 與光降解的趨勢一致, BCN顯著小于CN的電化學阻抗半徑, 表明BCN具有更小的電化學阻抗, 進一步說明摻雜二苯氨基脲可有效降低電荷遷移阻抗, 促進電荷遷移.

      2.3 光催化性能

      2.3.1 光降解TC

      為考察光催化劑對污染物的去除行為, 在可見光照射下, 測定CN和BCN對TC的降解性能, 結(jié)果如圖12所示.

      由圖12(A)可見, TC的自降解作用可忽略不計, 在100 min內(nèi), CN和BCN對TC的降解率分別為53%和74%. 可見, 加入二苯氨基脲可顯著提升CN對TC的光催化降解性能. 這可能歸因于BCN具有更大的比表面積、 更有效的電子空穴分離效率和更低的光生電子|空穴復合率. 由圖12(B)可見, BCN約為CN降解速率常數(shù)k的1.5倍. 由圖12(D)可見," 經(jīng)4次循環(huán)后, BCN對TC的降解率略降低, 這可能是循環(huán)回收過程中, 細小尺寸的催化劑損失所致, 表明BCN樣品具有良好的穩(wěn)定性和實用性.

      2.3.2 活性物種

      通過在反應過程中加入不同猝滅劑, 研究不同自由基對BCN光降解TC的影響, 結(jié)果如圖13所示." 與空白體系對比, 分別添加L|AA,EDTA|2Na和IPA用于猝滅O·-2,h+和·OH. 由圖13可見, 添加猝滅劑后, BCN光催化降解TC效果均明顯受到抑制作用, 因此O·-2,·OH和h+在BCN降解TC過程中均是主要活性物質(zhì), 其貢獻順序為h+ gt;O·-2gt;·OH.

      2.3.3 光催化產(chǎn)氫

      BCN光催化劑的產(chǎn)氫速率和產(chǎn)氫量如圖14所示. 由圖14(A)可見, BCN比純CN有更高的光催化產(chǎn)氫性能, BCN的光催化產(chǎn)氫速率為588.7 μmol/(h·g), 約為原CN(292.3 μmol/(h·g))的2.0倍. 由圖14(B)可見, 在相同時間內(nèi), BCN均明顯高于CN的析氫量. 上述實驗結(jié)果表明, 摻雜二苯氨基脲可顯著提高CN的光催化性能.

      2.4 光催化機理

      光催化劑的產(chǎn)氫降解機理如圖15所示.

      由圖15可見, 摻雜二苯氨基脲后的BCN有更細碎的結(jié)構(gòu)以及更小的帶隙結(jié)構(gòu), 較窄的帶隙和較大的比表面積共同促進了光生激子的分離和光生載流子的遷移, 在可見光照射下, 帶負電的電子躍遷到導帶(CB), 還原水中的氫離子產(chǎn)生氧氣, 同時與大氣中的氧氣發(fā)生還原反應產(chǎn)生超氧自由基. 帶正電的空穴留在價帶(VB)與活性氧共同促進了污染物TC的降解.

      綜上所述, 本文以尿素為前驅(qū)體, 制備了二苯氨基脲摻雜的新型BCN光催化劑. 該BCN光催化劑具有較大的比表面積," 提升了可見光吸收強度和吸收范圍, 明顯改善了電荷行為. 使得改性后的CN提供了更暴露的活性位點、 更窄的帶隙、 更低的電化學遷移阻抗、 更高的電子空穴分離效率和更低的載流子復合率." BCN約為CN的光催化降解速率常數(shù)的1.5倍, 產(chǎn)氫速率約為2.0倍. 該研究為改性CN基光催化應用于氫能源生產(chǎn)和抗生素污染修復提供了新思路.

      參考文獻

      [1] LIN J K," TIAN W J," GUAN Z Y," et al. Functional Carbon Nitride Materials in Photo|Fenton|Like Catalysis for Environmental Remediation" . Advanced Functional Materials," 2022," 32: 2201743|1|2201743|31.

      [2] CHEN J B," KANG N X," FAN J J," et al. Carbon Nitride for Photocatalytic Water Splitting to Produce Hydrogen and Hydrogen Peroxide" . Materials Today Chemistry," 2022," 26: 101028|1|101028|16.

      [3] CHENG L," ZHANG H W," LI X," et al. Carbon|Graphitic Carbon Nitride Hybrids for Heterogeneous Photocatalysis" . Small," 2021," 17: 2005231|1|2005231|22.

      [4] 胡長朝, 蔡露, 李鈺, 等. NH2|UiO|66/BiOBr/Bi2S3光催化劑的合成及其光催化性能" . 西華大學學報(自然科學版), 2022, 41(4): 1|10. (HU C C, CAI L, LI Y, et al. Study on Synthesis and Photocatalytic Performance of NH2|UiO|66/BiOBr/Bi2S3 Photocatalyst" . Journal of Xihua University (Natural Science Edition), 2022, 41(4): 1|10.)

      [5] 許汐龍, 方嘉, 衣程程, 等. 金屬有機骨架材料吸附CO2的研究進展" . 西華大學學報(自然科學版), 2024, 43(2): 39|49. (XU X L, FANG J, YI C C, et al. Research Progress of CO2 Adsorption Technology of Metal|Organic Frameworks Materials" . Journal of Xihua University (Natural Science Edition), 2024, 43(2): 39|49.)

      [6] 宋志強, 王玉高, 張宇姝, 等." 活性炭/金屬有機骨架復合吸附材料的制備及其CH4/N2吸附分離性能研究" . 低碳化學與化工, 2023, 48(5): 163|175. (SONG Z Q, WANG Y G, ZHANG Y S, et al. Study on Preparation of Activated Carbon/Metal|Organic Frameworks Composite Adsorbent Materials and Their CH4/N2 Adsorption and Separation Performance" . Low|Carbon Chemistry and Chemical Engineering, 2023, 48(5): 163|175.)

      [7] 董雙石, 付紹珠, 于洋, 等. 還原氧化石墨烯復合方式對Ag|TiO2基光電極電子傳輸性能的影響" . 吉林大學學報(地球科學版), 2020, 50(1): 234|242. (DONG S S, FU S Z, YU Y, et al. Effect of Reduced Graphene Oxide Composite Method on Electron Transport Performance of Ag|TiO2 Based Photoelectrodes" . Journal of Jilin University (Earth Science Edition), 2020, 50(1): 234|242.)

      [8] XING Y," WANG X," HAO S," et al. Recent Advances in the Improvement of g|C3N4 Based Photocatalytic Materials" . Chinese Chemical Letters," 2021," 32: 13|20.

      [9] ZHAO S," LIU Y P," WANG Y Y," et al. A Self|assembly Strategy to Synthesize Carbon Doped Carbon Nitride Microtubes with a Large π|Electron Conjugated System for Efficient H2 Evolution . Chemical Engineering Journal," 2022," 447: 137436|1|137436|9.

      [10] TONG C," JING L Q," XIE M," et al. C—O Band Structure Modified Broad Spectral Response Carbon Nitride with Enhanced Electron Density in Photocatalytic Peroxymonosulfate Activation for Bisphenol Pollutants Removal" . Journal of Hazardous Materials," 2022," 432: 128663|1|128663|17.

      [11] LI X B," KANG B B," DONG F," et al. Enhanced Photocatalytic Degradation and H2/H2O2 Production Performance of S|PCN/WO2.72 S|Scheme Heterojunction with Appropriate Surface Oxygen Vacancies" . Nano Energy," 2021," 81:" 105671|1|105671|11.

      [12] BAO H," WANG L," LI G," et al. Carrier Engineering of Carbon Nitride Boosts Visible|Light Photocatalytic Hydrogen Evolution" . Carbon," 2021," 179: 80|88.

      [13] HUO T T," BA G," DENG Q H," et al. A Dual Strategy for Synthesizing Carbon/Defect Comodified Polymeric Carbon Nitride Porous Nanotubes with Boosted Photocatalytic Hydrogen Evolution and Synchronous Contaminant Degradation" . Applied Catalysis B:" Environmental," 2021," 287: 119995|1|119995|12.

      [14] LUO L," WANG K R," GONG Z Y," et al. Bridging|Nitrogen Defects Modified Graphitic Carbon Nitride Nanosheet for Boosted Photocatalytic Hydrogen Production" . International Journal of Hydrogen Energy," 2021," 46: 27014|27025.

      [15] LI C M," ZHOU T X," YAN M," et al. Intramolecular π|Conjugated Channel Expansion Achieved by Doping Cross|Linked Dopants into Carbon Nitride Frameworks for Propelling Photocatalytic Hydrogen Evolution and Mechanism Insight . Inorganic Chemistry Frontiers," 2022," 9: 60|69.

      [16] YU Y," YAN W," GAO W Y," et al. Aromatic Ring Substituted g|C3N4 for Enhanced Photocatalytic Hydrogen Evolution . Journal of Materials Chemistry A," 2017," 5: 17199|17203.

      [17] KIM H," GIM S," JEON T H," et al. Distorted Carbon Nitride Structure with Substituted Benzene Moieties for Enhanced Visible Light Photocatalytic Activities . ACS Applied Materials amp; Interfaces," 2017," 9: 40360|40368.

      [18] CHEN Z H," LI S S," PENG Y N," et al. Tailoring Aromatic Ring|Terminated Edges of g|C3N4 Nanosheets for Efficient Photocatalytic Hydrogen Evolution with Simultaneous Antibiotic Removal . Catalysis Science amp; Technology," 2020," 10: 5470|5479.

      [19] ZHOU C Y," HUANG D L," XU P," et al. Efficient Visible Light Driven Degradation of Sulfamethazine and Tetracycline by Salicylic Acid Modified Polymeric Carbon Nitride via Charge Transfer . Chemical Engineering Journal," 2019," 370: 1077|1086.

      [20] ZHOU T Y," SHI J M, "LI G J," et al. Advancing n|π* Electron Transition of Carbon Nitride via Distorted Structure and Nitrogen Heterocycle for Efficient Photodegradation:" Performance," Mechanism and Toxicity Insight . Journal of Colloid and Interface Science," 2023," 632: 285|298.

      [21] ZHOU T Y," LI T T," HOU J Y," et al. Tailoring Boron Doped Intramolecular Donor|Acceptor Integrated Carbon Nitride Skeleton with Propelling Photocatalytic Activity and Mechanism Insight . Chemical Engineering Journal," 2022," 445: 136643|1|136643|13.

      [22] SHI J M," TAI M," HOU J Y," et al. Intramolecular D|A Structure and n|π* Transition Co|promoted Photodegradation Activity of Carbon Nitride:" Performance," Mechanism and Toxicity Insight . Chemical Engineering Journal," 2023, "456: 141029|1|141029|14.

      [23] GAO X M," SHU C," ZHANG C," et al. Substituent Effect of Conjugated Microporous Polymers on the Photocatalytic Hydrogen Evolution Activity . Journal of Materials Chemistry A," 2020," 8: 2404|2411.

      [24] CHEN L," WANG Y X," CHENG S," et al. Nitrogen Defects/Boron Dopants Engineered Tubular Carbon Nitride for Efficient Tetracycline Hydrochloride Photodegradation and Hydrogen Evolution . Applied Catalysis B:" Environmental," 2022," 303: 120932|1|120932|9.

      [25] DONG H J," ZUO Y," XIAO M Y," et al. Limbic Inducted and Delocalized Effects of Diazole in Carbon Nitride Skeleton for Propelling Photocatalytic Hydrogen Evolution . ACS Applied Materials amp; Interfaces," 2021," 13: 56273|56284.

      [26] DU J," LI S Y," DU Z," et al. Boron/Oxygen|Codoped Graphitic Carbon Nitride Nanomesh for Efficient Photocatalytic Hydrogen Evolution . Chemical Engineering Journal," 2021," 407: 127114|1|127114|9.

      [27] WANG X," ZHAO Y N," TAN H Q," et al. Foamer|Derived Bulk Nitrogen Defects and Oxygen|Doped Porous Carbon Nitride with Greatly Extended Visible|Light Response and Efficient Photocatalytic Activity . ACS Applied Materials amp; Interfaces," 2021," 13: 23866|23876.

      [28] FEI T," QIN C C," ZHANG Y W," et al. A 3D Peony|Like Sulfur|Doped Carbon Nitride Synthesized by Self|assembly for Efficient Photocatalytic Hydrogen Production . International Journal of Hydrogen Energy," 2021," 46: 20481|20491.

      [29] ZHAO G G," LI B W," YANG X N," et al. Two Birds with One Stone:" Engineering Polymeric Carbon Nitride with n|π*Electronic Transition for Extending Light Absorption and Reducing Charge Recombination . Advanced Powder Materials," 2023," 2: 100077|1|100077|8.

      [30] CHE H N," GAO X," CHEN J," et al. Iodide|Induced Fragmentation of Polymerized Hydrophilic Carbon Nitride for High|Performance Quasi|homogeneous Photocatalytic H2O2 Production . Angewandte Chemie International Edition," 2021," 60: 25546|25550.

      (責任編輯: 單 凝)

      猜你喜歡
      降解產(chǎn)氫光催化
      ZnCoP/CdLa2S4肖特基異質(zhì)結(jié)的構(gòu)建促進光催化產(chǎn)氫
      單分散TiO2/SrTiO3亞微米球的制備及其光催化性能
      陶瓷學報(2019年5期)2019-01-12 09:17:34
      第四周期過渡金屬催化硼氫化鈉分解制氫研究*
      BiOBr1-xIx的制備及光催化降解孔雀石綠
      有機廢棄物生物制氫研究
      化工管理(2017年25期)2017-03-05 23:32:36
      亞硝酸鹽降解進展研究
      土壤中多菌靈污染及修復技術(shù)研究現(xiàn)狀
      紅外光譜結(jié)合元素分析法研究SRB對煤的降解
      微生物對垃圾滲濾液中胡敏酸降解和形成的影響
      科技視界(2016年7期)2016-04-01 09:39:11
      可見光光催化降解在有機污染防治中的應用
      遂宁市| 蒙山县| 临夏县| 师宗县| 松潘县| 新巴尔虎右旗| 延吉市| 讷河市| 砚山县| 杭锦后旗| 衡山县| 台江县| 阿勒泰市| 宁城县| 新安县| 江川县| 临朐县| 仁怀市| 巴彦淖尔市| 石林| 南开区| 通化市| 浮梁县| 南召县| 九寨沟县| 松阳县| 阿拉善右旗| 富源县| 滦平县| 秦皇岛市| 利津县| 东港市| 南召县| 钟山县| 大余县| 梅河口市| 凤阳县| 呼和浩特市| 灌阳县| 方正县| 白山市|