doi:10.6048/j.issn.1001-4330.2024.05.016
摘" 要:【目的】研究楊樹-苜蓿間作對(duì)紫花苜蓿生長(zhǎng)發(fā)育及品質(zhì)的影響,為新疆林草復(fù)合模式的可持續(xù)發(fā)展提供理論和技術(shù)依據(jù)。
【方法】2018~2019年4月上旬至9月上旬,每隔15 d對(duì)紫花苜蓿進(jìn)行采樣,測(cè)定紫花苜蓿的農(nóng)藝性狀(株高、葉面積指數(shù)、莖葉比、莖粗、生長(zhǎng)速度)及品質(zhì)(粗蛋白、粗脂肪、飼用品質(zhì)),并監(jiān)測(cè)單作、間作紫花苜蓿田間微氣候(空氣溫度、空氣濕度、露點(diǎn)溫度、風(fēng)速)。
【結(jié)果】間作苜蓿各項(xiàng)指標(biāo)均顯著低于單作,間作的干草總產(chǎn)量比單作低55.27%;單作紫花苜蓿的露點(diǎn)溫度和風(fēng)速分別比間作高70.68%、93.83%,但單作紫花苜蓿的空氣濕度比間作低13.49%,空氣溫度無(wú)顯著差異;間作紫花苜蓿的粗蛋白、粗脂肪和飼用品質(zhì)分別比對(duì)應(yīng)的單作高17.78%、12.33%和17.26%。
【結(jié)論】楊樹-紫花苜蓿間作能夠改善農(nóng)田微氣候并顯著提高紫花苜蓿的營(yíng)養(yǎng)品質(zhì)。
關(guān)鍵詞:楊樹;紫花苜蓿;農(nóng)藝性狀;飼用品質(zhì);間作
中圖分類號(hào):S54""" 文獻(xiàn)標(biāo)識(shí)碼:A""" 文章編號(hào):1001-4330(2024)05-1182-08
收稿日期(Received):
2024-01-25
基金項(xiàng)目:
國(guó)家自然科學(xué)基金項(xiàng)目(31460335,31560376);國(guó)家牧草產(chǎn)業(yè)技術(shù)體系石河子綜合試驗(yàn)站(CARS-34);中國(guó)博士后科學(xué)基金(2015M582737)
作者簡(jiǎn)介:
代元帥(1996-),男,河南人,碩士研究生,研究方向?yàn)楦鲗W(xué)與農(nóng)業(yè)生態(tài)學(xué),(E-mail)1424260483@qq.com
通訊作者:
張偉(1979-),男,甘肅人,教授,博士,碩士生/博士生導(dǎo)師,研究方向?yàn)檗r(nóng)田生態(tài)與生物多樣性,(E-mail)bluesky2002040@163.com
0" 引 言
【研究意義】新疆氣候干燥,降水稀少,土壤鹽漬化較為普遍[1-3]。林草復(fù)合模式有利于改善生態(tài)環(huán)境,增加農(nóng)田生物量,提高土壤含水量[4-7]。研究林草間作模式(楊樹-苜蓿),對(duì)新疆林草復(fù)合模式的可持續(xù)發(fā)展有重要意義?!厩叭搜芯窟M(jìn)展】林草復(fù)合系統(tǒng)中牧草的生長(zhǎng)發(fā)育特性受林-草-環(huán)境相互作用的影響[8]。樹木遮陰降低了地面太陽(yáng)能輻射和雨水量,紫花苜蓿的光合和水分吸收受到制約,樹木的根系分布也會(huì)阻礙紫花苜蓿根系從土壤中汲取足夠多的養(yǎng)分,維持自身生長(zhǎng)發(fā)育,影響紫花苜蓿品質(zhì)形成和干草產(chǎn)量[9-11]。牧草對(duì)林下裸露的地表覆蓋會(huì)改變地表光、溫、水、熱等微環(huán)境條件,與光合作用所需的能量和物質(zhì)關(guān)系密切[12]。紫花苜蓿與楊樹間作能促進(jìn)紫花苜蓿固定的氮素向楊樹轉(zhuǎn)移,有利于提高間作作物生物產(chǎn)量[13]。采用施肥、灌溉和改變?cè)耘嗄J降却胧?,通過(guò)改善牧草群體內(nèi)部小氣候,提高牧草對(duì)水資源的利用率,以達(dá)到高產(chǎn)優(yōu)質(zhì)的目的[14]。林下植草能夠提高自然資源的利用率,又能獲得額外牧草收益[15-17]。【本研究切入點(diǎn)】目前對(duì)林草間作根系、生態(tài)和產(chǎn)量研究較多,而對(duì)林草間作條件下紫花苜蓿形態(tài)學(xué)特征和品質(zhì)影響的研究鮮有報(bào)道[18-21]。需要研究林草間作對(duì)紫花苜蓿生長(zhǎng)發(fā)育和飼用品質(zhì)的影響?!緮M解決的關(guān)鍵問(wèn)題】測(cè)定紫花苜蓿的農(nóng)藝性狀(株高、葉面積指數(shù)、莖葉比、莖粗、生長(zhǎng)速度)及品質(zhì)(粗蛋白、粗脂肪、飼用品質(zhì)),并監(jiān)測(cè)單作、間作紫花苜蓿田間微氣候(空氣溫度、空氣濕度、露點(diǎn)溫度、風(fēng)速),研究楊樹-紫花苜蓿間作對(duì)紫花苜蓿生長(zhǎng)發(fā)育及品質(zhì)的影響,為林草復(fù)合模式的可持續(xù)發(fā)展提供理論和技術(shù)依據(jù)。
1" 材料與方法
1.1" 材 料
試驗(yàn)于2018~2019年設(shè)在位于新疆石河子市147團(tuán)7連(86°10′ E,44°37′ N,平均海拔450 m)的定位試驗(yàn)田,年均氣溫6.6~7.1℃,年均降水量189~200 mm,年均蒸發(fā)量1 500~2 000 mm,無(wú)霜期148~187 d。土壤為輕鹽漬化灌耕荒漠土,土壤有機(jī)質(zhì)含量17.1 g/kg,速效鉀含量135.8 mg/kg,堿解氮含量18.6 mg/kg,速效磷含量5.2 mg/kg。
1.2" 方 法
1.2.1" 試驗(yàn)設(shè)計(jì)
選擇8年生的人造楊樹林,設(shè)楊樹-紫花苜蓿間作(以下簡(jiǎn)稱間作)、楊樹(新疆楊)
單作和紫花苜蓿單作3個(gè)處理,每個(gè)處理設(shè)3個(gè)重復(fù),小區(qū)面積3 m×6 m=18 m2。單作和間作楊樹于2012年9月種植,南北向種植,行間距為5.6 m×1.4 m;間作和單作紫花苜蓿于2015年9月播種,(三得利)苜蓿,由百綠(天津)國(guó)際草業(yè)有限公司提供。試驗(yàn)使用滴灌帶灌溉,每年灌水6次,每次灌水500 m3/hm2。
采用TNHY-5-A-G手持農(nóng)業(yè)環(huán)境監(jiān)測(cè)儀(浙江托普云農(nóng)科技股份有限公司出品)于09:00~10:00。分別測(cè)量間作和單作小區(qū)的空氣溫度、空氣濕度、露點(diǎn)溫度和風(fēng)速。
1.2.2" 測(cè)定指標(biāo)
在紫花苜蓿返青至枯黃期(4月下旬~9月上旬),每隔15 d田間采樣調(diào)查1次。
1.2.2.1" 農(nóng)藝性狀
株高:在不同小區(qū)選取具有代表性的10株紫花苜蓿,測(cè)定其自然株高,并計(jì)算平均值;莖葉比:將莖和葉(花序葉面積的測(cè)定歸入葉)分開后自然風(fēng)干,再分別稱量,計(jì)算莖葉比;莖粗:用游標(biāo)卡尺測(cè)量紫花苜蓿距地面5 cm處的莖粗;干草產(chǎn)量:在初花期刈割,刈割各小區(qū)1 m×1 m面積上的紫花苜蓿,留茬高度5 cm,將收獲鮮草置于105℃烘箱中殺青30 min后在85℃烘干至恒重稱重,計(jì)算干草產(chǎn)量;生長(zhǎng)速度:根據(jù)測(cè)得的紫花苜蓿干草產(chǎn)量以及每茬刈割間隔的天數(shù)計(jì)算出紫花苜蓿每一茬的生長(zhǎng)速度(kg/hm2·d);各小區(qū)選取1 m×1 m的紫花苜蓿,利用YMJ-B葉面積儀測(cè)定單株葉面積并計(jì)算葉面積指數(shù):
葉面積指數(shù)(LAI)=單位土地上的總?cè)~面積指數(shù)/土地面積。(1)
1.2.2.2" 營(yíng)養(yǎng)成分
粗蛋白(crude protein,CP)含量采用凱氏定氮法測(cè)定;粗脂肪(crude fat,CF)含量采用ANKOM2000索氏抽提法測(cè)定;酸性洗滌纖維(acid detergent fiber,ADF)和中性洗滌纖維(neutral detergent fiber,NDF)采用van Soest方法測(cè)定。計(jì)算相對(duì)飼用價(jià)值(relative feed value,RFV)[22-23]。
RFV=(88.9-0.779×ADF)×(120/NDF)/1.29.(2)
1.3" 數(shù)據(jù)處理
R3.6.1的AVO函數(shù)進(jìn)行方差分析,用ggplot2包作圖。使用SPSS 22.0進(jìn)行方差分析和多重比較,在0.05概率水平上采用Duncan法進(jìn)行顯著性檢驗(yàn)。
2" 結(jié)果與分析
2.1" 間作對(duì)紫花苜蓿葉面積指數(shù)(LAI)的影響
研究表明,隨著生育時(shí)期的推進(jìn),紫花苜蓿的LAI逐漸增加,刈割后紫花苜蓿的LAI會(huì)降低,并在刈割后的再生期后逐漸恢復(fù)。間作紫花苜蓿的LAI在各個(gè)時(shí)期均低于單作。單作、間作紫花苜蓿的LAI均在第一茬初花期達(dá)到最大值,分別為19.82和17.32。LAI隨著生育時(shí)期的推進(jìn)雖然逐漸恢復(fù),但均低于第一茬初花期的最大值。單作、間作紫花苜蓿LAI之間的差異在第三茬初花期達(dá)到最大。表1
2.2" 間作對(duì)紫花苜蓿生長(zhǎng)性狀指標(biāo)的影響
研究表明,單作紫花苜蓿的株高、莖粗、莖葉比、生長(zhǎng)速度在各茬次均高于間作。在紫花苜蓿的3次刈割中,單作與間作的株高、莖粗、莖葉比、生長(zhǎng)速度在第三茬刈割時(shí)差異最大,單作分別比對(duì)應(yīng)的間作高18.76%、35.43%、6.10%和9.63%。隨刈割茬次的增加,單作、間作紫花苜蓿的株高、莖粗、莖葉比、生長(zhǎng)速度呈先增加后降低的趨勢(shì),第三茬與第二茬差異最大(Plt;0.05)。表2
2.3" 間作對(duì)紫花苜蓿干草產(chǎn)量的影響
研究表明,單作、間作紫花苜蓿的干草產(chǎn)量在3次刈割中,第一茬最高,分別為7 060.03和3 498.83 kg/hm2。隨后的2次刈割紫花苜蓿的干草產(chǎn)量逐漸下降,干草產(chǎn)量與刈割次數(shù)成負(fù)相關(guān)。在第二茬刈割中,單作、間作紫花苜蓿的干草產(chǎn)量分別為4 889.88和2 144.43 kg/hm2,第三茬刈割中,單作、間作紫花苜蓿的干草產(chǎn)量分別為3 793.42和1 398.39 kg/hm2。單作、間作紫花苜蓿3次刈割的總干草產(chǎn)量分別為15 743.47和7 041.66 kg/hm2。間作紫花苜蓿的在3次刈割中收獲的干草產(chǎn)量與單作相比分別低了50.44%、56.15%和63.14%。間作紫花苜蓿的總干草產(chǎn)量比單作低55.27%。圖1
2.4" 間作對(duì)紫花苜蓿品質(zhì)的影響
研究表明,在間作條件下,紫花苜蓿粗蛋白含量、粗脂肪含量和飼用品質(zhì)均高于對(duì)應(yīng)的單作,而中性洗滌纖維、酸性洗滌纖維含量均低于對(duì)應(yīng)的單作;隨刈割次數(shù)的增加,單作、間作紫花苜蓿粗蛋白含量、粗脂肪含量和飼用品質(zhì)逐漸下降,中性洗滌纖維、酸性洗滌纖維含量逐漸升高,飼用品質(zhì)也逐漸降低。在第一、二、三刈割茬次,間作紫花苜蓿的粗蛋白含量比對(duì)應(yīng)單作分別高18.13%,17.6%和17.63%;間作紫花苜蓿粗脂肪含量比對(duì)應(yīng)單作分別高15.58%,8.78%和12.5%;間作紫花苜蓿中性洗滌纖維含量比對(duì)應(yīng)單作分別低10.53%,13.85%和13.3%;間作紫花苜蓿酸性洗滌纖維含量比對(duì)應(yīng)單作分別低7.48%,8%和3.69%;間作紫花苜蓿飼用品質(zhì)比對(duì)應(yīng)單作分別高14.96%,19.94%和17.01%。其中,間作紫花苜蓿的粗蛋白含量和粗脂肪含量均顯著高于對(duì)應(yīng)單作,并在第一茬差異達(dá)到最大;間作紫花苜蓿的中性洗滌纖維和酸性洗滌纖維含量均顯著低于單作,并在第一、二茬差異最大;間作紫花苜蓿的飼用品質(zhì)顯著高于單作,并在第二茬差異最大。表3
2.5" 間作對(duì)農(nóng)田微氣候的影響
研究表明,在紫花苜蓿整個(gè)生長(zhǎng)季中,間作的空氣溫度、露點(diǎn)溫度和風(fēng)速低于單作,而空氣濕度高于單作。其中單作、間作在空氣濕度和露點(diǎn)溫度的年平均差異不明顯,但在第二茬刈割時(shí)單作紫花苜蓿的露點(diǎn)溫度比間作高72.13%,差異顯著(Plt; 0.05)。3次刈割中,單作紫花苜蓿的風(fēng)速均顯著高于間作(P lt; 0.05),分別比間作高141.97%、87.16%和52.36%;間作紫花苜蓿的空氣濕度分別比單作高8.47%、10.36%和21.66%。圖2
3" 討 論
3.1" 間作對(duì)紫花苜蓿生長(zhǎng)發(fā)育和干草產(chǎn)量影響
干草產(chǎn)量是評(píng)價(jià)苜蓿生產(chǎn)性能的主要指標(biāo),株高、莖粗和生長(zhǎng)速度與干草產(chǎn)量密切相關(guān)[24]。苗曉茸等[25]通過(guò)灰色關(guān)聯(lián)度分析得出,紫花苜蓿的生長(zhǎng)速度、莖粗對(duì)其干草產(chǎn)量有較高的貢獻(xiàn)率。與研究結(jié)果一致,間作條件下紫花苜蓿的株高、莖粗、莖葉比和生長(zhǎng)速度均低于單作,導(dǎo)致間作的干草總產(chǎn)量也明顯低于單作。由于林下作物在光能競(jìng)爭(zhēng)中處于弱勢(shì),紫花苜蓿的生長(zhǎng)發(fā)育受到了不利影響[24]。不同遮陰程度下紫花苜蓿的生長(zhǎng)發(fā)現(xiàn),當(dāng)遮陰為50%時(shí)能夠獲得較高的干草產(chǎn)量[13]。受刈割影響,紫花苜蓿干草產(chǎn)量在第一茬刈割時(shí)達(dá)到最大,隨后逐漸降低,是因?yàn)榈厣喜糠滞鞴俚幕謴?fù)能力隨著刈割次數(shù)增加而減弱導(dǎo)致的[26-27]。間作下對(duì)刈割的反應(yīng)更強(qiáng)烈,間作干草產(chǎn)量在整個(gè)生長(zhǎng)期均低于對(duì)應(yīng)的單作。
3.2" 間作對(duì)紫花苜蓿營(yíng)養(yǎng)品質(zhì)的影響
粗蛋白含量、粗脂肪含量,中性和酸性洗滌纖維是評(píng)價(jià)紫花苜蓿的營(yíng)養(yǎng)品質(zhì)的重要指標(biāo)。其中NDF、ADF決定紫花苜蓿的飼用品質(zhì),CP含量和CF含量影響苜蓿干草市場(chǎng)的交易價(jià)格[28]。NDF含量越高、ADF含量越低,紫花苜蓿的飼用品質(zhì)越高,反之飼用品質(zhì)降低[29]。研究也證實(shí)了這一點(diǎn),間作下紫花苜蓿的NDF比單作的高,而ADF比單作低,計(jì)算結(jié)果也表明,間作飼用品質(zhì)、CP、CF均顯著高于單作,可能是樹木適當(dāng)?shù)恼陉幋龠M(jìn)了紫花苜蓿品質(zhì)的提高[30]。遮陰促進(jìn)了紫花苜蓿固定N的能力,有利于紫花苜蓿自身營(yíng)養(yǎng)物質(zhì)合成[31]。間作中通過(guò)改變樹行距使遮陰在適當(dāng)范圍內(nèi)對(duì)于紫花苜蓿產(chǎn)量和品質(zhì)的提高有促進(jìn)作用[32]。
紫花苜蓿的適宜微氣候條件是促進(jìn)紫花苜蓿品質(zhì)形成的關(guān)鍵[33-34]。
4" 結(jié) 論
間作對(duì)紫花苜蓿的農(nóng)藝性狀和品質(zhì)產(chǎn)生重要影響。在間作條件下,紫花苜蓿的葉面積指數(shù)、株高、莖粗、莖葉比、生長(zhǎng)速度和干草產(chǎn)量比相應(yīng)的單作分別低21.50%、10.75%、19.65%、4.92%、3.77%和55.27%。單作紫花苜蓿的露點(diǎn)溫度和風(fēng)速分別比間作高70.68%、93.83%,單作紫花苜蓿的空氣濕度比間作低13.49%,空氣溫度無(wú)顯著差異。林草復(fù)合模式具有降低林下風(fēng)速和調(diào)節(jié)林下溫度、濕度的作用,避免了夏季干熱風(fēng)對(duì)紫花苜蓿品質(zhì)形成的不利影響,又提高了紫花苜蓿的水分利用效率。間作紫花苜蓿的粗蛋白、粗脂肪和飼用品質(zhì)分別比對(duì)應(yīng)的單作高17.78%、12.33%和17.26%。間作雖然會(huì)導(dǎo)致林下紫花苜蓿農(nóng)藝性狀和干草產(chǎn)量下降,但林草間作有利于林下紫花苜蓿品質(zhì)的提升。
參考文獻(xiàn)(References)
[1]
陶雪, 蘇德榮, 蔻丹, 等. 西北旱區(qū)灌溉方式對(duì)苜蓿生長(zhǎng)及水分利用效率的影響[J]. 草地學(xué)報(bào), 2016, 24(1): 114-120.
TAO Xue, SU Derong, KOU Dan, et al. Effects of irrigation methods on growth and water use efficiency of alfalfa in arid northwest China [J]. Acta Agrestia Sinica, 2016, 24(1): 114-120.
[2] 冉錦成, 蘇洋, 胡金鳳, 等. 新疆畜牧養(yǎng)殖經(jīng)濟(jì)效益與碳排放脫鉤關(guān)系的實(shí)證研究[J]. 中國(guó)農(nóng)業(yè)資源與區(qū)劃, 2017, 38(1): 17-23.
RAN Jincheng, SU Yang, HU Jinfeng, et al. Economic performance and its decoupling relationship with carbon emissions in Xinjiang [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(1): 17-23.
[3] 徐麗君, 徐大偉, 逄煥成, 等.中國(guó)苜蓿屬植物適宜性區(qū)劃[J].草業(yè)科學(xué), 2017, 34(11):2347-2358.
XU Lijun, XU Dawei, PANG Huancheng, et al. Chinese alfalfa habitat suitability regionalization [J]. Pratacultural Science, 2017, 34 (11): 2347-2358.
[4] 陳澍, 荊文濤, 祖艷群, 等. 林草復(fù)合系統(tǒng)削減滇池流域農(nóng)業(yè)面源污染研究[J]. 中國(guó)水土保持, 2015,(4): 46-49,69.
CHEN Shu, JING Wentao, ZU Yanqun, et al. Reducing agricultural area-source pollution in Dianchi watershed through tree-grass compound system [J]. Soil and Water Conservation in China, 2015,(4): 46-49,69.
[5] 郭忠錄, 鄭珉嬌, 丁樹文, 等. 農(nóng)田改為農(nóng)林(草)復(fù)合系統(tǒng)對(duì)紅壤CO2和N2O排放的影響[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2012, 20 (9): 1191-1196.
GUO Zhonglu, ZHENG Minjiao, DING Shuwen, et al. CO2 and N2O emissions in the red soils of agro-forestry (grass) systems conversed from cropland in subtropical hilly region of China [J]. Chinese Journal of Eco-Agriculture, 2012, 20(9): 1191-1196.
[6] 唐夫凱, 齊丹卉, 盧琦, 等. 中國(guó)西北地區(qū)農(nóng)林復(fù)合經(jīng)營(yíng)的保護(hù)與發(fā)展[J]. 自然資源學(xué)報(bào), 2016, 31(9):1429-1439.
TANG Fukai, QI Danhui, LU Qi, et al. Strategies of conservation and development of agroforestry ecosystem in Northwest China [J]. Journal of Natural Resources, 2016, 31(9): 1429-1439.
[7] Cárdenas A, Moliner A, Hontoria C, et al. Ecological structure and carbon storage in traditional silvopastoral systems in Nicaragua [J]. Agroforestry Systems, 2019, 93(1): 229-239.
[8] Kuyah S, Whitney C W, Jonsson M, et al. Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa. A meta-analysis [J]. Agronomy for Sustainable Development, 2019, 39(5): 1-18.
[9] Livesley S J, Gregory P J, Buresh R J. Competition in tree row agroforestry systems. 3. Soil water distribution and dynamics [J]. Plant and Soil, 2004, 264 (1-2): 129-139.
[10] 王國(guó)良, 賈春林, 周玉雷, 等. 遮蔭對(duì)紫花苜蓿生長(zhǎng)發(fā)育和產(chǎn)草量影響的初探[J]. 草業(yè)科學(xué), 2010, 27(10): 69-73.
WANG Guoliang, JIA Chunlin, ZHOU Yulei, et al. Preliminary study on effect of shading on the growth and yield of Medicago sativa [J]. Pratacultural Science, 2010, 27 (10): 69-73.
[11] Waddell H A, Simpson R J, Ryan M H, et al. Root morphology and its contribution to a large root system for phosphorus uptake by Rytidosperma species (wallaby grass) [J]. Plant and Soil, 2017, 412(1-2): 7-19.
[12] 張永強(qiáng), 張娜, 李亞杰, 等. 滴灌量對(duì)復(fù)播大豆生理特性及農(nóng)田小氣候的影響[J]. 中國(guó)農(nóng)業(yè)氣象, 2015, 36(5): 586-593.
ZHANG Yongqiang, ZHANG Na, LI Yajie, et al. Impacts of drip irrigation amount on physiological characteristic of summer soybean and field micro-climate [J]. Chinese Journal of Agrometeorology, 2015, 36(5): 586-593.
[13]Mccallum M H , Peoples M B , Connor D J . Contributions of nitrogen by field pea (Pisum sativum L.) in a continuous cropping sequence compared with a lucerne (Medicago sativa L.)-based pasture ley in the Victorian Wimmera[J]. Crop amp; Pasture Science, 2000, 51(1):13-22.
[14] 張娜, 張永強(qiáng), 徐文修, 等. 滴灌量對(duì)冬小麥田間小氣候及產(chǎn)量的影響研究[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2016, 24(1): 64-73.
ZHANG Na, ZHANG Yongqiang, XU Wenxiu, et al. Effect of different drip irrigation amounts on microclimate and yield of winter wheat [J]. Chinese Journal of Eco-Agriculture, 2016, 24(1): 64-73.
[15] 張德閃, 李洪波, 申建波. 集約化互作體系植物根系高效獲取土壤養(yǎng)分的策略與機(jī)制[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2017, 23(6): 1547-1555.
ZHANG Deshan, LI Hongbo, SHEN Jianbo. Strategies for root’s foraging and acquiring soil nutrient in high efficiency under intensive cropping systems [J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1547-1555.
[16] Asbjornsen H, Hernandez-Santana V, Liebman M, et al. Targeting perennial vegetation in agricultural landscapes for enhancing ecosystem services [J]. Renewable Agriculture and Food Systems, 2013, 29(2): 101-125.
[17] LIU Weiwei, LI Wenhua, LIU Moucheng, et al. Traditional agroforestry systems: One type of globally important agricultural heritage systems [J]. Journal of Resources and Ecology, 2014, 5(4): 306-313.
[18] 張盼盼, 周瑜, 宋慧, 等. 不同肥力水平下糜子生長(zhǎng)狀況及農(nóng)田小氣候特征比較[J].應(yīng)用生態(tài)學(xué)報(bào), 2015, 26(2): 473-480.
ZHANG Panpan, ZHOU Yu, SONG Hui, et al. Comparison of growth and field microclimate characteristics of broomcorn millet under different fertilization conditions [J]. Chinese Journal of Applied Ecology, 2015, 26 (2): 473-480.
[19] 張雷一, 張靜茹, 劉方, 等. 林草復(fù)合系統(tǒng)的生態(tài)效益[J]. 草業(yè)科學(xué), 2014, 31(9): 1789-1797.
ZHANG Leiyi, ZHANG Jingru, LIU Fang, et al. A review of ecological benefits of silvopasture system [J]. Pratacultural Science, 2014, 31(9): 1789-1797.
[20] Hamzei J, Seyedi M. Evaluation of the effects of intercropping systems on yield performance, land equivalent ratio, and weed control efficiency [J]. Agricultural Research, 2015, 4(2): 202-207.
[21] 李隆. 間套作強(qiáng)化農(nóng)田生態(tài)系統(tǒng)服務(wù)功能的研究進(jìn)展與應(yīng)用展望[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2016, 24(4): 403-415.
LI Long. Intercropping enhances agroecosystem services and functioning: Current knowledge and perspectives [J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 403-415.
[22]熊乙, 許慶方, 玉柱, 等.不同產(chǎn)地燕麥干草養(yǎng)分及飼用價(jià)值[J]. 草業(yè)科學(xué), 2018, 35(10): 2457-2462.
XIONG Yi, XU Qingfang, YU Zhu, et al. Evaluation of nutritional and feeding value of oat hay from different regions [J]. Pratacultural Science, 2018, 35 (10): 2457-2462.
[23]曹志軍, 史海濤, 李德發(fā), 等. 中國(guó)反芻動(dòng)物飼料營(yíng)養(yǎng)價(jià)值評(píng)定研究進(jìn)展[J]. 草業(yè)學(xué)報(bào), 2015, 24(3): 1-19.
CAO Zhijun, SHI Haitao, LI Defa, et al. Progress on nutritional evaluation of ruminant feedstuff in China [J]. Acta Prataculturae Sinica, 2015, 24(3): 1-19.
[24] 張凡凡, 于磊, 馬春暉, 等. 綠洲區(qū)滴灌條件下施磷對(duì)紫花苜蓿生產(chǎn)性能及品質(zhì)的影響[J]. 草業(yè)科學(xué), 2015, 24(10): 175-182.
ZHANG Fanfan, YU Lei, MA Chunhui, et al. Effects of phosphorus application under drip irrigation on the productivity and quality of alfalfa in Northern Xinjiang [J]. Pratacultural Science, 2015, 24(10): 175-182.
[25] 苗曉茸, 孫艷梅, 于磊, 等. 氮磷互作對(duì)不同茬次滴灌苜蓿生產(chǎn)性能及營(yíng)養(yǎng)品質(zhì)的影響[J]. 草業(yè)學(xué)報(bào), 2019, 28(9): 55-66.
MIAO Xiaorong, SUN Yanmei, YU Lei, et al. Effects of nitrogen and phosphorus fertilizer rate on hay yield and nutritional quality of alfalfa under drip irrigation [J]. Pratacultural Science, 2019, 28(9): 55-66.
[26] 彭曉邦, 蔡靖, 姜在民, 等. 光能競(jìng)爭(zhēng)對(duì)農(nóng)林復(fù)合生態(tài)系統(tǒng)生產(chǎn)力的影響[J]. 生態(tài)學(xué)報(bào), 2009, 29(1): 545-552.
PENG Xiaobang, CAI Jing, JIANG Zaiming, et al. Effects of light competition on crop productivity in an intercropping agroforestry ecosystem [J]. Acta Ecologica Sinica, 2009, 29(1): 545-552.
[27] 包烏云, 趙萌莉, 安海波, 等. 刈割對(duì)不同苜蓿品種生長(zhǎng)和產(chǎn)量的影響[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 43(2): 65-71.
BAO Wuyun, ZHAO Mengli, AN Haibo, et al. Effects of mowing on growth and yield of different alfalfa varieties [J]. Journal of Northwest A amp; F University(Natural Science Ed.), 2015, 43(2): 65-71.
[28] 金文斌, 張凡兵. 紫花苜蓿生長(zhǎng)特性及品質(zhì)對(duì)不同刈割強(qiáng)度的響應(yīng)[J]. 北方園藝, 2014 ,(21): 72-77.
JIN Wenbin, ZHANG Fanbing. Response of quality and growth characteristics of Medicago sativa for the different intensity of cutting [J]. Northern Horticulture, 2014,(21): 72-77.
[29] Corl B, Rhoads M, Harrell R J, et al. Rotaviral enteritis stimulates ribosomal p70 s6 kinase and increases intestinal protein synthesis in neonatal pigs [J]. The Federation of American Societies for Experimental Biology Journal, 2005, 19 (5): 976.
[30] 劉東霞, 劉貴河, 楊志敏. 種植及收獲因子對(duì)紫花苜蓿干草產(chǎn)量和莖葉比的影響[J]. 草業(yè)學(xué)報(bào), 2015, 24(3): 48-57.
LIU Dongxia, LIU Guihe, YANG Zhimin. The effects of planting and harvesting factors on hay yield and stem-leaf ratio of Medicago sativa [J]. Acta Prataculturae Sinica, 2015, 24(3): 48-57.
[31] Aurélie Q, Patricia B, Lydie D, et al. Effects of walnut trees on biological nitrogen fixation and yield of intercropped alfalfa in a Mediterranean agroforestry system [J]. European Journal of Agronomy, 2017, 84: 35-46.
[32] 唐晨陽(yáng), 魏臻武, 江舟, 等. 行比對(duì)不同豆禾間作模式產(chǎn)量與品質(zhì)的影響[J]. 草地學(xué)報(bào), 2020, 28(1): 214-220.
TANG Chenyang, WEI Zhenwu, JIANG Zhou, et al. Effects of row ratio on yield and quality of different intercropping modes [J]. Acta Agrestia Sinica, 2020, 28(1): 214-220.
[33] 劉玉華. 紫花苜蓿生長(zhǎng)發(fā)育及產(chǎn)量形成與氣象條件關(guān)系的研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2006.
LIU Yuhua. Study on the relations between growth development and yield formation of alfalfa and climate conditions [D]. Yangling: Northwest A amp; F University, 2006.
[34] 吳佳. 紫花苜蓿葉片生長(zhǎng)動(dòng)態(tài)特征及影響環(huán)境因素分析[D]. 楊凌:西北農(nóng)林科技大學(xué), 2008.
WU Jia. Analysis of growing dynamic of alfalfa leaves and affecting environmental factors [D]. Yangling: Northwest A amp; F University, 2008.
Effects of intercropping poplar-alfalfa on growth and quality of alfalfa in forest-grass compound system
DAI Yuanshuai1, LU Weihua2, SHEN Lei1, WANG Xiuyuan1, ZHANG Wenlong1, ZHANG Wei1
(1." College of Agronomy, Shihezi University, Shihezi Xinjiang 832000, China; 2. College of Animal Science and Technology, Shihezi University, Shihezi Xinjiang 832000, China)
Abstract:【Objective】 This experiment explored the influence of poplar-alfalfa intercropping on the growth, development and quality of alfalfa, so as to provide theoretical and technical basis for the sustainable development of forest and grass composite model in Xinjiang.
【Methods】" The experiment from 2018 to 2019, during the early April to September of every 15 days to sampling of alfalfa, determination of alfalfa agronomic traits (plant height, leaf area index, stem/leaf ratio, stem diameter, growth rate) and quality (crude protein, crude fat, forage quality), and the sole, intercropping alfalfa microclimate monitoring field (air temperature, air humidity and dew point temperature, wind speed) monitoring.
【Results】" The results showed that intercropped alfalfa was significantly lower than sole-cropped alfalfa in agronomic traits, and the total yield of intercropped alfalfa was 55.27% lower than that of sole-cropped alfalfa. The dew point temperature and wind speed of alfalfa monoculture were 70.68% and 93.83% higher than that of intercropping, but the air humidity of sole-cropped alfalfa was 13.49% lower than that of intercropped alfalfa, and there was no significant difference in air temperature. The crude protein, crude fat and forage quality of intercropping alfalfa were 17.78%, 12.33% and 17.26% higher than that of sole-cropped alfalfa.
【Conclusion】" The development of intercropping between forest and grass can improve the microclimate of farmland.
Key words:poplar; alfalfa; agronomic characters; feeding quality; intercropping
Fund project: Project of the National Natural Science Foundation of China (31460335 and 31560376 ); China Agriculture Research System (CARS-34);" China Postdoctoral Science Foundation(2015M582737)
Correspondence author: ZHANG Wei (1979-), male, Gansu,professor, research direction: farmland ecology and biodiversity,(E-mail)bluesky2002040@163.com