doi:10.6048/j.issn.1001-4330.2024.05.013
摘" 要:【目的】分析水肥耦合對(duì)11年生溫185核桃光合特性、產(chǎn)量和品質(zhì)的差異,分析核桃適宜水肥調(diào)控閾值,研究提高核桃光合特性、產(chǎn)量及品質(zhì)的適宜水肥組合,為新疆阿克蘇地區(qū)溫宿縣核桃水肥管理提供一定的理論依據(jù)。
【方法】以溫185核桃為材料,設(shè)置不同梯度的水肥耦合模式,研究水肥耦合對(duì)核桃光合特性、產(chǎn)量和果實(shí)品質(zhì)的效應(yīng)。
【結(jié)果】同等肥力條件下,隨著灌溉量增加,核桃葉片Pn值、產(chǎn)量和果實(shí)品質(zhì)指標(biāo)均呈逐漸上升的趨勢(shì),并且各指標(biāo)之間差異性顯著(P<0.05)。同等灌溉量下,低水時(shí),隨著施肥量的增加,核桃葉片Pn值及產(chǎn)量,果實(shí)的品質(zhì)均呈先上升后下降的趨勢(shì);中水及高水時(shí),隨著施肥量的增加,核桃葉片Pn值及產(chǎn)量,果實(shí)品質(zhì)總體呈上升趨勢(shì),但各指標(biāo)之間差異性不顯著(P>0.05)。各水肥耦合處理下,核桃葉片Pn值及產(chǎn)量,果實(shí)品質(zhì)指標(biāo)均高于對(duì)照處理。
【結(jié)論】新疆阿克蘇地區(qū)溫宿縣沙壤土適宜澆水量為3.92 m3/株,施肥量為5.50 kg/株。不同水肥組合對(duì)溫185核桃光合作用、產(chǎn)量和果實(shí)品質(zhì)具有顯著影響,水肥耦合處理均可以提高溫185核桃的光合特性、產(chǎn)量與品質(zhì)。
關(guān)鍵詞:核桃;水肥耦合;多元二次回歸方程
中圖分類號(hào):S664.1""" 文獻(xiàn)標(biāo)志碼:A""" 文章編號(hào):1001-4330(2024)05-1151-09
收稿日期(Received):
2023-09-19
基金項(xiàng)目:
新疆維吾爾自治區(qū)重大科技專項(xiàng)(2021A02002-2);新疆維吾爾自治區(qū)自然科學(xué)基金項(xiàng)目(2022D01A180);2021年新疆維吾爾自治區(qū)天山英才計(jì)劃(第三期)
作者簡(jiǎn)介:
周光輝(1996-),男,河南通許人,碩士研究生,研究方向?yàn)樯峙嘤?,(E-mail)2392704217@qq.com
通訊作者:
陳虹(1981-),女,四川南充人,教授,博士,研究方向?yàn)楣麡?shù)栽培與生理,(E-mail)ch333999@126.com
0" 引 言
【研究意義】水和肥料是果樹(shù)生長(zhǎng)發(fā)育的兩個(gè)重要因素,二者耦合關(guān)系對(duì)果樹(shù)生長(zhǎng)發(fā)育既相互制約又相互促進(jìn),水肥的合理利用是作物生長(zhǎng)、產(chǎn)量與品質(zhì)和水肥利用效率提高的關(guān)鍵因素[1-2]。核桃屬于喜光樹(shù)種,光合作用是樹(shù)體生長(zhǎng)發(fā)育的基礎(chǔ),不同水肥耦合處理可影響核桃葉片光合特性。研究水肥耦合對(duì)核桃光合特性及產(chǎn)量和品質(zhì)的影響,對(duì)實(shí)現(xiàn)核桃高產(chǎn)優(yōu)質(zhì)及高效栽培有實(shí)際意義?!厩叭搜芯窟M(jìn)展】通過(guò)多元二次回歸構(gòu)建了水肥耦合效應(yīng)、枸杞產(chǎn)量光合效應(yīng)方程,得出適宜灌水量為82.24 m3/667m2,最適宜施氮量為16.24 kg/667m2,最適宜施鉀量為32.71 kg/667m2[3],此方法在玉米[4]、棉花[5]、辣椒[6]等作物上有運(yùn)用,合理灌水量和施肥量,可提高作物產(chǎn)量和養(yǎng)分吸收效率[7-10]??茖W(xué)合理的水肥管理有效地促進(jìn)了植物的生長(zhǎng)發(fā)育,并提高其產(chǎn)量與果實(shí)品質(zhì)[11-12]。研究中多采用多元二次多項(xiàng)式反映水肥兩因子與果樹(shù)凈光合速率、產(chǎn)量、品質(zhì)的關(guān)系,通過(guò)計(jì)算臨界值確定果樹(shù)適宜的水肥量參數(shù)[13]。【本研究切入點(diǎn)】新疆南疆盆地的核桃生產(chǎn)管理中,若水與肥料營(yíng)養(yǎng)結(jié)構(gòu)搭配不協(xié)調(diào)則影響產(chǎn)量和品質(zhì)[14-15],而且核桃水肥利用效率低[15]。需要研究水肥耦合對(duì)核桃光合特性及產(chǎn)量品質(zhì)的效應(yīng)。
【擬解決的關(guān)鍵問(wèn)題】以溫185核桃為材料,研究不同梯度水肥耦合與核桃凈光合特性、產(chǎn)量、品質(zhì)的關(guān)系,建立多元二次方程,分析新疆阿克蘇地區(qū)溫宿縣沙壤土條件下適宜水肥耦合參數(shù),為核桃高產(chǎn)優(yōu)質(zhì)高效栽培提供理論依據(jù)與技術(shù)支持。
1" 材料與方法
1.1" 材 料
試驗(yàn)在新疆佳木果樹(shù)學(xué)國(guó)家長(zhǎng)期科研基地(80°31′58″ E,41°15′22″ N,阿克蘇地區(qū)溫宿縣)進(jìn)行,年降水稀少,晝夜溫差大。試驗(yàn)區(qū)面積0.27 hm2,年均溫度10.10℃,年降雨量65.40 mm,年均無(wú)霜期185 d,土壤類型為沙壤土,0~60 cm土層土壤有機(jī)質(zhì)9.212 g/kg、水解性氮18.541 mg/kg、全氮0.353 g/kg、有效磷18.56 mg/kg、速效鉀90.98 mg/kg,土壤田間持水量為22.03%,樹(shù)齡11 a,平均冠幅為4.74±1.4 (m),平均樹(shù)高為5.25±1.2 (m),平均株產(chǎn)量為9.25 kg/株,株行距5 m×6 m,南北行向。供試核桃品種為溫185。
1.2" 方 法
1.2.1" 試驗(yàn)設(shè)計(jì)
選擇二因素三水平隨機(jī)區(qū)組設(shè)計(jì)[12-13],9個(gè)處理,每個(gè)處理9次重復(fù),共81棵樹(shù);以無(wú)水無(wú)肥為對(duì)照,設(shè)置3次重復(fù)。選擇長(zhǎng)勢(shì)一致的溫185核桃進(jìn)行水肥耦合處理。施肥量設(shè)定3個(gè)梯度:高肥(H)(6.92 kg/株)、中肥(M)(5.75 kg/株)、低肥(L)(4.61 kg/株),供試肥料為尿素(含N 46%)、過(guò)磷酸鈣(含P2O5 46%)、硫酸鉀(含K2O 51%),其中肥料比例為3∶2∶1,于萌芽期及果實(shí)速生期分2次施入。生育期內(nèi)灌水定額分別為5 280、3 690、2 640 m3/hm2,分別于坐果期、果實(shí)膨大期、果實(shí)硬核期、油脂轉(zhuǎn)化期灌溉4次,折合每次每株灌水量約為高水(H)4 m3/株、中水(M)3 m3/株、低水(L)2 m3/株。表1
1.2.2" 測(cè)定指標(biāo)
1.2.2.1" 光合參數(shù)
采用Li-6800便攜式光合儀測(cè)定葉片凈光合速率值[Pn,μmol/(m2s)],于溫185核桃成熟期8月中旬測(cè)定光合參數(shù),測(cè)定時(shí)選擇12:00~14:00晴朗無(wú)云的天氣選取頂葉測(cè)定。
1.2.2.2" 單株產(chǎn)量
核桃果實(shí)成熟后,統(tǒng)計(jì)各株果實(shí)數(shù)量,并進(jìn)行采收(單株隨機(jī)采取20個(gè)果實(shí)),堆漚、剝皮和晾曬等。當(dāng)晾曬中核桃重量無(wú)變化時(shí),稱重,計(jì)算單株產(chǎn)量。
1.2.2.3" 品質(zhì)
單果重(g):果實(shí)成熟期每處理3組重復(fù)分別采摘果實(shí)30個(gè),用電子天平(精度:1/1000)稱量果實(shí)重量,計(jì)算平均單果重。
出仁率(%):果仁重/單果重×100%;
油脂(%):采用索氏提取法測(cè)定[16-17];
蛋白質(zhì)(C,g/kg):采用考馬斯亮藍(lán)法測(cè)定[18]。
1.3" 數(shù)據(jù)處理
試驗(yàn)數(shù)據(jù)均以Microsoft Excel 2007軟件處理,圖表采用Microsoft Excel 2007繪制。以SPSS 23.0統(tǒng)計(jì)分析,對(duì)各指標(biāo)使用單因素方差分析法,通過(guò)多元二次方程構(gòu)建溫185核桃水肥效應(yīng)回歸方程,并對(duì)回歸方程進(jìn)行檢驗(yàn)[19-20]。通過(guò)線性數(shù)學(xué)規(guī)劃方法求解灌水量與施肥量參數(shù)[21]。
2" 結(jié)果與分析
2.1" 不同水肥耦合處理對(duì)核桃葉片Pn值及產(chǎn)量的影響
研究表明,隨著施入水肥量的增加,核桃葉片Pn值整體呈逐漸增大的趨勢(shì)。水、肥、水肥交互對(duì)核桃葉片Pn值均具有極顯著影響(P<0.01)。同等肥力條件下,不同灌水量處理對(duì)葉片Pn值變化趨勢(shì)的影響一致,葉片Pn值表現(xiàn)為隨著灌水量的增加而增加,各處理間葉片Pn值存在顯著差異(P<0.05),高水相較于低水分別增加23.69%、23.47%和35.74%。在同等灌水量條件下,低肥處理時(shí),葉片Pn值隨著施肥量的增加,葉片Pn值呈先上升后下降的趨勢(shì),中肥相較于高肥增加2.56%,中水及高水處理下,隨著施肥量增加而增加,高肥相較于低肥分別增加9.42%和9.22%。
隨著施入水肥量的增加,核桃產(chǎn)量整體呈逐漸增加的趨勢(shì)。水、肥、水肥交互對(duì)核桃產(chǎn)量均具有極顯著影響(P<0.01)。同等肥力條件下,不同灌水量處理對(duì)核桃產(chǎn)量變化趨勢(shì)的影響一致,核桃產(chǎn)量表現(xiàn)為隨著灌水量的增加而增加,各處理間核桃產(chǎn)量存在顯著差異(P<0.05),高水相較于低水分別增加4.91%、4.92%和9.51%。在同等灌水量條件下,低肥處理時(shí),核桃產(chǎn)量隨著施肥量的增加,核桃產(chǎn)量呈先上升后下降的趨勢(shì),中肥相較于高肥增加3.77%,中水及高水處理下,隨著施肥量增加而增加,高肥相較于低肥分別增加1.56%和1.97%。表2~4
2.2" 不同水肥耦合處理對(duì)果實(shí)品質(zhì)的影響
研究表明,水、肥、水肥交互對(duì)核桃果實(shí)品質(zhì)均達(dá)到極顯著影響(P<0.01)。在同等肥力條件下,不同灌水量處理對(duì)單果重、出仁率、油脂變化趨勢(shì)的影響一致,均隨著灌水量的增加而增加,并存在顯著差異(P<0.05);高水相較于低水分別增加21.87%、5.51%、6.42%、22.31%、4.99%、6.52%、35.09%、6.76%和7.68%。在同等灌水量條件下,低肥處理時(shí),隨著施肥量的增加,單果重、出仁率、油脂均呈先上升后下降的趨勢(shì),中肥相較于高肥分別增加2.58%、1.14%、0.93%,中水及高水處理下,單果重、出仁率均隨著施肥量增加而增加,高肥相較于低肥分別增加0.85%、10.29%、0.61%和8.20%。在同等肥力條件下,蛋白質(zhì)含量隨著灌溉量的增加呈現(xiàn)先上升后下降的趨勢(shì),中水較低水處理分別增加5.11%、5.37%和12.11%,在同等灌水量條件下,隨著施肥量的增加而減少,低水、中水及高水條件下,低肥較高肥處理分別增加9.61%、3.17%和4.08%。表5,表6
2.3" 水肥耦合處理對(duì)溫185核桃產(chǎn)量品質(zhì)水肥方程效應(yīng)比較
研究表明,葉片Pn值(Pn)、果實(shí)單果重(W)、單株果實(shí)產(chǎn)量(G)、出仁率(Y)、油脂含量(E)、蛋白質(zhì)(C)與水、肥及耦合效應(yīng)多元二次方程分別為:
log10PnΛ=0.747+0.081W-0.013W2+0.028F-0.003F2+0.008WF.
log10WΛ=0.819+0.069W-0.011W2+0.024F-0.003F2+0.009WF.
log10GΛ=0.918+0.027W-0.005W2+0.054F-0.006F2+0.003WF.
log10YΛ=1.741+0.017W-0.002W2+0.013F-0.001F2+0.001WF.
log10EΛ=1.748+0.026W-0.003W2+0.008 7F-0.001F2+0.001WF.
log10CΛ=2.329+0.104W-0.010W2-0.032F+0.005F2-0.005WF.
核桃葉片Pn值(Pn)、果實(shí)單果重(W)、單株果實(shí)產(chǎn)量(G)、出仁率(Y)、油脂含量(E)、蛋白質(zhì)(C)的R2分別0.991、0.992、0.991、0.995、0.995、0.929,擬合度較好;P值分別為0.200、0.186、0.184、0.200、0.200、0.200,均大于0.05。德賓-沃森檢驗(yàn)獨(dú)立性,德賓-沃森DW檢驗(yàn)結(jié)果分別為1.908、1.833、2.147、1.814、2.314、2.005,均在1.662~2.338,殘差之間相互獨(dú)立,殘差表現(xiàn)為方差齊性,該回歸方程可用,灌水量、施肥量與產(chǎn)量及果實(shí)品質(zhì)之間存在顯著的回歸關(guān)系,且其各自的最大殘差絕對(duì)值均小于3σ。
沙壤土條件下,核桃葉片Pn值、單果重、單株產(chǎn)量、出仁率、油脂、可溶性蛋白質(zhì)的常用對(duì)數(shù)均與水(W)、肥(F)、水的單乘(W×W)、肥的單乘(F×F)、水肥交互(W×F)之間的線性關(guān)系假設(shè)成立,并且其方程各自的最大殘差絕對(duì)值均小于其3σ,分別為0.012 0、0.017 7、0.023、0.005 2、0.005 8、0.017 0,不同水肥耦合試驗(yàn)下核桃果實(shí)的單株產(chǎn)量、單果重、出仁率、蛋白質(zhì)、油脂含量的常用對(duì)數(shù)無(wú)奇異值。
在土壤類型為沙壤土?xí)r,溫185核桃葉片Pn值(Pn)、果實(shí)單果重(W)、單株果實(shí)產(chǎn)量(G)、出仁率(Y)、油脂含量(E)、蛋白質(zhì)(C)分別在灌水量小于2.47、3.14、2.70、4.25、4.33和5.25 m3/株,施肥量小于11.50、4.00、4.50、6.67、6.50、5.00和5.75 kg/株時(shí),對(duì)溫185核桃的葉片Pn值(Pn)、果實(shí)單果重(W)、單株果實(shí)產(chǎn)量(G)、出仁率(Y)、油脂含量(E)、蛋白質(zhì)(C)存在正效應(yīng),反之則存在負(fù)效應(yīng)。水肥交互(W×F)對(duì)核桃單株果實(shí)產(chǎn)量(G)、核桃葉片Pn值(Pn)、果實(shí)單果重(W)、出仁率(Y)、油脂含量(E)均表現(xiàn)為正效應(yīng),對(duì)蛋白質(zhì)(C)表現(xiàn)為負(fù)效應(yīng)。
2.4" 灌水量與施肥量綜合決策目標(biāo)函數(shù)的建立與求解
研究表明,以不同水肥耦合的單株產(chǎn)量回歸方程、果實(shí)品質(zhì)回歸方程的最大單項(xiàng)期望值作為灌水量與施肥量的約束條件,進(jìn)行規(guī)劃求解。
目標(biāo)方程:Max:Z=8.094+0.328W-0.048W2+0.096F-0.009 5F2+0.005WF.
約束條件:2.47≤W≤5.25 m3/株;
4.00≤F≤11.50 kg/株;
W:3.92 m3/株,F(xiàn):5.50 kg/株。
將單株產(chǎn)量效應(yīng)回歸、單果重效應(yīng)回歸、出仁率效應(yīng)回歸方程、油脂效應(yīng)回歸、可溶性蛋白效應(yīng)回歸期望值達(dá)到的最大解與目標(biāo)函數(shù)(綜合函數(shù))達(dá)到最大的解分別帶入各個(gè)方程中,得出整體最優(yōu)項(xiàng)核桃葉片Pn值、單株產(chǎn)量、單果重、出仁率、油脂含量、蛋白質(zhì)分別為11.89 μmol/(m2·s)、13.28 kg、13.37 g、68.19%、68.75%、171.44 mg/g,各指標(biāo)的估計(jì)值均在試驗(yàn)允許范圍內(nèi),由目標(biāo)函數(shù)和約束條件所求得的整體最優(yōu)解是有效的。灌水量為W:3.92 m3/株時(shí),施肥總量為F:5.50 kg/株時(shí),為適宜水肥處理。
3" 討 論
3.1
多元二次模型其計(jì)量準(zhǔn)確性和真實(shí)性非其他方法所能比擬,是當(dāng)前國(guó)內(nèi)外實(shí)現(xiàn)計(jì)量水肥的主要技術(shù)方法[22-24]。核桃葉片光合作用的強(qiáng)弱同時(shí)也可間接地反映核桃樹(shù)的生理狀態(tài)[25]。研究結(jié)果表明,核桃葉片的Pn值適宜灌水量為3.12 m3/株,施肥量小于6.67 kg/株時(shí),對(duì)溫185核桃葉片的Pn值可達(dá)到最大值;當(dāng)小于或者大于適宜灌水量、施肥量時(shí)溫185核桃葉片的Pn值均會(huì)下降,土壤含水量過(guò)低引起作物供水不足,且氣孔蒸騰旺盛,會(huì)降低氣孔導(dǎo)度和CO2同化率,或者導(dǎo)致氣孔關(guān)閉,從而影響光合作用和蒸騰作用[26-27],同時(shí)灌水或施肥過(guò)多過(guò)少均引起葉綠體色素含量的降低,均不利于提高植物光合速率[28],與前人在研究枸杞光合作用時(shí)得到的結(jié)論一致[29]。研究結(jié)果表明,水肥耦合處理均可以增加溫185核桃的單株產(chǎn)量,根據(jù)多元二次方程得出產(chǎn)量適宜灌水量為2.70 m3/株,施肥量小于4.50 kg/株,對(duì)溫185核桃的單株產(chǎn)量可達(dá)到最大值;當(dāng)小于或者大于適宜灌水量、施肥量時(shí)溫185核桃單株產(chǎn)量均會(huì)下降,當(dāng)施肥量過(guò)低時(shí)引起肥料供應(yīng)不足,造成果樹(shù)減產(chǎn),但施肥量過(guò)高時(shí),則引起肥害同樣可造成減產(chǎn)[30]。當(dāng)灌溉量過(guò)低時(shí),土壤中的肥料得不到充足的釋放,造成植物水分及養(yǎng)分供應(yīng)不足,從而造成減產(chǎn)[31],在灌溉量過(guò)高狀況下,根系生長(zhǎng)受抑,吸收活力下降、喪失,不可避免地導(dǎo)致樹(shù)體生理過(guò)程紊亂,樹(shù)體生產(chǎn)力降低,從而降低果樹(shù)產(chǎn)量[32],與前人在研究紅棗產(chǎn)量時(shí)結(jié)論一致[12]。
3.2
單果重、出仁率均是衡量果實(shí)外在品質(zhì)的重要指標(biāo)之一,研究表明,水肥耦合處理可增加果實(shí)的單果重與出仁率[33-34],研究結(jié)果表明,水肥耦合處理可以增加果實(shí)單果重,當(dāng)灌水量為3.14 m3/株、施肥量為4.00 kg/株時(shí)為單果重的最優(yōu)水肥參數(shù),出仁率的適宜灌水量為4.25 m3/株,適宜肥量為6.50 kg/株,超過(guò)或低于該值則會(huì)對(duì)核桃單果重產(chǎn)生影響。前人在研究鴨梨[35]試驗(yàn)中得到了相同的結(jié)論,與適宜的水肥條件下,植物根系通過(guò)對(duì)土壤中養(yǎng)分的吸收,增加了有機(jī)物的積累,進(jìn)而使單果重增大,水與肥充分結(jié)合使植物根系吸收大量養(yǎng)分,使核仁更加飽滿,進(jìn)而增加出仁率[36]。當(dāng)灌水量及施肥量過(guò)低時(shí),果實(shí)細(xì)胞的膨大未得到充足的水分與養(yǎng)分,從而降低單果重[37]及出仁率[38],當(dāng)灌水量或施肥量過(guò)高時(shí),則顯著抑制土壤脲酶、過(guò)氧化氫酶和堿性磷酸酶活性,從而降低養(yǎng)分對(duì)果實(shí)的供應(yīng),進(jìn)而造成果實(shí)品質(zhì)下降[39]。
3.3
油脂和蛋白質(zhì)是核桃仁中的主要營(yíng)養(yǎng)成分,是評(píng)價(jià)核桃營(yíng)養(yǎng)品質(zhì)的重要指標(biāo)[40]。研究結(jié)果表明,溫185核桃的油脂含量適宜灌水量為4.33 m3/株、施肥量為3.50 kg/株,當(dāng)大于或者小于該灌水量與施肥量時(shí),對(duì)溫185核桃的油脂含量造成影響,水肥交互作用對(duì)核桃油脂含量效應(yīng)顯著(P<0.05)。并且研究進(jìn)一步證實(shí),核桃的油脂含量隨著灌水量的增高而升高,其中無(wú)水無(wú)肥與低水低肥處理下的核桃油脂含量顯著低于中水低肥與高水低肥處理下的核桃油脂含量。核桃除含有營(yíng)養(yǎng)價(jià)值極高的油脂外,還含有豐富的優(yōu)質(zhì)蛋白質(zhì),其可消化率達(dá)87.2%[40]。水肥耦合處理可以顯著提高油葵[41]、板栗[42]、桃[43]等的蛋白質(zhì)含量,并且蛋白質(zhì)含量隨著灌水量與施肥量的增加而增加。蛋白質(zhì)含量與灌水量與施肥量之間存在正相關(guān)作用,即在適宜的水肥條件下,植物根系會(huì)吸收較多營(yíng)養(yǎng)物質(zhì),以促進(jìn)果實(shí)發(fā)育,提高果實(shí)品質(zhì),從而增加果實(shí)蛋白質(zhì)含量[44]。在水分及養(yǎng)分含量過(guò)高時(shí),均會(huì)增強(qiáng)土壤對(duì)養(yǎng)分的固定,降低土壤養(yǎng)分的移動(dòng)性,進(jìn)而造成果實(shí)品質(zhì)的降低[45],當(dāng)灌水量及施肥量不足時(shí),均降低果實(shí)品質(zhì),可能與植物因受干旱及養(yǎng)分脅迫,導(dǎo)致其根系吸水不足,植物難以完成自身發(fā)育,影響果實(shí)品質(zhì),進(jìn)而降低果實(shí)品質(zhì)有關(guān)[41],與研究結(jié)果一致。
4" 結(jié) 論
水肥耦合處理可顯著提升溫185核桃光合作用、產(chǎn)量及品質(zhì),高水高肥處理為最優(yōu)處理,新疆阿克蘇地區(qū)溫宿縣沙壤土適宜的灌水量應(yīng)為3.92 m3/株,適宜施肥量為5.50 kg/株。
參考文獻(xiàn)(References)
[1]
張秋英, 劉曉冰, 金劍, 等. 水肥耦合對(duì)大豆光合特性及產(chǎn)量品質(zhì)的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2003, 21(1): 47-50.ZHANG Qiuying, LIU Xiaobing, JIN Jian, et al. Influence of water and fertilizer coupling on photosynthetic characters and yield/quality of soybean[J]. Agricultural Research in the Arid Areas, 2003, 21(1): 47-50.
[2] 王景燕, 龔偉, 包秀蘭, 等. 水肥耦合對(duì)漢源花椒幼苗葉片光合作用的影響[J]. 生態(tài)學(xué)報(bào), 2016, 36(5): 1321-1330.WANG Jingyan, GONG Wei, BAO Xiulan, et al. Coupling effects of water and fertilizer on diurnal variation of photosynthesis of Zanthoxylum bungeanum Maxim ‘Hanyuan’ seedling leaf[J]. Acta Ecologica Sinica, 2016, 36(5): 1321-1330.
[3] 尹亮. 寧夏中部干旱區(qū)滴灌條件下枸杞水肥耦合效應(yīng)研究[D]. 銀川: 寧夏大學(xué), 2019.YIN Liang. Study on coupling effect of water and fertilizer on Lycium barbarum under drip irrigation in arid area of central Ningxia[D].Yinchuan: Ningxia University, 2019.
[4] 張忠學(xué), 張世偉, 郭丹丹, 等. 玉米不同水肥條件的耦合效應(yīng)分析與水肥配施方案尋優(yōu)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2017, 48(9): 206-214.ZHANG Zhongxue, ZHANG Shiwei, GUO Dandan, et al. Coupling effects of different water and fertilizer conditions and optimization of water and fertilizer schemes on maize[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 206-214.
[5] 龔江, 謝海霞, 王海江, 等. 棉花高產(chǎn)水氮耦合效應(yīng)研究[J]. 新疆農(nóng)業(yè)科學(xué), 2010, 47(4): 644-648.GONG Jiang, XIE Haixia, WANG Haijiang, et al. A study on water and nitrogen effect of high-yielding cotton[J]. Xinjiang Agricultural Sciences, 2010, 47(4): 644-648.
[6] 徐剛, 高文瑞, 王欣, 等. 水肥耦合對(duì)基質(zhì)栽培辣椒前期產(chǎn)量和光合作用的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2018, 34(14): 40-47.XU Gang, GAO Wenrui, WANG Xin, et al. Water and fertilizer coupling effect on early yield and photosynthesis of pepper cultivated in organic substrate[J]. Chinese Agricultural Science Bulletin, 2018, 34(14): 40-47.
[7] Gooding M J, Ellis R H, Shewry P R, et al. Effects of restricted water availability and increased temperature on the grain filling, drying and quality of winter wheat[J]. Journal of Cereal Science, 2003, 37(3): 295-309.
[8] 劉宇朝, 尹娟, 耿浩杰, 等. 水肥耦合對(duì)枸杞生長(zhǎng)特性及光合作用的影響[J]. 節(jié)水灌溉, 2019,(3): 34-37, 42.LIU Yuzhao, YIN Juan, GENG Haojie, et al. Effects of water and fertilizer coupling on growth characteristics and photosynthesis of Lycium barbarum[J]. Water Saving Irrigation, 2019,(3): 34-37, 42.
[9] 溫越, 王振華, 李文昊, 等. 極端干旱區(qū)水肥耦合對(duì)滴灌葡萄產(chǎn)量和品質(zhì)的影響研究[J]. 核農(nóng)學(xué)報(bào), 2021, 35(10): 2431-2439.WEN Yue, WANG Zhenhua, LI Wenhao, et al. Research on the effects of water and fertilizer coupling on the yield and quality of drip irrigation grapes in extremely arid regions[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(10): 2431-2439.
[10] 曹毅, 鐘永紅, 張賡, 等. 水肥耦合對(duì)設(shè)施葡萄產(chǎn)量、品質(zhì)和水肥利用的影響[J]. 農(nóng)機(jī)化研究, 2021, 43(9): 186-193.CAO Yi, ZHONG Yonghong, ZHANG Geng, et al. Effects of water and fertilizer coupling on yield, quality and utilization of protected grape[J]. Journal of Agricultural Mechanization Research, 2021, 43(9): 186-193.
[11] Barth C A, Lunding B, Schmitz M, et al. Soybean trypsin inhibitor(s) reduce absorption of exogenous and increase loss of endogenous protein in miniature pigs[J]. The Journal of Nutrition, 1993, 123(12): 2195-2200.
[12] Zhu J H, Li X L, Christie P, et al. Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (Capsicum frutescens L.) cropping systems[J]. Agriculture, Ecosystems amp; Environment, 2005, 111(1/2/3/4): 70-80.
[13] 張瑞彎. 膜下滴灌黃瓜水肥氣熱耦合模型研究[D]. 銀川: 寧夏大學(xué), 2017.ZHANG Ruiwan. Research of Water, Fertilizer, Air and Heat Coupling Model of Cucumber under Mulched Drip Irrigation[D]. Yinchuan: Ningxia University, 2017.
[14] 柴仲平, 蔣平安, 王雪梅, 等. 新疆幾種主要特色果樹(shù)施肥現(xiàn)狀調(diào)查研究[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2008, 24(11): 231-234.CHAI Zhongping, JIANG Ping’an, WANG Xuemei, et al. The investigation research of fertilization about several main characteristic fruit trees in Xinjiang[J]. Chinese Agricultural Science Bulletin, 2008, 24(11): 231-234.
[15] 朱紅祥, 溫黎軍, 盧海燕, 等. 新疆阿克蘇核桃產(chǎn)業(yè)發(fā)展存在的問(wèn)題及解決措施[J]. 果樹(shù)實(shí)用技術(shù)與信息, 2017,(4): 38-40.ZHU Hongxiang, WEN Lijun, LU Haiyan, et al. Problems and solutions of walnut industry development in Aksu, Xinjiang[J]. Shanxi Fruits, 2017,(4): 38-40.
[16] 李合生. 植物生理生化實(shí)驗(yàn)原理和技術(shù)[M]. 北京: 高等教育出版社, 2000: 32-38.LI Hesheng. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000: 32-38.
[17] 張琦. 《果樹(shù)栽培學(xué)》實(shí)驗(yàn)實(shí)習(xí)指導(dǎo)書(shū)[M]. 北京: 中國(guó)水利水電出版社, 2013: 33-35.ZHANG Qi. 《Pomology》Experimental practice instruction book [M]. Beijing: China Water Resources and Hydropower Press, 2013: 33-35.
[18] 毛曉英, 朱新榮, 萬(wàn)銀松, 等. 核桃蛋白的組成分析及分離提取工藝的優(yōu)化[J]. 中國(guó)食品學(xué)報(bào), 2019, 19(3): 195-205.MAO Xiaoying, ZHU Xinrong, WAN Yinsong, et al. The composition analyses of walnut protein and optimization of extraction process[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(3): 195-205.
[19] Hosmer D W, Hosmer T, Le Cessie S, et al. A comparison of goodness-of-fit tests for the logistic regression model[J]. Statistics in Medicine, 1997, 16(9): 965-980.
[20] 金輝, 侯東穎, 張曼, 等. 水肥耦合對(duì)大棚西瓜產(chǎn)量、品質(zhì)及養(yǎng)分吸收的影響[J]. 中國(guó)土壤與肥料, 2021,(2): 141-148.JIN Hui, HOU Dongying, ZHANG Man, et al. Effects of water and fertilizer combinations on yield, quality and nutrient absorption of watermelon in greenhouse[J]. Soil and Fertilizer Sciences in China, 2021,(2): 141-148.
[21] 宋亞偉. 不環(huán)剝和環(huán)剝條件下提高灰棗產(chǎn)量和品質(zhì)的花期噴肥參數(shù)[D]. 烏魯木齊: 新疆農(nóng)業(yè)大學(xué), 2020.SONG Yawei. Parameters of Spraying Fertilizer in the Flowering Period of Ziziphus Jujuba Mill.’Huizao’ under the Conditions of Non-girdling and Girdling to Improve Yield and Quality[D]. Urumqi: Xinjiang Agricultural University, 2020.
[22] Halmajan H V, Nastase D, Vasile G, et al. Fertilisation Practices in Oilseed Rape in Romania Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca [J]. Agriculture, 2007, (1).
[23] 王興仁. 二元二次肥料效應(yīng)曲面等產(chǎn)線圖在科學(xué)施肥中的位置(一)[J]. 土壤通報(bào), 1985, 16(1): 30-34.WANG Xingren. The position of isoyield diagram of binary secondary fertilizer effect surface in scientific fertilization (I)[J]. Chinese Journal of Soil Science, 1985, 16(1): 30-34.
[24] Gascho G J, Parker M B. Nitrogen, phosphorus, and potassium fertilization of a coastal plain cotton–peanut rotation[J]. Communications in Soil Science and Plant Analysis, 2006, 37(9/10): 1485-1499.
[25] 張銳, 張琦, 陳加利, 等. 水肥耦合對(duì)核桃光合特性與品質(zhì)的影響[J]. 果樹(shù)學(xué)報(bào), 2015, 32(6): 1170-1178.ZHANG Rui, ZHANG Qi, CHEN Jiali, et al. Effect of water and fertilizer coupling on photosynthetic characteristics and quality in walnut[J]. Journal of Fruit Science, 2015, 32(6): 1170-1178.
[26] 上凱. 不同土壤水分和控光處理下夏大豆葉片生長(zhǎng)生理特性研究[D]. 西安: 西安理工大學(xué), 2021.SHANG Kai. Study on the Physiological Characteristics of Summer Soybean Leaf Growth under Different Soil Moisture and Light Control[D]. Xi’an: Xi’an University of Technology, 2021.
[27] Janoudi A K, Widders I E, Flore J A. Water deficits and environmental factors affect photosynthesis in leaves of cucumber (Cucumis sativus)[J]. Journal of the American Society for Horticultural Science, 1993, 118(3): 366-370.
[28] 耿慶玲. 西北旱區(qū)農(nóng)業(yè)水土資源利用分區(qū)及其匹配特征研究[D]. 北京: 中國(guó)科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心), 2014.GENG Qingling. Research on Zoning of Agricultural Water and Land Resources Utilization and Their Matching Characteristics in Arid Areas of Northwest of China[D]. Beijing: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 2014.
[29] 朱和, 田軍倉(cāng), 楊凡, 等. 水肥氣熱耦合對(duì)枸杞光合作用和產(chǎn)量的影響[J]. 排灌機(jī)械工程學(xué)報(bào), 2022, 40(5): 511-518.ZHU He, TIAN Juncang, YANG Fan, et al. Effects of water-fertilizer-air-heat coupling on yield and photosynthesis of wolfberry[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(5): 511-518.
[30] 馬小煥. 柑桔水肥一體化研究進(jìn)展[J]. 現(xiàn)代園藝, 2019,(9): 51-52.MA Xiaohuan. Research progress on integration of water and fertilizer in citrus[J]. Xiandai Horticulture, 2019,(9): 51-52.
[31] 邵華偉, 孟阿靜, 唐燕, 等. 化肥減施增施黃腐酸磷酸二氫鉀水溶配方肥對(duì)駿棗生長(zhǎng)及品質(zhì)的影響[J]. 新疆農(nóng)業(yè)科學(xué), 2022, 59(9): 2192-2199.SHAO Huawei, MENG Ajing, TANG Yan, et al. Effects of reducing fertilizer application and increasing application of fulvic acid potassium dihydrogen phosphate water-soluble formula fertilizer on the growth and quality of Junzao jujube[J]. Xinjiang Agricultural Sciences, 2022, 59(9): 2192-2199.
[32] 彭永宏, 章文才. 獼猴桃生長(zhǎng)與結(jié)實(shí)的適宜需水量研究[J]. 果樹(shù)科學(xué), 1995, 12(S1): 50-54.PENG Yonghong, ZHANG Wencai. Study on suitable water requirement for growth and fruiting of kiwifruit[J]. Journal of Fruit Science, 1995, 12(S1): 50-54.
[33] 王世明. 水肥一體化顯著提高蘋果產(chǎn)量和品質(zhì)[J]. 中國(guó)果業(yè)信息, 2020, 37(5): 55.WANG Shiming. The integration of water and fertilizer significantly improved the yield and quality of apples[J]. China Fruit News, 2020, 37(5): 55.
[34] 張美勇, 徐穎, 劉嘉芬, 等. 核桃不同品種果實(shí)堅(jiān)果品質(zhì)分析[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2008, 24(12): 313-316.ZHANG Meiyong, XU Ying, LIU Jiafen, et al. Analyses the nut qualities of different walnut cultivars[J]. Chinese Agricultural Science Bulletin, 2008, 24(12): 313-316.
[35] 程福厚, 李紹華, 孟昭清. 調(diào)虧灌溉條件下鴨梨營(yíng)養(yǎng)生長(zhǎng)、產(chǎn)量和果實(shí)品質(zhì)反應(yīng)的研究[J]. 果樹(shù)學(xué)報(bào), 2003, 20(1): 22-26.CHENG Fuhou, LI Shaohua, MENG Zhaoqing. Study on the effect of regulated deficit irrigation on the vegetative growth, cropping and fruit quality of yali pear variety[J]. Journal of Fruit Science, 2003, 20(1): 22-26.
[36] 馮紹元, 王鳳新, 黃冠華. 噴灌條件下花生水肥耦合效應(yīng)的田間試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào), 1998, 14(4): 98-102.FENG Shaoyuan, WANG Fengxin, HUANG Guanhua. Experiment on the coupling effect of water and fertilizer for peanut under sprinkler irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 1998, 14(4): 98-102.
[37] 潘斌. 干旱脅迫對(duì)溫州蜜柑水分吸收分配及果實(shí)品質(zhì)形成的影響[D]. 長(zhǎng)沙: 湖南農(nóng)業(yè)大學(xué), 2019.PAN Bin. Effects of Drought Stress on Soil Water Absorption of Plants and Fruit Quality Formation of Satsuma Mandarin[D]. Changsha: Hunan Agricultural University, 2019.
[38] 宋亞輝, 劉朝芳, 李玉榮, 等. 花生水肥一體化最佳施肥量研究[J]. 現(xiàn)代農(nóng)業(yè)科技, 2015,(17): 12-13.SONG Yahui, LIU Zhaofang, LI Yurong, et al. Study on optimum fertilization amount of peanut integrated with water and fertilizer[J]. Modern Agricultural Science and Technology, 2015,(17): 12-13.
[39] 楊雪艷, 蔣代華, 楊鈣仁, 等. 甘蔗水肥一體化種植對(duì)土壤微生物量碳氮和酶活性的影響[J]. 土壤通報(bào), 2018, 49(4): 889-896.YANG Xueyan, JIANG Daihua, YANG Gairen, et al. Effects of water and fertilizer integration on soil microbial biomass carbon, nitrogen and enzyme activitiesin sugarcane[J]. Chinese Journal of Soil Science, 2018, 49(4): 889-896.
[40] 崔莉, 葛文光. 核桃蛋白質(zhì)功能性質(zhì)的研究[J]. 食品科學(xué), 2000, 21(1): 13-16.CUI Li, GE Wenguang. Studies on the functinal properties of walnut protein[J]. Food Science, 2000, 21(1): 13-16.
[41] 李為萍. 鹽漬化灌區(qū)油葵品質(zhì)對(duì)水—肥—鹽耦合的動(dòng)態(tài)響應(yīng)效應(yīng)研究[D]. 呼和浩特: 內(nèi)蒙古農(nóng)業(yè)大學(xué), 2013.LI Weiping. Dynamic Response of Sunflower Quality on the Soil Condition of Water-fertilizer-salt Coupling in the Salinization District[D]. Hohhot: Inner Mongolia Agricultural University, 2013.
[42] 宋影, 郭素娟, 謝明明, 等. 有機(jī)-無(wú)機(jī)配施比例對(duì)板栗葉片氮磷營(yíng)養(yǎng)、產(chǎn)量及品質(zhì)的影響[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào), 2017, 48(9): 28-35.SONG Ying, GUO Sujuan, XIE Mingming, et al. Effect of different application ratios of inorganic and organic fertilizers on nitrogen and phosphorus contents of leaves, yield and quality of Castanea mollissima[J]. Journal of Northeast Agricultural University, 2017, 48(9): 28-35.
[43] 梁曉萍. 水肥耦合對(duì)桃園土壤環(huán)境及果實(shí)產(chǎn)量品質(zhì)的影響[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2018.LIANG Xiaoping. Effects of Fertilizer and Water Coupling On soil Environment, and Fruit Yield and Quality of Peach Orchard[D]. Yangling: Northwest A amp; F University, 2018.
[44] 王威豪, 羅永明, 梁強(qiáng), 等. 水分脅迫下甘蔗根系蛋白質(zhì)和核酸對(duì)外源乙烯的響應(yīng)[J]. 西南農(nóng)業(yè)學(xué)報(bào), 2008, 21(6): 1579-1582.WANG Weihao, LUO Yongming, LIANG Qiang, et al. Response of protein and nucleic acid in sugarcane root tip to extraneous ethephon under water stress[J]. Southwest China Journal of Agricultural Sciences, 2008, 21(6): 1579-1582.
[45] Zeng Q P, Brown P H. Soil potassium mobility and uptake by corn under differential soil moisture regimes[J]. Plant and Soil, 2000, 221(2): 121-134.
Study on the effect of water-fertilizer coupling on photosynthetic properties yield quality of walnut
ZHOU Guanghui1,2, CHEN Feng1,SUN Shouxia1, LYU Wei1, PIAO Hanqi1,2, HAO Jinlian1,2, ZHANG Shubin1,CHEN Hong1
(1. Collage of Forestry amp; Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China; 2.Jiamu National Key Tree Species Base of Pomology in Xinjiang,Aksu Xinjiang 843101, China)
Abstract:【Objective】 To explore the effects of different water and fertilizer treatments on the yield and quality of Wen185 walnuts, determine the optimal water and fertilizer regulation thresholds for the fruit tree and ascertain the optimal water and fertilizer combinations to improve walnut yield in the hope of providing some knowledge for understanding the coupling relationship of water and fertilizer in the trees in Xinjiang.
【Methods】 Wen 185 walnut was taken as the test species and different water and fertilizer and their interaction gradients were set to study their effects on walnut photosynthetic, yield and fruit quality.
【Results】 Under the same fertility condition, with the increase of irrigation quantity, walnut leaf Pn value, yield and fruit quality indexes showed a increasing trend, and the difference was significant (Plt;0.05). Under the same irrigation amount, in low water, with the increase of fertilization, the walnut leaf Pn value and yield, the quality of fruit increased first and then decreased; in medium water and high water, with the increase of fertilization, the walnut leaf Pn value and yield, fruit quality showed an upward trend, but the difference was not significant (Pgt; 0.05).
【Conclusion】 The suitable watering amount was 3.92 m3/plant and fertilizer application amount was 5.50 kg/plant in sandy soil of Wensu County, Aksu,Xinjing.Water and fertilizer have great influence on the yield and fruit quality of Wen 185 walnut, and water and fertilizer coupling treatments can improve the photosynthesis, yield and quality of the walnut.
Key words:walnut; water-fertilizer coupling; membership quadratic regression equation
Fund projects:Major R amp; D Project of Xinjiang Uygur Autonomous Region(2021A02002-2);National Natural Science Foundation of China(2022D01A180);2021 Tianshan Talent Program of the Autonomous Region (Phase III)
Correspondence author: CHEN Hong(1981-),female, from Nanchong,Sichuan,doctor,professor,research direction: fruit tree cultivation and physiology,(E-mail)ch333999@126.com