doi:10.6048/j.issn.1001-4330.2024.05.011
摘" 要:【目的】研究不同地面覆蓋方式對釀酒葡萄品種馬瑟蘭果實品質(zhì)的影響。
【方法】以5年生SO4砧木嫁接的釀酒葡萄品種馬瑟蘭為試材,以清耕栽培為對照,研究行間鋪設(shè)園藝地布(BGM)和生草栽培(GM)2種地面覆蓋方式對馬瑟蘭果實品質(zhì)的影響。
【結(jié)果】園藝地布和生草栽培均可以提高葡萄果穗質(zhì)量、果粒質(zhì)量和果粒縱橫徑。園藝地布的葡萄萎蔫率最高為5.45%,出汁率最低為32.89%,生草栽培未出現(xiàn)葡萄萎蔫現(xiàn)象,其出汁率顯著高于對照。園藝地布降低了葡萄果實可溶性固形物和還原糖含量,生草栽培提高了葡萄可溶性固形物和還原糖含量。園藝地布和生草栽培均可降低葡萄果實可滴定酸和pH值,提高糖酸比。園藝地布和生草均顯著提高了葡萄果皮總酚、類黃酮、黃烷醇和單寧含量,雖然園藝地布和生草改變了葡萄花色苷含量,但和對照間均無差異性。2種地面覆蓋方式可提高葡萄果皮FRAP和ABTS的抗氧化活性,但顯著降低了DPPH的抗氧化活性。26個葡萄品質(zhì)指標之間存在不同程度的極顯著獲顯著性正相關(guān)或負相關(guān),相關(guān)系數(shù)介于-1.00~+1.00。
【結(jié)論】在新疆吐魯番市可選擇生草栽培作為釀酒葡萄優(yōu)質(zhì)栽培新模式。
關(guān)鍵詞:釀酒葡萄;地面覆蓋;果實品質(zhì);抗氧化活性
中圖分類號:S663.1""" 文獻標志碼:A""" 文章編號:1001-4330(2024)05-1131-09
收稿日期(Received):
2023-10-14
基金項目:
新疆維吾爾自治區(qū)公益性科研院所基本科研業(yè)務(wù)費專項資金子項目(KY2022107);新疆維吾爾自治區(qū)少數(shù)民族特培項目(2022D03033);吐魯番市重點研發(fā)項目(2021006);現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系專項資金(CARS-29-26)
作者簡介:
戶金鴿(1982-),女,新疆人,碩士,副研究員,研究方向為葡萄栽培,(E-mail) hujinge2007@sina.com
0" 引 言
【研究意義】地面覆蓋技術(shù)具有改良土壤結(jié)構(gòu)、蓄水保墑、調(diào)節(jié)微域生態(tài)環(huán)境等功能[1]。地布覆蓋可以起到高溫時降溫,低溫時保溫,穩(wěn)定土壤熱環(huán)境及提高土壤含水量的作用[2],改變果園耗水結(jié)構(gòu)[3],有利于提高土壤酶活性和有益菌的種類和數(shù)量[4],地布覆蓋可以提高平均單果質(zhì)量、可溶性固形物含量[2]、VC含量、可溶性糖含量[5],降低可滴定酸含量,提高果實固酸比[6]和顯著的增產(chǎn)作用[1]。
果園生草也稱生物覆蓋[7],是普遍運用的果園土壤管理模式[8]。【前人研究進展】生草能夠改善土壤物理性狀,提升土壤有機質(zhì)含量、土壤酶活性和微生物數(shù)量[8-10],但當年會降低土壤脲酶和堿性磷酸酶的活性[11];生草在夏季有降溫效應(yīng),秋季有增溫效應(yīng),能降低土壤溫度[12],調(diào)節(jié)果際、根際微氣候[13]。生草顯著提高果實橫徑、可溶性固形物和VC含量,降低可滴定酸含量[12],且降低果實硬度、提高單果重、果實品質(zhì)和產(chǎn)量[6,10]。生草對果形指數(shù)和VC含量變化影響不明顯[14]。除此之外,生草可以改變赤霞珠葡萄果實三大香氣物質(zhì)合成中的次級代謝產(chǎn)物,提高果實香氣物質(zhì)含量[8,13]。【本研究切入點】馬瑟蘭葡萄品種是以赤霞珠為母本,歌海娜為父本雜交選育而成的紅色釀酒葡萄品種[15,16]。該品種適應(yīng)性強,抗病性強[17],目前我國釀酒葡萄馬瑟蘭總種植面積約267 hm2,新疆吐魯番市馬瑟蘭品種種植面積約20 hm2(300畝),
馬瑟蘭葡萄7月10日左右開始轉(zhuǎn)色,8月15日左右成熟,果實著色期間,正值一年中的高溫季節(jié),造成果實萎蔫,品質(zhì)不佳等問題。需研究不同地面覆蓋方式對釀酒葡萄馬瑟蘭葡萄果實品質(zhì)的影響。【擬解決的關(guān)鍵問題】選擇2018年SO4砧木嫁接的馬瑟蘭葡萄為試材,研究園藝地布和生草栽培對果實品質(zhì)的影響,為新疆吐魯番市馬瑟蘭葡萄的高效優(yōu)質(zhì)栽培提供理論依據(jù)。
1" 材料與方法
1.1" 材 料
試驗設(shè)在新疆吐魯番市鄯善縣園藝場(42°91′ N,90°30′ E),以2018年春季SO4砧木嫁接的釀酒葡萄品種馬瑟蘭為試材,1.0 m×2.5 m,‘廠’形栽培,結(jié)果高度60 cm。土壤為沙礫土,有機質(zhì)含量18.20 g/kg,全鹽1.07 g/kg,全氮1.06 g/kg,全磷0.92 g/kg,全鉀1.61 g/kg,pH值8.18,灌溉方式為微噴。
1.2" 方 法
1.2.1" 試驗設(shè)計
葡萄花后坐果初期設(shè)田間自然生草(GM)、鋪設(shè)園藝地布(BGM)處理,清耕栽培為對照(CK)。果實成熟時采收,測定果穗性狀和果實品質(zhì),用鑷子剝?nèi)? g果皮后立即用錫紙包裹置于液氮中,測定果皮花色苷含量、總酚含量、類黃酮含量、黃烷醇含量、單寧含量及果皮抗氧化活性(DPPH、ABTS和FRAP)。
1.2.2" 測定指標
1.2.2.1" 果穗性狀
依據(jù)葡萄種質(zhì)資源規(guī)范和數(shù)據(jù)標準進行描述并賦值;用電子天平稱取果穗質(zhì)量(g)。
1.2.2.2" 果實品質(zhì)
留2 mm的果梗將果實剪下,用于測定果實基本品質(zhì)。
葡萄果粒質(zhì)量采用電子天平稱取10粒果粒質(zhì)量(g),取平均值,每處理重復(fù)5次;果??v徑橫徑采用游標卡尺測量(mm);果皮色差采用色差儀測定,隨機選取20粒果實用色差儀測定果皮赤道處的L、a、b值,計算C值。根據(jù)Hunter Lab表色系統(tǒng),其中L值表示系統(tǒng)的亮度,L越大,樣品表面越亮。a表示系統(tǒng)的紅綠值,-a為綠,a越小樣品越綠,+a為紅,a越大,樣品越紅;b表示系統(tǒng)的黃藍值,-b為藍,值越小樣品越藍,+b為黃,值越大,樣品越黃;C表示樣品的彩度,值越大,所測的顏色越純。C=a2+b2,h0=arctangent(b/a),CIRG=(180-h0)/(L+C),CIRGlt;2為黃綠色,2lt;CIRGlt;4為粉紅色,4lt;CIRGlt;5為紅色,5lt; CIRGlt;6為深紅色,CIRGgt;6為紫黑色[18]。
隨機選取25粒葡萄果實擠出果汁用于測定果實可溶性固形物(°Brix)、可滴定酸(%)、pH值和還原糖,每處理重復(fù)3次??扇苄怨绦挝镉檬殖譁y糖儀測定;還原糖采用3,5-二硝基水楊酸法測定[19],采用酸堿滴定法測定可滴定酸,結(jié)果用酒石酸表示[19];采用pH計測定pH值。
1.2.2.3" 果皮品質(zhì)
葡萄果皮釀酒品質(zhì):果皮花色苷采用pH值色差法測定[20],總酚采用福林酚試劑法測定[21],類黃酮、黃烷醇、單寧參見文獻方法[22-24]。
葡萄果皮抗氧化活性:Brand-Williams方法[25]測定DPPH,Re,Pellegrini等方法[26]測定ABTS,采用葡萄果皮對鐵離子的還原能力采用文獻[27]測定FRAP。
1.3" 數(shù)據(jù)處理
3次平行試驗,采用Microsoft Excel 2010進行數(shù)據(jù)處理,用OriginLab OriginPro 2019b進行差異性分析(Duncan,Plt;0.05),數(shù)據(jù)表示為“平均值±標準差”。將3種地面覆蓋方式下葡萄果實和果皮作為評價單元,以所有品質(zhì)指標為變量,原始數(shù)據(jù)標準化后采用OriginLab OriginPro 2019b進行皮爾遜相關(guān)性和主成分分析。根據(jù)提取的特征值,以累計貢獻率大于85%的準則提取主成分。
2" 結(jié)果與分析
2.1" 不同地面覆蓋方式對釀酒葡萄馬瑟蘭果實外觀及內(nèi)在品質(zhì)的影響
研究表明,園藝地布和生草栽培提高葡萄果穗質(zhì)量,分別比對照提高了16.38%和57.98%,生草栽培的葡萄果穗質(zhì)量、果穗緊密度和對照間存在顯著差異,園藝地布和對照無差異。園藝地布的葡萄果穗萎蔫率顯著高于對照,葡萄果實的出汁率相應(yīng)的低于對照,但和對照間無差異。生草栽培的葡萄果實未出現(xiàn)萎蔫,果實出汁率顯著高于對照為38.29%。
園藝地布和生草栽培的葡萄果粒質(zhì)量高于對照,分別比對照提高了1.97%和28.67%,生草栽培的果粒質(zhì)量和對照間存在顯著差異。葡萄果??v徑和橫徑均顯著高于對照,果??v徑和橫徑分別比對照提高了12.72%和19.90%、11.89%和15.72%。地面覆蓋方式對果形指數(shù)影響不大。
生草栽培的葡萄果實可溶性固形物含量最高為24.47,其次是對照24.20,園藝地布的葡萄可溶性固形物含量最低為23.73,果實的可溶性糖含量表現(xiàn)出同樣的趨勢。園藝地布的葡萄可溶性固形物含量和對照間無差異,而還原糖含量卻顯著低于對照。兩種地面覆蓋方式降低了果實可滴定酸,提高了果實糖酸比,園藝地布和對照間的可滴定酸存在顯著差異,生草栽培的果實糖酸比顯著高于對照,較對照提高了5.56%。2種地面覆蓋方式下果實pH值均顯著降低。
園藝地布對L值、a、b值和C值影響不大,雖有不同程度的增加或降低,但和對照間無差異性;生草栽培顯著降低了b和C值,雖然降低了a值、提高了L值,但和對照間均無差異性。園藝地布的CIRG顯著高于對照,園藝地布的CIRG值為6.43,比對照提高了74.94%,生草栽培雖然提高了CIRG但與對照間無差異。表1
2.2" 不同地面覆蓋方式對釀酒葡萄馬瑟蘭果皮品質(zhì)及抗氧化活性的影響
研究表明,園藝地布的葡萄果皮花色苷含量較對照提高了4.97%,生草栽培的葡萄果皮花色苷含量較對照減少了10.30%,均于對照間無差異。兩種地面覆蓋方式均提高了葡萄果皮總酚、類黃酮、黃烷醇和單寧含量,且園藝地布的葡萄果皮總酚、類黃酮、黃烷醇和單寧含量最高,分別比對照提高了203.50%、366.07%、108.36%和50.08%,均顯著高于對照;生草栽培的葡萄果皮總酚、類黃酮、黃烷醇和單寧含量顯著低于園藝地布覆蓋栽培但顯著高于對照,分別比對照提高了71.79%、117.17%、21.92%和25.25%。
園藝地布覆蓋和生草栽培提高了葡萄FRAP和ABTS活性,其中園藝地布的FRAP和ABTS活性分別比對照提高了157.49和81.81%,均顯著高于對照;生草栽培的FRAP和ABTS活性分別比對照提高了41.51%和6.74%,園藝地布和對照間存在顯著差異,生草栽培和對照間無差異。園藝地布和生草栽培均顯著降低葡萄DPPH活性,分別比對照降低了5.16%和2.35%。表2
2.3" 葡萄果實性狀的相關(guān)性比較
研究表明,26個性狀之間存在不同程度的極顯著獲顯著性正相關(guān)或負相關(guān),相關(guān)系數(shù)介于-1.00~+1.00。
葡萄果粒質(zhì)量和果??v徑、橫徑呈顯著正相關(guān),相關(guān)系數(shù)為0.79;與可溶性固形物和還原糖呈顯著正相關(guān),相關(guān)系數(shù)為0.70;與還原糖和糖酸比顯著正相關(guān),相關(guān)系數(shù)為0.72。總酚和類黃酮、黃烷醇、單寧之間均存在極顯著正相關(guān),相關(guān)系數(shù)分別為1.00、0.98、0.98,類黃酮和黃烷醇、單寧存在極顯著相關(guān),相關(guān)系數(shù)分別為0.99、0.98,黃烷醇和單寧之間極顯著正相關(guān),相關(guān)系數(shù)為0.94。ABTS和FRAP間抗氧化活性存在極顯著正相關(guān),相關(guān)系數(shù)為0.97,DPPH和FRAP、ABTS均存在極顯著負相關(guān),相關(guān)系數(shù)分別為0.97和0.89,F(xiàn)RAP和ABTS與總酚、類黃酮、黃烷醇和單寧均存在極顯著正相關(guān),相關(guān)系數(shù)介于0.88~0.99。
可滴定酸和CIRG呈顯著負相關(guān),相關(guān)系數(shù)為-0.73,可滴定酸和總酚、類黃酮、黃烷醇、單寧呈顯著負相關(guān),相關(guān)系數(shù)分別為-0.74、-0.73、-0.71、-0.73。DPPH和總酚、類黃酮、黃烷醇、單寧呈極顯著負相關(guān),相關(guān)系數(shù)分別為-0.95、-0.96、-0.95、-0.97。圖1
2.4" 葡萄果實性狀的主成分
研究表明,提取特征值大于1的3個主成分,貢獻率分別為46.13%、38.05%、7.66%,累計貢獻率91.84%,可以代表全部指標的大部分信息。
第一主成分的特征值為11.99,貢獻率為46.13%,萎蔫率的載荷值最大,為0.287,ABTS和黃烷醇含量較高,載荷值分別為0.271和0.260,F(xiàn)RAP、類黃酮、總酚、CIRG和單寧載荷值分別為0.249、0.242、0.236、0.204,代表了果皮釀酒品質(zhì)和抗氧化活性。
第二主成分的特征值為9.89,貢獻率為38.05%,果粒縱徑的載荷最大,為0.311,果穗質(zhì)量、b值載荷值較大,載荷值為0.276、0.275,糖酸比、果粒質(zhì)量、出汁率、緊密度、還原糖的載荷值分別為0.207、0.225、0.204、0.185、0.102,代表了果實的基本品質(zhì)。
第三主成分的特征值為1.99,貢獻率為7.66%,L的載荷值最大為0.631,可滴定酸的載荷值較大為0.318。代表了果實基本品質(zhì)。圖2
2.5" 不同地面覆蓋方式下葡萄果實品質(zhì)的綜合評價
研究表明,園藝地布覆蓋和生草栽培的綜合得分均高于對照,而園藝地布覆蓋栽培的綜合得分最高,園藝地布覆蓋栽培下果實品質(zhì)較好。表3
3" 討 論
3.1
在新疆吐魯番市馬瑟蘭葡萄成熟時恰值高溫季節(jié),加之空氣濕度低,造成果實萎蔫,嚴重影響了優(yōu)質(zhì)葡萄酒的釀造。顏曉捷等[28]、劉蝴蝶等[29]、李祥彬等[30]、王孝娣等[31]研究發(fā)現(xiàn),生草栽培提高了葡萄果??v橫徑和果粒質(zhì)量,研究也得出了同樣的結(jié)果。園藝地布覆蓋也增加了果粒質(zhì)量,與楊熠路等[3]研究結(jié)果一致,而韓軒軒等[32]認為地布覆蓋下葡萄平均單果質(zhì)量較對照降低。
園藝地布覆蓋的葡萄可溶性固形物和可滴定酸含量均低于對照,韓軒軒等[32]研究認為地布覆蓋可以提高果實可溶性固形物、降低酸含量,研究證實地布覆蓋可以降低酸含量。劉思等[33]、劉博等[34]、陳久紅等[12]、管雪強等[35]分析認為生草栽培可以提高果實可溶性固形物、還原糖含量和總酸含量。而研究證實生草栽培下葡萄果實可溶性固形物和還原糖含量均高于對照;而王銳等[8]也認為生草栽培可以提高酸含量,但試驗研究發(fā)現(xiàn)生草不但沒有提高果實酸含量,反而降低了酸含量。此外在2021年鮮食葡萄新郁上也發(fā)現(xiàn)生草栽培降低了果實酸含量[36],李宏建等[37]、王波波[38]、段衛(wèi)朋等[13]研究也發(fā)現(xiàn)園藝地布降低了可滴定酸含量推遲了果實成熟。管雪強等[35]研究還發(fā)現(xiàn),生草可以維持較低的pH值,在一定程度上對果實可溶性固形物積累形成負面影響,該研究也證實了園藝地布覆蓋和生草栽培明顯降低了果實pH值。
3.2
葡萄園覆蓋可以增加葡萄果實的總酚物質(zhì)[39]。王銳等[8]、劉思等[33]、侯婷等[40]、王波波等[41]、盧浩成等[42]研究發(fā)現(xiàn),生草覆蓋可以增加花色苷含量,研究證實園藝地布可以增加馬瑟蘭葡萄果皮花色苷含量,雖然生草栽培降低了花色苷含量,但和對照間無差異。園藝地布覆蓋提高果皮花色苷濃度原因是行間鋪設(shè)園藝地布后提高了土壤溫度,對葡萄根系產(chǎn)生脅迫,有利于果皮花色苷的合成,并抑制其分解。
段鑫垚[43]發(fā)現(xiàn),2019年各覆蓋處理均提高了葡萄果皮中的類黃酮含量,降低了黃烷醇含量,而2020年發(fā)現(xiàn)覆蓋提高了果皮類黃酮和黃烷醇含量。龐群虎[44]認為,生草可不同程度提高總酚含量,降低了單寧含量,惠竹梅等[45],Monteiro等[46],Spay等[47]均認為,行間生草促使總酚含量提高。劉玉娟[48]研究發(fā)現(xiàn),行內(nèi)生草降低了釀酒葡萄果實總酚和單寧含,行間種植馬齒莧可降低果實黃酮醇類物質(zhì)濃度[42]。研究發(fā)現(xiàn),園藝地布覆蓋和生草栽培均提高了果皮總酚、類黃酮、黃烷醇和單寧含量,且園藝地布覆蓋地面下各指標含量高于生草栽培,與前人的研究結(jié)果不完全一致。生草提高多酚化合物的原因是葡萄園生草由于適度的水分和氮肥競爭,從而控制植株的生長勢,調(diào)節(jié)營養(yǎng)生長和生殖生長,改善葉幕微氣候,從而提高了葡萄總酚含量[49]。
果蔬的抗氧化能力受總酚和總類黃酮的影響較大,特別是總酚含量與其抗氧化能力呈顯著正相關(guān)[50]。DPPH的清除能力和總酚、類黃酮、花色苷、黃酮醇呈極顯著正相關(guān),總酚和總黃酮、黃酮醇極顯著正相關(guān)[51],F(xiàn)RAP和ABTS和總酚、類黃酮、黃烷醇、單寧均呈極顯著正相關(guān)。
4" 結(jié) 論
4.1
園藝地布和生草栽培可促進葡萄果穗質(zhì)量、果粒質(zhì)量、果??v徑橫徑和果穗緊密度的增加,且生草降低可顯著降低果實萎蔫率,提高果實出汁率。園藝地布降低果實可溶性固形物和還原糖含量,生草提高了果實可溶性固形物和還原糖含量,2種地面覆蓋栽培方式下葡萄可溶性固形物均和對照間無差異。
4.2
生草覆蓋栽培均降低了葡萄果皮花色苷含量,園藝地布提高果皮花色苷含量,但和對照間存無差異,生草栽培和對照間無差異。在西北干旱區(qū)可選擇生草栽培作為釀酒葡萄優(yōu)質(zhì)栽培新模式。2種地面覆蓋方式均提高了果皮總酚、類黃酮、黃烷醇、單寧含量。2種地面覆蓋方式提高了葡萄FRAP和ABTS的活性,但降低了DPPH活性。
4.3" 26個性狀之間存在不同程度的極顯著或顯著性正相關(guān)或負相關(guān),相關(guān)系數(shù)介于-1.00~ +1.00。前3個主成分的累計貢獻率達到了91.84%,涵蓋了果皮釀酒品質(zhì)、抗氧化活性和果實基本品質(zhì),在新疆吐魯番市可選擇生草栽培模式。
參考文獻(References)
[1]
趙德英. 梨園樹盤覆蓋的土壤生態(tài)效應(yīng)及樹體生理響應(yīng)研究[D]. 北京:中國農(nóng)業(yè)科學(xué)院," 2013.
ZHAO Deying. Study on the soil ecological effects and physiological response in different groundcover pear tree [D]. Beijing: Chinese Academy of Agricultural Sciences, 2013.
[2] 李寒, 郝賽鵬, 郭素萍, 等. 地布覆蓋對蘋果園土壤水熱環(huán)境及果實品質(zhì)的影響[J]. 林業(yè)科技通訊, 2019, (10): 44-47.
LI Han, HAO Saipeng, GUO Suping, et al. Effects of ground cloth mulching on soil water and heat environment and fruit quality in apple orchard[J]. Forest Science and Technology, 2019, (10): 44-47.
[3] 楊熠路, 胡楓, 倪照君, 等. 園藝地布覆蓋對桃園土壤和桃果實品質(zhì)的影響[J]. 中國果樹, 2021, (8): 24-30.
YANG Yilu, HU Feng, NI Zhaojun, et al. Effects of black ground fabric mulching on fruit quality and soil in peach orchard[J]. China Fruits," 2021, (8): 24-30.
[4] 鄭悅, 李會科, 張?zhí)┤唬?等. 園藝地布微壟覆蓋對渭北旱地矮化蘋果根域土壤水分的影響[J]. 西北農(nóng)業(yè)學(xué)報, 2019, 28(4): 631-640.
ZHENG Yue, LI Huike, ZHANG Tairan, et al. Effects of black ground fabric micro-ridge mulching on root zone soil moisture of dwarf apple in Weibei dryland, China[J]. Acta Agriculturae Boreali-occidentalis Sinica," 2019, 28(4): 631-640.
[5] 趙思明, 曹兵, 萬仲武, 等. 園藝地布和秸稈覆蓋對棗園土壤溫濕度與棗樹生長的影響[J]. 核農(nóng)學(xué)報, 2021, 35(5): 1188-1195.
ZHAO Siming, CAO Bing, WAN Zhongwu, et al. Effect of garden cloth covering and straw mulching on soil temperature, moisture and jujube growth in jujube orchard[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(5): 1188-1195.
[6] 劉偉, 羅玲, 鐘奇, 等. 生草和地布覆蓋對攀枝花地區(qū)芒果園土壤性質(zhì)及果實品質(zhì)的影響[J]. 應(yīng)用與環(huán)境生物學(xué)報, 2021, 27(2): 261-270.
LIU Wei, LUO Ling, ZHONG Qi, et al. Effects of grass planting and ground fabric mulching on soil properties and fruit quality in mango orchards in Panzhihua, China[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(2): 261-270.
[7] 姚勝蕊, 薛炳燁. 果園地面管理研究進展[J]. 山東農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版), 1999, 30(2): 186-192.
YAO Shengrui, XUE Bingye. A review of orchard floor management[J]. Journal of Shandong Agricultural University (Natural Science Edition), 1999, 30(2): 186-192.
[8] 王銳, 閆鵬科, 馬婷慧, 等. 行內(nèi)生草對土壤微環(huán)境和釀酒葡萄品質(zhì)的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2020, 38(3): 195-203.
WANG Rui, YAN Pengke, MA Tinghui, et al. Effects of intra-row planted grass on soil microenvironment and wine grape quality[J]. Agricultural Research in the Arid Areas, 2020, 38(3): 195-203.
[9] 孫計平, 張玉星, 吳照輝, 等. 生草對梨園土壤物理特性的影響[J]. 水土保持學(xué)報, 2015, 29(5): 194-199.
SUN Jiping, ZHANG Yuxing, WU Zhaohui, et al. Effect of planting herbage on soil physical properties of pear orchard[J]. Journal of Soil and Water Conservation, 2015, 29(5): 194-199.
[10] 霍姍姍. 生草對梨園生態(tài)環(huán)境及果實品質(zhì)的影響[D]. 邯鄲: 河北工程大學(xué), 2018.
HUO Shanshan. Effects of Grass Planting on Ecological Environment and Fruit Quality of Pear Orchard[D].Handan: Hebei University of Engineering, 2018.
[11] 龐群虎, 宋麗華, 王競, 等. 生草當年對棗園土壤性狀及紅棗品質(zhì)的影響[J]. 西北林學(xué)院學(xué)報, 2019, 34(1): 124-129.
PANG Qunhu, SONG Lihua, WANG Jing, et al. Effects of growing grasses in jujube orchards on soil properties and fruit quality[J]. Journal of Northwest Forestry University," 2019, 34(1): 124-129.
[12] 陳久紅, 馬建江, 李永豐, 等. 行間生草對‘庫爾勒香梨’果園小氣候、光合特性及果實品質(zhì)的影響[J]. 北方園藝, 2019(22): 49-59.
CHEN Jiuhong, MA Jianjiang, LI Yongfeng, et al. Effects of herbage on ecological environment and photosynthetic characteristics fruits quality of ‘korla fragrant pear’[J]. Northern Horticulture, 2019(22): 49-59.
[13] 段衛(wèi)朋. 行內(nèi)生草、覆布對‘赤霞珠’果實及其葡萄酒香氣品質(zhì)的影響[D]. 蘭州:甘肅農(nóng)業(yè)大學(xué), 2018.
DUAN Weipeng. Effects of grass and film cover on aroma quality of ‘Cabernet Sauvignon’ grape and wine [D]. Lanzhou: Gansu Agricultural University, 2018.
[14] 史進.自然生草對長富2號果園生態(tài)環(huán)境和果實品質(zhì)的影響[D].烏魯木齊:新疆農(nóng)業(yè)大學(xué), 2016.
SHI Jin. Effects of nature grass on ecological environment and fruit quality on Malus pumila ‘Nagafu 2’ orchard [D]. Urumqi: Xinjiang Agricultural University, 2016.
[15] Alcalde-Eon C, Boido E, Carrau F, et al. Pigment profiles in monovarietal wines produced in Uruguay[J]. American Journal of Enology and Viticulture, 2006, 57(4): 449-459.
[16] Li M M, Guo Z J, Jia N, et al. Evaluation of eight rootstocks on the growth and berry quality of ‘Marselan’ grapevines[J]. Scientia Horticulturae, 2019, 248: 58-61.
[17] Kym A. JANCIS ROBINSON, JULIA HARDING and JOS VOUILLAMOZ: wine grapes: a complete guide to 1, 368 vine varieties, including their origins and flavours. ecco (harper collins), New York, October 2012, xxxvii + 1242 pp., ISBN 978-0062206367 (hardback), US$175[J]. Journal of Wine Economics, 2013, 8(1): 106-109.
[18] Carreo J, Martínez A, Almela L, et al. Proposal of an index for the objective evaluation of the colour of red table grapes[J]." Food Research International, 1995, 28(4): 373-377.
[19] 高俊鳳. 植物生理學(xué)實驗指導(dǎo)[M]. 北京: 高等教育出版社, 2006.
GAO Junfeng. Experimental guidance for plant physiology[M]. Beijing: Higher Education Press, 2006.
[20] Stojanovic J, Silva J L. Influence of osmotic concentration, continuous high frequency ultrasound and dehydration on antioxidants, colour and chemical properties of rabbiteye blueberries[J]. Food Chemistry, 2007, 101(3): 898-906.
[21] Tian S, Wang Y, Du G, et al. Changes in contents and antioxidant activity of phenolic compounds during gibberellin-induced development in Vitis vinifera L. ‘Muscat’[J]. Acta Physiol Plant, 2011, 33:2467-2475.
[22] Wolfe K, Wu X Z, Liu R H. Antioxidant activity of apple peels[J]. Journal of Agricultural and Food Chemistry, 2003, 51(3): 609-614.
[23] Li Y G, Tanner G, Larkin P. The DMACA–HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes[J]. Journal of the Science of Food and Agriculture, 1996, 70(1): 89-101.
[24] Mercurio M D, Dambergs R G, Herderich M J, et al. High throughout analysis of red wine and grape phenolics-adaptation and validation of methyl cellulose precipitable tannin assay and modified somers color assay to a rapid 96 well plate format[J]. Journal of Agricultural and Food Chemistry, 2007, 55(12): 4651-5657.
[25] Brand-Williams W, Cuvelier M, Berset C. Use of a free radical method to evaluate antioxidant activity[J]. LWT - Food Science and Technology, 1995, 28(1): 25-30.
[26] Re R, Pellegrini N, Proteggente A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay[J]. Free Radical Biology amp; Medicine, 1999, 26(9/10): 1231-1237.
[27] Benzie I F F, Strain J J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay[J]. Analytical Biochemistry, 1996, 239(1): 70-76.
[28] 顏曉捷, 黃堅欽, 邱智敏, 等. 生草栽培對楊梅果園土壤理化性質(zhì)和果實品質(zhì)的影響[J]. 浙江農(nóng)林大學(xué)學(xué)報, 2011, 28(6): 850-854.
YAN Xiaojie, HUANG Jianqin, QIU Zhimin, et al. Soil physical and chemical properties and fruit quality with grass cover in a Myrica rubra orchard[J]. Journal of Zhejiang A amp; F University, 2011, 28(6): 850-854.
[29] 劉蝴蝶, 郝淑英, 曹琴, 等. 生草覆蓋對果園土壤養(yǎng)分、果實產(chǎn)量及品質(zhì)的影響[J].土壤通報,2003,34(3):184-186.
LIU Hudie, HAO Shuying, CAO Qin, et al. Effect of grass cover on soil nutrient and yield and quality of apple [J]. Chinese Journal of Soil Science, 2003, 34(3): 184-186.
[30] 李祥彬. 生草對蜜柚園生態(tài)環(huán)境及果樹生長發(fā)育的影響[D]. 福州: 福建農(nóng)林大學(xué), 2017.
LI Xiangbin. The Influences of Cover Cropping on the Eco-environments in Pummelo Orchard and the Growth amp; Development of Fruit Trees[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017.
[31] 王孝娣, 史祥賓, 劉鳳之, 等. 不同草種和生草方式對‘春雪’桃果實品質(zhì)的影響[J]. 中國果樹, 2017,(2): 28-31.
WANG Xiaodi, SHI Xiangbin, LIU Fengzhi, et al. Effects of different grass species and grass growing methods on fruit quality of' Chun Xue' peach[J]. China Fruits, 2017,(2): 28-31.
[32] 韓軒軒, 王鵬飛, 穆霄鵬, 等. 地布覆蓋下不同壟型對歐李園土壤溫濕度與果實品質(zhì)的影響[J]. 北方園藝, 2018,(20): 25-32.
HAN Xuanxuan, WANG Pengfei, MU Xiaopeng, et al. Effects of different ridge shapes with ground cover on soil temperature, humidity and fruit quality of Chinese dwarf cherry[J]. Northern Horticulture," 2018, (20): 25-32.
[33] 劉思, 王志磊, 張軍翔. 葡萄行內(nèi)覆蓋對園區(qū)微域生態(tài)環(huán)境及果實品質(zhì)的影響[J]. 西北農(nóng)林科技大學(xué)學(xué)報(自然科學(xué)版), 2019, 47(6): 73-79, 88.
LIU Si, WANG Zhilei, ZHANG Junxiang. Effects of within-row mulching on soil microsites in vineyard and fruit quality[J]. Journal of Northwest A amp; F University (Natural Science Edition), 2019, 47(6): 73-79, 88.
[34] 劉博, 黃華梨, 王多鋒, 等. 覆蓋方式對干熱河谷區(qū)棗園土壤溫度和樹體光合特性及果實品質(zhì)的影響[J]. 西北農(nóng)業(yè)學(xué)報, 2021, 30(3): 377-385.
LIU Bo, HUANG Huali, WANG Duofeng, et al. Effect of mulching methods on soil temperature, photosynthetic characteristic and fruit quality of jujube orchard in dry and hot valley[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2021, 30(3): 377-385.
[35] 管雪強, 孫德勤, 尚明華, 等. 行內(nèi)生草對釀酒葡萄微域環(huán)境及品質(zhì)的影響[J]. 山東農(nóng)業(yè)科學(xué), 2020, 52(9): 62-65.
GUAN Xueqiang, SUN Deqin, SHANG Minghua, et al. Effect of grassing beween lines on soil water content, fruit zone temperature and wine grape quality[J]. Shandong Agricultural Sciences," 2020, 52(9): 62-65.
[36] Hu J G, Bai S J, Zhao R H, et al. Effects of black geotextile mulch and grass mulch on the microclimate, fruit quality and anthocyanin components of ‘Xinyu’ table grape[J]. New Zealand Journal of Crop and Horticultural Science, 2022: 1-18.
[37] 李宏建, 王宏, 于年文, 等. 地面覆蓋對蘋果樹體生長和果實品質(zhì)的影響[J]. 果樹學(xué)報, 2019, 36(3): 296-307.
LI Hongjian, WANG Hong, YU Nianwen, et al. Effects of mulching on the growth and fruit quality of apple trees[J]. Journal of Fruit Science, 2019, 36(3): 296-307.
[38] 王波波. 葡萄園行內(nèi)生草對土壤及植株礦質(zhì)營養(yǎng)和果實品質(zhì)的影響研究[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2021.
WANG Bobo. Effects of endophytic grass on soil, plant mineral nutrition and fruit quality in vineyards[D].Beijing: Chinese Academy of Agricultural Sciences, 2021.
[39] Xi Z M, Zhang Z W, Cheng Y F, et al. The effect of vineyard cover crop on main monomeric phenols of grape berry and wine in Vitis viniferal L.cv.Cabernet sauvignon[J]. Agricultural Sciences in China, 2010, 9(3): 440-448.
[40] 侯婷, 閆鵬科, 龐群虎, 等. 行內(nèi)覆蓋對果園土壤特性及釀酒葡萄產(chǎn)量和品質(zhì)的影響[J]. 河南農(nóng)業(yè)大學(xué)學(xué)報, 2019, 53(6): 869-875.
HOU Ting, YAN Pengke, PANG Qunhu, et al. Effects of intra-row coverage on orchard soil features and wine grape yield and quality[J]. Journal of Henan Agricultural University, 2019, 53(6): 869-875.
[41] 王波波, 王小龍, 史祥賓, 等. 不同行內(nèi)生草對葡萄果實品質(zhì)的影響[J]. 中國果樹, 2021,(8): 58-61.
WANG Bobo, WANG Xiaolong, SHI Xiangbin, et al. Effects of endophytic grass in different rows on grape fruit quality[J]. China Fruits, 2021,(8): 58-61.
[42] 盧浩成, 魏巍, 陳武, 等. 行間種植馬齒莧對瑪納斯‘小味兒多’葡萄和葡萄酒風味輪廓的影響[J]. 北方果樹, 2023,(1): 5-11.
LU Haocheng, WEI Wei, CHEN Wu, et al. Effects of inter-row planting purslane on the flavor profiles of ‘petit verdot’ grape and wine in manas[J]. Northern Fruits, 2023,(1): 5-11.
[43] 段鑫垚. 不同行內(nèi)覆蓋處理對葡萄園土壤性質(zhì)和葡萄果實品質(zhì)的影響研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2021.
DUAN Xinyao. Effects of different mulching treatments on soil properties and grape fruit quality in vineyards[D].Yangling: Northwest A amp; F University, 2021.
[44] 龐群虎. 生草覆蓋對釀酒葡萄園土壤環(huán)境及釀酒葡萄品質(zhì)的影響研究[D]. 銀川: 寧夏大學(xué), 2019.
PANG Qunhu. Effects of grass covering on the soil environment of winemaking vineyards and the quality of wine grapes [D]. Yinchuang: Ningxia University, 2019.
[45] 惠竹梅, 張振文, 成宇峰, 等. 行間生草對赤霞珠葡萄與葡萄酒中主要單體酚的影響[J]. 中國農(nóng)業(yè)科學(xué), 2009, 42(9): 3209-3215.
XI Zhumei, ZHANG Zhenwen, CHENG Yufeng, et al. Effect of vineyard cover crop on main monomeric phenols of grape berry and wine in Vitis viniferal L.cv.Cabernet sauvignon[J]. Scientia Agricultura Sinica, 2009, 42(9): 3209-3215.
[46] Monteiro A, Lopes C M. Influence of cover crop on water use and performance of vineyard in Mediterranean Portugal[J]. Agriculture, Ecosystems amp; Environment, 2007, 121(4): 336-342.
[47] Spayd S E, Tarara J M, Mee D L, et al. Separation of sunlight and temperature effects on the composition of Vitis viniferacv. merlot berries[J]. American Journal of Enology and Viticulture, 2002, 53(3): 171-182.
[48] 劉玉娟. 行間生草對 ‘北紅’ 葡萄生長微環(huán)境和生長發(fā)育的影響[D]. 銀川: 寧夏大學(xué), 2022.
LIU Yujuan. Effects of inter row grass on growth microenvironment and growth and development of ‘Beihong’ grape[D]. Yinchuang: Ningxia University, 2022.
[49] Caspari H W, Neal S, Naylor A, et al. Use of cover crops and deficit irrigation to reduce vegetative vigor of ‘Sauvignon Blanc’ grapevines in a humid climate[C]. Proceeding of the Fourth International Symposium on Cool Climate Viticulture and Enology," 1997: 63-66.
[50] Flores G, Blanch G P, Ruiz del Castillo M L. Postharvest treatment with (–) and (+)-methyl jasmonate stimulates anthocyanin accumulation in grapes[J]. LWT - Food Science and Technology, 2015, 62(1): 807-812.
[51] 徐洪宇, 張京芳, 成冰, 等. 26種釀酒葡萄中抗氧化物質(zhì)含量測定及品種分類[J]. 中國食品學(xué)報, 2016, 16(2): 233-241.
XU Hongyu, ZHANG Jingfang, CHENG Bing, et al. Content Determination of the Antioxidant Substance and Classifying the Grape from26 kinds of the Wine Grapes[J]. Journal of Chinese Institute of Food Science and Technology," 2016, 16(2): 233-241.
Effects of different ground mulch types on the berry quality of Marselan wine grape and comprehensive evaluation
HU Jinge, BAI Shijian, CHEN Guang, CAI Junshe
(Institute of Grapes and Melons of Xinjiang Uygur Autonomous Region, Shanshan" Xinjiang 838200, China)
Abstract:【Objective】 To study the effects of different ground mulching types on the berry quality of wine grape Marselan.
【Methods】" Five-year old grafted Marselan/SO4 was taken as test materials, clean tillage one as the control to study the effects of inter-row spaces of the vineyard covered with black geotextiles (BGM) and inter-row spaces of the vineyard with natural growing grass (GM) on Marselan grape quality.
【Results】 The results showed that cluster weight, berry weight, longitudinal diameter and transverse diameter were increased by ground mulch.Wilting percent of BGM was the highest, with 5.45%, juice yield was the lowest (32.89%), there was no wilting percent for GM, juice yield was significant higher for GM than CK.Soluble solid and reducing sugar content were decreased for BGM and increased fur GM.BGM and GM decreased titratable acid and pH, but increased sugar/acid.Total phenol, flavonoids, flavanols and tannins content in fruit peel were significantly increased for BGM and GM, anthocyanins content in peel were changed, but there was no difference.FRAP and ABTS antioxidant activity for BGM and GM were increased, but DPPH antioxidant activity for BGM and GM were significantly decreased.The correlation analysis of 26 berry quality indexes showed that there were significant positive or negative correlations, with correlation coefficients ranging from -1.00 to +1.00.
【Conclusion】 In turpan, grass mulch can be selected as a new model of wine grape cultivation.
Key words:wine grape; ground mulch types; berry quality; antioxidant capacity
Fund projects:Public Welfare Research Institutes Basic Scientific Business Expensens Special Funds of the Department of Science and Technology of Xinjiang (KY2022107); Special Training Project for Ethnic Minorities in the Autonomous Region in 2022(2022D03033); The Key Research and Development Project in Turpan (2021006) ; China Agriculture Research System of MOF and MARA(CARS-29-26)
Correspondence author: HU Jinge (1982-), female, from Xinjiang,master, associate research, research direction: viticulture, (E-mail) hujinge2007@sina.com