doi:10.6048/j.issn.1001-4330.2024.05.004
摘" 要:【目的】研究不同施肥方式對(duì)黃淮海潮土區(qū)麥田肥力和冬小麥氮素利用效率和產(chǎn)量的影響,為該區(qū)域優(yōu)化施肥措施、合理利用有機(jī)肥資源和保障作物高產(chǎn)提供理論支持和技術(shù)指導(dǎo)。
【方法】基于天津潮土區(qū)連續(xù)12年的施肥處理定位試驗(yàn),設(shè)置施肥處理為對(duì)照(CK,不施肥)、單施有機(jī)肥(M)、化肥減量50%配施有機(jī)肥(MF1)、常量化肥配施有機(jī)肥(MF2)、單施化肥處理(F)。
【結(jié)果】與對(duì)照相比,施肥處理均能顯著提高麥田土壤有機(jī)質(zhì)和堿解氮、速效磷、速效鉀含量,且有機(jī)無機(jī)肥配施處理提升土壤肥力效果最好。與對(duì)照相比,M、MF1、MF2和F處理土壤有機(jī)質(zhì)增幅分別為92%、48%、78%和20%。MF1處理孕穗-成熟期葉片氮素含量顯著降低,促進(jìn)氮素向籽粒的轉(zhuǎn)移,提高氮素利用效率,顯著提高穗粒數(shù)和千粒重,進(jìn)而起到增產(chǎn)作用。MF1、MF2處理冬小麥產(chǎn)量分別達(dá)到6 467和6 345 kg/hm2,較F處理提高12%和9%。
【結(jié)論】施用化肥115 kg/hm2、有機(jī)肥15 000 kg/hm2的配施模式能夠較常規(guī)模式降低化肥投入15%,并保持冬小麥產(chǎn)量穩(wěn)定,可作為黃淮海平原潮土區(qū)冬小麥農(nóng)田的推薦施肥技術(shù)。
關(guān)鍵詞:冬小麥;有機(jī)無機(jī)肥配施;產(chǎn)量;氮素利用率;土壤養(yǎng)分;干物質(zhì)積累
中圖分類號(hào):S512""" 文獻(xiàn)標(biāo)志碼:A""" 文章編號(hào):1001-4330(2024)05-1067-10
收稿日期(Received):
2023-10-29
基金項(xiàng)目:
國家自然科學(xué)基金項(xiàng)目(32271651);中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(農(nóng)業(yè)農(nóng)村部環(huán)境保護(hù)科研監(jiān)測所)
作者簡介:
張釗(1993-),男,河南新鄉(xiāng)人,碩士研究生,研究方向?yàn)檗r(nóng)田生態(tài)環(huán)境,(E-mail)zzbeilai2019@163.com
通訊作者:
湯秋香(1980-),女,河南開封人,教授,研究方向?yàn)檗r(nóng)田生態(tài)環(huán)境,(E-mail)tangqiuxiang2004_2@163.com
張艷軍(1981-),男,山西原平人,副研究員,研究方向?yàn)樯锒鄻有耘c生態(tài)農(nóng)業(yè),(E-mail)zhangyanjun@caas.cn
0" 引 言
【研究意義】施用化肥對(duì)糧食作物產(chǎn)量貢獻(xiàn)率為40%~55%[1-2]。但過量施用化肥將導(dǎo)致土壤氮素過剩[3-4],而且不利于進(jìn)一步提高作物產(chǎn)量[5]。黃淮海平原區(qū)糧食播種面積和產(chǎn)量分別占全國的14.0%和12.4%[6]。黃淮海小麥主產(chǎn)區(qū),尚存在土壤有機(jī)質(zhì)缺乏等問題[7]。小麥優(yōu)選不同有機(jī)無機(jī)肥料配合施用方式,對(duì)改善農(nóng)田土壤理化性質(zhì)、降低化肥施用量、提高土壤肥力和小麥產(chǎn)量有實(shí)際意義。【前人研究進(jìn)展】鄭福麗等[8]研究發(fā)現(xiàn),增施有機(jī)肥能夠改善土壤結(jié)構(gòu)和培肥地力,促進(jìn)籽粒氮素吸收和轉(zhuǎn)運(yùn),從而提高小麥-玉米兩熟作物產(chǎn)量。任寧等[9]研究表明,有機(jī)無機(jī)肥料配施可提高肥料利用效率,促進(jìn)小麥-玉米輪作養(yǎng)分吸收,顯著增加小麥-玉米產(chǎn)量。魯偉丹等[10]研究表明,20%的有機(jī)無機(jī)肥施用比例是干旱區(qū)綠洲春小麥培肥地力及產(chǎn)量較為合理的施用方式。【本研究切入點(diǎn)】現(xiàn)有研究多集中在對(duì)土壤養(yǎng)分施肥方式[11,12]、作物產(chǎn)量變化[13,14]、氮素利用效率影響[15,16]等方面,但對(duì)潮土區(qū)冬小麥-夏玉米種植模式并連續(xù)12年的有機(jī)無機(jī)肥還田條件下,土壤養(yǎng)分狀況對(duì)產(chǎn)量及其構(gòu)成因子貢獻(xiàn)率的報(bào)道仍較少。需要研究不同施肥方式對(duì)黃淮海潮土區(qū)麥田肥力和冬小麥氮素利用效率和產(chǎn)量的影響?!緮M解決的關(guān)鍵問題】選擇天津武清區(qū)典型潮土區(qū)冬小麥-夏玉米輪作種植田塊連續(xù)12年定位試驗(yàn)的基礎(chǔ)上,以黃淮海平原區(qū)主栽小麥品種中麥629為研究對(duì)象,設(shè)置不同施肥方式(對(duì)照、單施有機(jī)肥、化肥減量50%配施有機(jī)肥、常規(guī)量化肥配施有機(jī)肥、單施化肥)5個(gè)處理,測定麥田土壤養(yǎng)分、小麥干物質(zhì)積累量、產(chǎn)量等指標(biāo),通過逐步回歸方法計(jì)算貢獻(xiàn)率,評(píng)價(jià)不同施肥方式下耕層土壤化學(xué)性質(zhì)對(duì)冬小麥產(chǎn)量的貢獻(xiàn)率,為有機(jī)化肥配合施用提供數(shù)據(jù)支撐。
1" 材料與方法
1.1" 材 料
試驗(yàn)于2010年6月在中國農(nóng)業(yè)科學(xué)院武清野外試驗(yàn)站(39°21′N,117°12′E)進(jìn)行。該地區(qū)屬暖溫帶半濕潤大陸性氣候,年平均氣溫12℃,年均降水量600 mm,無霜期212 d。土壤類型為潮土,土壤有機(jī)質(zhì)18.72 g/kg,全氮1.18 g/kg,全磷0.72 g/kg,硝態(tài)氮、銨態(tài)氮、速效磷和速效鉀分別為19.95、5.06、18.60和50.67 mg/kg,pH值為7.58。耕作方式為冬小麥-夏玉米輪作,已連續(xù)輪作種植12年,作物收獲后秸稈全部還田。
1.2" 方 法
1.2.1" 試驗(yàn)設(shè)計(jì)
采用隨機(jī)區(qū)組設(shè)計(jì),設(shè)置對(duì)照(CK,不施肥)、單施有機(jī)肥M(有機(jī)肥15 t/hm2)、化肥減量50%配施有機(jī)肥MF1(有機(jī)肥 15 t/hm2;N:基肥69.0 kg/hm2、追肥46.0 kg/hm2)、常規(guī)量化肥配施有機(jī)肥MF2(有機(jī)肥 15 t/hm2;N:基肥134.6 kg/hm2、追肥89.7 kg/hm2)、單施化肥F(N:基肥134.6 kg/hm2、追肥89.7 kg/hm2),所有處理磷肥、鉀肥均為P2O5 72.0 kg/hm2,K2O 52.5 kg/hm2。每個(gè)處理5次重復(fù),小區(qū)面積為50 m2,各小區(qū)間隔1 m。有機(jī)肥由牛糞和雞糞混合堆腐而成(N 1.17%,P 0.87%,K 0.45%);化學(xué)氮肥為尿素(N 46.4%),磷肥為過磷酸鈣(P2O5 12%),鉀肥為硫酸鉀(K2O 50%);有機(jī)肥和磷肥鉀肥做基肥,氮肥60%作基肥于2020年10月初小麥定植時(shí)施入,40%在2021年3月下旬冬小麥返青后追肥施入,2021年6月19日收獲。
1.2.2" 測定指標(biāo)
1.2.2.1" 土壤養(yǎng)分
用5 cm直徑土鉆在小區(qū)內(nèi)采用“S”形五點(diǎn)取樣法。分別取0~20 cm耕層土壤,各處理小區(qū)取樣量不少于2 kg。除去雜草、砂粒和植物殘?bào)w等雜物,自然風(fēng)干后研磨過10目篩(篩孔d=2 mm),用于測定土壤堿解氮、pH值、速效磷和速效鉀。過100目篩(篩孔d=0.15 mm)測定土壤有機(jī)質(zhì)和全氮含量。土壤pH值采用酸度計(jì)測定(NY/T-1121.2-2006),土壤速效磷采用碳酸氫鈉浸提鉬銻抗比色法測定(NY/T1121.7-2014),土壤速效鉀采用四苯硼鈉比濁法測定(NY/T1848-2010),土壤堿解氮采用擴(kuò)散法測定(LY/T1229-1999),土壤有機(jī)質(zhì)采用水合熱重鉻酸鉀氧化比色法測定,操作步驟按《土壤農(nóng)業(yè)化學(xué)分析方法》[17]。土壤硝態(tài)氮、銨態(tài)氮和土壤全氮含量由AA3型流動(dòng)分析儀(Bram+Luebbe Crop,German)測定[18-19]。
1.2.2.2" 冬小麥植株干物質(zhì)積累量
2021年分別于小麥拔節(jié)期(4月15日)、孕穗期(4月28日)、開花期(5月20日)和成熟期(6月19日),采集具有代表性的植株20株,其中拔節(jié)期采集葉、莖、鞘;孕穗期和開花期采集葉、莖、鞘、穗;成熟期采集葉、莖、鞘、殼、籽粒,分別裝袋帶回。各部分樣品用烘箱105℃殺青1 h,80℃烘干至恒重,稱量并記錄樣品干重,地上生物量干重即為冬小麥干物質(zhì)積累量[20]。烘干樣品采用高速萬能粉碎機(jī)(天津市泰斯特儀器有限公司)粉碎,過100目篩后用塑封袋保存,冬小麥植株各部位全氮含量由AA3型連續(xù)流動(dòng)分析儀(Bram+Luebbe Crop,German)測定[18]。
1.2.2.3" 產(chǎn)量及其構(gòu)成因子
冬小麥成熟期各小區(qū)隨機(jī)取20穗測定每穗粒數(shù)、千粒重等產(chǎn)量構(gòu)成因子。各小區(qū)取4 m2長勢均勻的區(qū)域,人工收割、脫粒,籽粒自然風(fēng)干后稱重,采用高溫烘干法(GB/T3543.6-1995)測定籽粒含水量[19],并折算為含水量13%的標(biāo)準(zhǔn)計(jì)算實(shí)收產(chǎn)量。
1.2.2.4" 氮素利用率
地上部干物質(zhì)積累量(Dry matter accumulation, DMA)=成熟期單株總干重×成熟期實(shí)收株數(shù)[20];
氮素收獲指數(shù)(N harvest index, NHI)=籽粒吸氮量/植株總吸氮量[21];
植株總氮素積累量(Total nitrogen accumulationamount in plant, TNAA)=成熟期單株干重×成熟期植株含氮量[20];
植株氮素吸收效率(Nitrogen uptake efficiency, NUP)=施氮區(qū)地上部氮吸收量/施氮量×100%[22];
氮肥農(nóng)學(xué)利用率(nitrogen agronom ic efficiency, NAE)=(施氮區(qū)籽粒產(chǎn)量-不施氮區(qū)籽粒產(chǎn)量)/施氮量[23];
氮肥利用率(nitrogen utilization efficiency, NUE)=(施氮區(qū)氮素吸收量-不施氮區(qū)氮素吸收量)/施氮量×100%[24];
氮肥偏生產(chǎn)力(nitrogen partial factor productivity, NPFP)=施氮區(qū)產(chǎn)量/施氮量[20]。
1.3" 數(shù)據(jù)處理
所有數(shù)據(jù)采用Microsoft Excel 2019整理和計(jì)算,采用Origin 2018軟件進(jìn)行繪圖,運(yùn)用SPSS 25.0統(tǒng)計(jì)分析軟件進(jìn)行各處理土壤理化性質(zhì)、產(chǎn)量等單因素方差分析(One-way ANOVA),采用Duncan方法檢驗(yàn)處理間的差異顯著性。運(yùn)用SPSS 25.0對(duì)耕層土壤理化因子對(duì)小麥產(chǎn)量及構(gòu)成因子的影響進(jìn)行逐步回歸分析,計(jì)算不同因子標(biāo)準(zhǔn)化系數(shù)絕對(duì)值與所有因子標(biāo)準(zhǔn)化系數(shù)絕對(duì)值之和的比值,進(jìn)行數(shù)據(jù)標(biāo)準(zhǔn)化,評(píng)價(jià)不同處理土壤理化因子對(duì)小麥產(chǎn)量的貢獻(xiàn)度[25]。
2" 結(jié)果與分析
2.1" 有機(jī)無機(jī)肥配施對(duì)麥田土壤養(yǎng)分的影響
研究表明,有機(jī)無機(jī)肥配施(MF1、MF2)顯著提高冬小麥不同生育期土壤養(yǎng)分含量,但降低拔節(jié)至成熟期的土壤pH值。與單施化肥處理(F)相比,化肥減量50%配施有機(jī)肥(MF1)處理土壤堿解氮、速效磷、速效鉀含量增幅分別為41%~42%、139%~174%和11%~22%;常規(guī)量化肥配施有機(jī)肥(MF2)處理土壤堿解氮、速效磷、速效鉀含量增幅分別為43%~166%、124%~209%和11%~44%,堿解氮、速效磷、速效鉀增加顯著(Plt;0.05)。此外,與對(duì)照和單施化肥處理相比,有機(jī)肥施用處理(M, MF1, MF2)顯著提高土壤有機(jī)質(zhì)和全氮含量,但有機(jī)肥施用的各處理之間土壤有機(jī)質(zhì)含量差異不顯著。與對(duì)照相比,施肥顯著降低土壤pH值,且隨小麥生育期的推進(jìn),土壤pH值呈下降趨勢,在成熟期,單施化肥土壤pH值降至(8.02±0.07),顯著低于CK。有機(jī)無機(jī)配施可顯著提高土壤有機(jī)質(zhì)含量和速效養(yǎng)分水平。表1
2.2" 有機(jī)無機(jī)肥配施對(duì)冬小麥干物質(zhì)積累影響
研究表明,有機(jī)肥處理(M)、氮肥處理(F)、有機(jī)無機(jī)配施處理(MF1、MF2)的小麥全株干物質(zhì)積累逐漸增加,并在成熟期達(dá)到高峰。施肥處理可以提高不同生育時(shí)期總干物質(zhì)積累量。與F處理相比,MF2處理開花期的總干物質(zhì)積累量顯著提高了13%,MF1處理的各個(gè)時(shí)期總干物質(zhì)積累量無顯著差異。與M處理相比,MF1處理拔節(jié)期、孕穗期和成熟期的總干物質(zhì)積累量分別顯著提高了111%、16%和33%,MF2處理孕穗期和開花期的總干物質(zhì)積累量分別顯著提高了10%和19%。與MF2處理相比,MF1處理拔節(jié)期的總干物質(zhì)積累量顯著提高了115%。圖1
各處理拔節(jié)期干物質(zhì)主要分配在葉片中,其中,MF1和F處理葉片干物質(zhì)積累量最高,分別為2 166和2 028 kg/hm2,顯著高于CK、M和MF2處理。各處理孕穗期干物質(zhì)向莖鞘和穗部轉(zhuǎn)移,其中,M、MF1和F處理莖鞘干物質(zhì)積累量最高,分別為6 385、6 713和6 690 kg/hm2,顯著高于CK和M處理。在開花期,各處理干物質(zhì)主要分配在莖鞘和穗部,其中,MF1、MF2和F處理穗干物質(zhì)積累量最高,分別為7 892、8 613、和8 025 kg/hm2,顯著高于CK和M處理。在成熟期,各處理干物質(zhì)均主要分配在籽粒中,其中,MF1、MF2和F處理籽粒干物質(zhì)積累量最高,分別為15 619、13 993和14 886 kg/hm2,顯著高于對(duì)照和單施有機(jī)肥處理。圖2
2.3" 有機(jī)無機(jī)肥配施對(duì)冬小麥植株氮素利用效率的影響
研究表明,M和MF1處理可以顯著提高氮素利用效率,施肥處理的氮素收獲指數(shù)均顯著高于對(duì)照處理。M處理的氮素吸收率、氮肥農(nóng)學(xué)利用率、氮肥利用效率和氮肥偏生產(chǎn)力均顯著高于其他3個(gè)施肥處理。與F處理相比,MF1處理植株的氮肥農(nóng)學(xué)利用率和氮肥偏生產(chǎn)力分別提高了35%和28%。與MF2處理相比,MF1處理植株的氮素吸收率、氮肥農(nóng)學(xué)利用率、氮肥利用效率和氮肥偏生產(chǎn)力分別提高了65%、60%、67%和59%,隨化學(xué)氮肥施用比例的降低,冬小麥的氮素吸收率、氮肥農(nóng)學(xué)利用率、氮肥利用效率和氮肥偏生產(chǎn)力均顯著提高 (Plt;0.05)。表2
2.4" 有機(jī)無機(jī)肥配施對(duì)冬小麥產(chǎn)量的影響
研究表明,與對(duì)照相比,施肥處理(M、MF1、MF2、F)成穗數(shù)顯著降低,降幅在15%~51%(Plt;0.05),但M、MF1、MF2和F處理的穗粒數(shù)和千粒重顯著增加161%~259%和20%~32%(P<0.05)。施肥處理小麥產(chǎn)量顯著增加,其中MF1和MF2產(chǎn)量最高,分別達(dá)到(6 467.69±115.08)和(6 345.06±224.13) kg/hm2,較單施化肥處理增產(chǎn)12%和9%(Plt;0.05),配施有機(jī)肥可提高小麥穗粒數(shù)和千粒重,進(jìn)而提高其籽粒經(jīng)濟(jì)產(chǎn)量。相對(duì)于常規(guī)量化肥配施有機(jī)肥處理(MF2),化肥減量50%配施有機(jī)肥(MF1)并未顯著降低穗粒數(shù)和籽粒產(chǎn)量,甚至成穗數(shù)和千粒重略高于常規(guī)處理,在有機(jī)肥施入下,化肥減施50%仍能滿足小麥的養(yǎng)分需求,保持其經(jīng)濟(jì)產(chǎn)量穩(wěn)定。表3
2.5" 土壤化學(xué)性質(zhì)對(duì)冬小麥產(chǎn)量的貢獻(xiàn)度
研究表明,拔節(jié)期耕層土壤堿解氮和速效磷對(duì)小麥產(chǎn)量的貢獻(xiàn)度gt;30%,其次是速效鉀和全氮含量均gt;9%,pH值貢獻(xiàn)度為5%。在開花期,耕層土壤速效鉀和全氮含量對(duì)小麥產(chǎn)量的貢獻(xiàn)度gt;25%,其次是pH值貢獻(xiàn)度為20%,其他指標(biāo)的貢獻(xiàn)度均lt;20%,堿解氮含量貢獻(xiàn)度最小。在成熟期,耕層土壤速效磷和全氮含量對(duì)小麥產(chǎn)量的貢獻(xiàn)度gt;20%,其次是pH值貢獻(xiàn)度為19%,其他指標(biāo)的貢獻(xiàn)度均lt;19%。表4
3" 討 論
3.1" 有機(jī)無機(jī)肥配施對(duì)土壤肥力的影響
化肥在糧食增產(chǎn)中發(fā)揮了重要作用[26]。麻坤等[27]研究指出,基于邊際報(bào)酬遞減理論,亟需通過調(diào)整施肥方式,優(yōu)化肥料投入碳氮比例,提高作物吸收利用效率。有機(jī)無機(jī)肥配合施用可提高土壤氮素轉(zhuǎn)化效率,改良土壤的同時(shí),促進(jìn)植株的養(yǎng)分吸收[28]。
王艷麗等[24]研究表明,氮肥能促進(jìn)有機(jī)肥的腐熟,而有機(jī)肥能減少氮肥與土壤的接觸,降低氮肥被土壤固定的作用,進(jìn)而提高土壤速效氮磷鉀和有機(jī)質(zhì)含量,在減少化肥施用的同時(shí)達(dá)到與常規(guī)化肥用量一樣的效果。研究中,從小麥拔節(jié)期至成熟期,有機(jī)肥和化學(xué)氮肥復(fù)合施用顯著提升了土壤中有機(jī)質(zhì)、堿解氮、速效鉀、速效磷和全氮的含量,效果明顯優(yōu)于單獨(dú)施用氮肥處理,試驗(yàn)研究結(jié)果與前人報(bào)道一致[29-32]。
較單施化肥,有機(jī)肥的輸入能夠顯著提升土壤有機(jī)質(zhì)含量,主要是有機(jī)肥中含有大量的有機(jī)成分,且還田后,可在其周圍形成微生物富集區(qū),加速肥料有機(jī)組分向土壤的轉(zhuǎn)化[33-35]。有機(jī)肥與化肥20%~50%比例的配合施用可顯著增加土壤速效磷、堿解氮和速效鉀的含量,一方面是有機(jī)無機(jī)組分的互作效應(yīng),使得土壤養(yǎng)分之間相互協(xié)調(diào),碳氮比適宜[36,37];另一方面是有機(jī)肥為土壤微生物的生長提供有效碳源,促進(jìn)微生物繁殖,增加微生物活性,將土壤難溶性養(yǎng)分轉(zhuǎn)化為速效養(yǎng)分[38]。研究中,MF1和MF2麥田土壤C/N在3.96~6.98,適宜功能微生物的生長和活性維持[39],是保證土壤速效養(yǎng)分轉(zhuǎn)化的重要因素[40]。此外,研究中有機(jī)肥與化肥減量配施顯著降低麥田土壤pH值,在拔節(jié)至成熟期有機(jī)無機(jī)配施處理土壤酸化程度甚至高于單施化肥處理,與朱麗霞等[29]有機(jī)肥施用緩解土壤酸化的研究結(jié)果相反,但與慕平等[41]研究結(jié)果相似。
3.2" 有機(jī)無機(jī)肥配施對(duì)干物質(zhì)積累及產(chǎn)量影響
有機(jī)無機(jī)肥配施能夠促進(jìn)地上部干物質(zhì)積累量的增加[42],同時(shí)促進(jìn)植株養(yǎng)分向籽粒中轉(zhuǎn)移和分配,增加后期干物質(zhì)積累量從而提高籽粒產(chǎn)量[43]。研究中,冬小麥在不同生長時(shí)期有機(jī)無機(jī)配施對(duì)干物質(zhì)積累量具有顯著影響,可提高花后期籽粒干物質(zhì)量分配比例有機(jī)肥配施速效化學(xué)氮肥能加速有機(jī)肥的腐熟,提供小麥植株所必需的中量、微量元素,且有機(jī)肥具有長效作用,可滿足小麥生育后期的養(yǎng)分需求[44]。
研究中,在小麥生殖生長階段,50%氮肥配施有機(jī)肥能夠顯著促進(jìn)營養(yǎng)物質(zhì)向生殖器官轉(zhuǎn)移。土壤堿解氮、全氮和速效磷是小麥產(chǎn)量的重要限制因素,與馬常寶等[45]速效氮、速效磷含量是石灰性潮土區(qū)小麥等糧食作物產(chǎn)量的主要限制因子的結(jié)論一致。
方暢宇等[46]研究表明,有機(jī)無機(jī)配施通過增加有效穗數(shù)和穗粒數(shù)實(shí)現(xiàn)水稻產(chǎn)量提高。馬臣等[47]研究表明,有機(jī)無機(jī)肥配施比單施化肥處理小麥產(chǎn)量提高13.9%,有效穗數(shù)增加了6.4%,而對(duì)小麥穗粒數(shù)和千粒重影響并不顯著。研究中,有機(jī)無機(jī)配施處理的單位面積穗粒數(shù)和千粒重均顯著高于對(duì)照,原因是有機(jī)無機(jī)肥配施既可保證土壤長期的氮素供應(yīng),又可保證作物短期內(nèi)的營養(yǎng)需求,從而增加了穗粒數(shù)和千粒重,提高了小麥籽粒產(chǎn)量,與楊清龍等[48]報(bào)道一致。朱春波等[36]的研究也顯示,施用有機(jī)肥可提高根際土壤酶活性,在維持小麥生長后期較高的根系生理活性,促進(jìn)根際有機(jī)養(yǎng)分的轉(zhuǎn)化,利于對(duì)氮磷等元素的吸收和利用[49],進(jìn)而提高了產(chǎn)量。
4" 結(jié) 論
與單施化肥相比,化肥減量50%配施有機(jī)肥的施肥模式可顯著提高小麥生育期內(nèi)土壤養(yǎng)分含量,增加肥效的持久性,保證冬小麥生長后期的養(yǎng)分需求。該施肥模式提高了小麥氮素吸收利用效率,并促進(jìn)了氮素向籽粒的轉(zhuǎn)運(yùn),協(xié)調(diào)孕穗期至成熟期干物質(zhì)向籽粒的分配,提高冬小麥穗粒數(shù)和千粒重,提高冬小麥的經(jīng)濟(jì)產(chǎn)量?;蕼p量50%配施有機(jī)肥處理MF1(15 000 kg/hm2有機(jī)肥+115 kg/hm2化肥),可作為黃淮海平原潮土區(qū)冬小麥農(nóng)田的推薦施肥技術(shù)。
參考文獻(xiàn)(References)
[1]
Erisman J W, Sutton M A, Galloway J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1: 636-639.
[2] Malhi S, Grant C, Johnston A, et al. Nitrogen fertilization management for no-till cereal production in the Canadian Great Plains: a review[J]. Soil amp; Tillage Research," 2001, 60(3): 101-122.
[3] 徐昶, 苗文亮, 倪遠(yuǎn)之, 等. 長三角農(nóng)田輪作系統(tǒng)氨排放特征、轉(zhuǎn)化機(jī)制和減排潛力[J]. 環(huán)境科學(xué), 2022, 43(2): 1108-1128.
XU Chang, MIAO Wenliang, NI Yuanzhi, et al. Emission characteristics, transformation mechanism, and reduction potential of ammonia emissions from a crop rotation system in Yangtze River Delta[J]. Environmental Science, 2022, 43(2): 1108-1128.
[4] Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science," 2008, 320(5878): 889-892.
[5] 賈曼曼, 肖靖秀, 湯利, 等. 不同施氮量對(duì)小麥蠶豆間作作物產(chǎn)量及其光合特征的影響[J]. 云南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)), 2017, 32(2): 350-357.
JIA Manman, XIAO Jingxiu, TANG Li, et al. Effects of nitrogen supply on yields and photosynthesis characteristics of crops in wheat and broad bean intercropping[J]. Journal of Yunnan Agricultural University (Natural Science), 2017, 32(2): 350-357.
[6] 崔吉曉, 檀海斌, 吳佳迪, 等. 微噴灌水肥一體化對(duì)河北夏玉米生長及產(chǎn)量的影響[J]. 玉米科學(xué), 2017, 25(3): 105-110.
CUI Jixiao, TAN Haibin, WU Jiadi, et al. Effects of fertigation on maize growth and yield through micro-sprinkling irrigation in Hebei Province[J]. Journal of Maize Sciences, 2017, 25(3): 105-110.
[7] 李穎慧, 姜小三. 黃淮海平原農(nóng)區(qū)農(nóng)用地土壤肥力評(píng)價(jià)及時(shí)空變化特征—以山東省博興縣為例[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào), 2022, 39(3): 602-612.
LI Yinghui, JIANG Xiaosan. Spatiotemporal characteristics of soil nutrients and fertility evaluation of agricultural land in the HuangHuai-Hai Plain agricultural area: a case study of Boxing County, Shandong Province[J]. Journal of Agricultural Resources and Environment, 2022, 39(3): 602-612.
[8] 鄭福麗, 劉蘋, 李國生, 等. 有機(jī)-無機(jī)肥協(xié)同調(diào)控小麥-玉米兩熟作物產(chǎn)量及土壤培肥效應(yīng)[J]. 中國農(nóng)業(yè)科學(xué), 2020, 53(21): 4355-4364.
ZHENG Fuli, LIU Ping, LI Guosheng, et al. Organic-inorganic coordinated regulation to wheat-maize double crop yield and soil fertility[J]. Scientia Agricultura Sinica, 2020, 53(21): 4355-4364.
[9] 任寧, 黃玉芳, 侯占領(lǐng), 等. 有機(jī)和無機(jī)肥配施對(duì)豫中小麥-玉米輪作體系產(chǎn)量及效益的影響[J]. 河南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2019, 53(5): 683-688.
REN Ning, HUANG Yufang, HOU Zhanling, et al. Effects and efficiency of organic and inorganic fertilizer applications on yields of crops in wheat-maize rotation system in central Henan[J]. Journal of Henan Agricultural University, 2019, 53(5): 683-688.
[10] 魯偉丹, 李俊華, 陳麗麗, 等. 有機(jī)肥替代20%化肥處理對(duì)滴灌春小麥產(chǎn)量及土壤養(yǎng)分的影響[J]. 新疆農(nóng)業(yè)科學(xué), 2021, 58(5): 814-821.
LU Weidan, LI Junhua, CHEN Lili, et al. Effects of replacing organic fertilizer with organic fertilizer on yield of spring wheat and soil nutrients under drip irrigation[J]. Xinjiang Agricultural Sciences, 2021, 58(5): 814-821.
[11] Li Z P, Liu M, Wu X C, et al. Effects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical China[J]. Soil and Tillage Research, 2010, 106(2): 268-274.
[12] Wu M N, Qin H L, Chen Z, et al. Effect of long-term fertilization on bacterial composition in rice paddy soil[J]. Biology and Fertility of Soils, 2011, 47(4): 397-405.
[13] Yadav R L, Dwivedi B S, Prasad K, et al. Yield trends, and changes in soil organic-C and available NPK in a long-term rice–wheat system under integrated use of manures and fertilisers[J]. Field Crops Research, 2000, 68(3): 219-246.
[14] Manna M C, Swarup A, Wanjari R H, et al. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India[J]. Field Crops Research, 2005, 93(2/3): 264-280.
[15] 楊清龍, 劉鵬, 董樹亭, 等. 有機(jī)無機(jī)肥配施對(duì)夏玉米氮素氣態(tài)損失及籽粒產(chǎn)量的影響[J]. 中國農(nóng)業(yè)科學(xué), 2018, 51(13): 2476-2488.
YANG Qinglong, LIU Peng, DONG Shuting, et al. Effects of combined application of manure and chemical fertilizers on loss of gaseous nitrogen and yield of summer maize[J]. Scientia Agricultura Sinica, 2018, 51(13): 2476-2488.
[16] 謝軍, 趙亞南, 陳軒敬, 等. 有機(jī)肥氮替代化肥氮提高玉米產(chǎn)量和氮素吸收利用效率[J]. 中國農(nóng)業(yè)科學(xué), 2016, 49(20): 3934-3943.
XIE Jun, ZHAO Yanan, CHEN Xuanjing, et al. Nitrogen of organic manure replacing chemical nitrogenous fertilizer improve maize yield and nitrogen uptake and utilization efficiency[J]. Scientia Agricultura Sinica, 2016, 49(20): 3934-3943.
[17]魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京: 中國農(nóng)業(yè)科技出版社, 1999: 109-110.
LU Rukun. Chemical analysis methods of soil agriculture[M]. Beijing: China Agricultural Science and Technology Press, 1999: 109-110.
[18] 張英利, 許安民, 尚浩博, 等. AA3型連續(xù)流動(dòng)分析儀測定土壤和植物全氮的方法研究[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2006, 34(10): 128-132.
ZHANG Yingli, XU Anmin, SHANG Haobo, et al. Determination study of total nitrogen in soil and plant by continuous flow analytical system[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 2006, 34(10): 128-132.
[19] 中國國家標(biāo)準(zhǔn)化管理委員會(huì).中國國家標(biāo)準(zhǔn)(2008年版)館藏目錄(一)[J]. 世界標(biāo)準(zhǔn)信息, 2008,(4): 80-128.
Standardization Administration of the People’s Republic of China. Catalogue of Chinese national standards (2008 edition) (一)[J]. World Standards News," 2008,(4): 80-128.
[20] 曹勝彪, 張吉旺, 楊今勝, 等. 密度對(duì)高產(chǎn)夏玉米產(chǎn)量和氮素利用效率的影響[J]. 玉米科學(xué), 2012, 20(5): 106-110, 120.
CAO Shengbiao, ZHANG Jiwang, YANG Jinsheng, et al. Effects of plant density on grain yield and nitrogen use efficiency of the summer maize with high yield[J]. Journal of Maize Sciences, 2012, 20(5): 106-110, 120.
[21] 張軍, 張洪程, 段祥茂, 等. 地力與施氮量對(duì)超級(jí)稻產(chǎn)量、品質(zhì)及氮素利用率的影響[J]. 作物學(xué)報(bào), 2011, 37(11): 2020-2029.
ZHANG Jun, ZHANG Hongcheng, DUAN Xiangmao, et al. Effects of soil fertility and nitrogen application rates on super rice yield, quality, and nitrogen use efficiency[J]. Acta Agronomica Sinica, 2011, 37(11): 2020-2029.
[22] 王站付, 施儉, 陸亮, 等. 有機(jī)無機(jī)肥配施對(duì)小麥產(chǎn)量及氮肥利用效率的影響[J]. 上海交通大學(xué)學(xué)報(bào)(農(nóng)業(yè)科學(xué)版), 2019, 37(6): 94-101.
WANG Zhanfu, SHI Jian, LU Liang, et al. Influence of organic-synthetic combined fertilizers on yield and nitrogen use efficiency in wheat[J]. Journal of Shanghai Jiao Tong University (Agricultural Science) , 2019, 37(6): 94-101.
[23] 劉立軍, 桑大志, 劉翠蓮, 等. 實(shí)時(shí)實(shí)地氮肥管理對(duì)水稻產(chǎn)量和氮素利用率的影響[J]. 中國農(nóng)業(yè)科學(xué), 2003, 36(12): 1456-1461.
LIU Lijun, SANG Dazhi, LIU Cuilian, et al. Effects of real-time and site-specific nitrogen managements on rice yield and nitrogen use efficiency[J]. Scientia Agricultura Sinica, 2003, 36(12): 1456-1461.
[24] 王艷麗, 吳鵬年, 李培富, 等. 有機(jī)肥配施氮肥對(duì)滴灌春玉米產(chǎn)量及土壤肥力狀況的影響[J]. 作物學(xué)報(bào), 2019, 45(8): 1230-1237.
WANG Yanli, WU Pengnian, LI Peifu, et al. Effects of organic manure combined with nitrogen fertilizer on spring maize yield and soil fertility under drip irrigation[J]. Acta Agronomica Sinica, 2019, 45(8): 1230-1237.
[25] 崔月峰, 孫國才, 郭奧楠, 等. 秸稈和生物炭還田對(duì)冷涼稻區(qū)土壤物理性質(zhì)及pH值的影響[J]. 江蘇農(nóng)業(yè)科學(xué), 2020, 48(21): 255-260.
CUI Yuefeng, SUN Guocai, GUO Aonan, et al. Effects of straw and biochar on soil physical properties and pH value in cold waterlogged paddy soils[J]. Jiangsu Agricultural Sciences, 2020, 48(21): 255-260.
[26] 王鵬程, 邵澤強(qiáng), 薛大偉. 明確化肥施用現(xiàn)狀 提高肥料使用效率[J]. 吉林農(nóng)業(yè), 2015, (24): 85.
WANG Pengcheng, SHAO Zeqiang, XUE Dawei. Clarify the present situation of fertilizer application and improve the efficiency of fertilizer use[J]. Agriculture of Jilin, 2015, (24): 85.
[27] 麻坤, 刁鋼. 化肥對(duì)中國糧食產(chǎn)量變化貢獻(xiàn)率的研究[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2018, 24(4): 1113-1120.
MA Kun, DIAO Gang. Research on the contribution rate of fertilizer to grain yield in China[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(4): 1113-1120.
[28] 李春喜, 張令令, 馬守臣, 等. 有機(jī)物料還田對(duì)麥田土壤碳氮含量、小麥產(chǎn)量及經(jīng)濟(jì)效益的影響[J]. 作物雜志, 2017(2): 145-150.
LI Chunxi, ZHANG Lingling, MA Shouchen, et al. Effects of organic materials returning on soil carbon and nitrogen contents, yield and economic benefit in wheat[J]. Crops, 2017(2): 145-150.
[29] 朱麗霞, 曹萌萌, 桑成琛, 等. 生物有機(jī)肥替代化肥對(duì)玉米土壤肥力及酶活性的影響[J]. 四川農(nóng)業(yè)大學(xué)學(xué)報(bào), 2022, 40(1): 67-72.
ZHU Lixia, CAO Mengmeng, SANG Chengchen, et al. Effects of bio-fertilizer partially substituting chemical fertilizer on soil fertility and enzyme activity in maize field[J]. Journal of Sichuan Agricultural University," 2022, 40(1): 67-72.
[30] 陳智坤, 郝雅珺, 任英英, 等. 長期定位施肥對(duì)兩種小麥耕作系統(tǒng)土壤肥力的影響[J]. 土壤, 2021, 53(1): 105-111.
CHEN Zhikun, HAO Yajun, REN Yingying, et al. Effects of long-term fertilization on soil fertility under different wheat cultivation systems[J]. Soils, 2021, 53(1): 105-111.
[31] 鄭信建. 有機(jī)無機(jī)肥配施對(duì)水稻產(chǎn)量及土壤肥力的影響[J]. 安徽農(nóng)學(xué)通報(bào), 2017, 23(17): 57-59.
ZHENG Xinjian. Effects of combined application of organic and inorganic fertilizers on rice yield and soil fertility[J]. Anhui Agricultural Science Bulletin, 2017, 23(17): 57-59.
[32] 李圓賓, 李鵬, 王舒華, 等. 稻麥輪作體系下有機(jī)肥施用對(duì)作物產(chǎn)量和土壤性質(zhì)影響的整合分析[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2021, 32(9): 3231-3239.
LI Yuanbin, LI Peng, WANG Shuhua, et al. Effects of organic fertilizer application on crop yield and soil properties in rice-wheat rotation system: a meta-analysis[J]. Chinese Journal of Applied Ecology, 2021, 32(9): 3231-3239.
[33] Masto R E, Chhonkar P K, Singh D, et al. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol[J]. Soil Biology and Biochemistry, 2006, 38(7): 1577-1582.
[34] Heitkamp F, Wendland M, Offenberger K, et al. Implications of input estimation, residue quality and carbon saturation on the predictive power of the Rothamsted Carbon Model[J]. Geoderma, 2012, 170: 168-175.
[35] 張雅潔, 陳晨, 陳曦, 等. 小麥-水稻秸稈還田對(duì)土壤有機(jī)質(zhì)組成及不同形態(tài)氮含量的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2015, 34(11): 2155-2161.
ZHANG Yajie, CHEN Chen, CHEN Xi, et al. Effects of wheat and rice straw returning on soil organic matter composition and content of different nitrogen forms in soil[J]. Journal of Agro-Environment Science," 2015, 34(11): 2155-2161.
[36] 朱春波, 鄧麗, 左成鳳. 有機(jī)無機(jī)肥配施對(duì)烤煙根際土壤養(yǎng)分含量的影響[J]. 貴州農(nóng)業(yè)科學(xué), 2020, 48(1): 13-18.
ZHU Chunbo, DENG Li, ZUO Chengfeng. Effect of organic and inorganic fertilizers combined application on nutrition content of rhizosphere soil in tobacco[J]. Guizhou Agricultural Sciences, 2020, 48(1): 13-18.
[37] 陳鴿, 湯春純, 李祖勝, 等. 不同施肥措施對(duì)洞庭湖區(qū)旱地肥力及作物產(chǎn)量的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào), 2017, 25(5): 689-697.
CHEN Ge, TANG Chunchun, LI Zusheng, et al. Influence of different fertilization modes on soil fertility and crop yield in Dongting Lake upland areas[J]. Chinese Journal of Eco-Agriculture," 2017, 25(5): 689-697.
[38] 黃容, 高明, 萬毅林, 等. 秸稈還田與化肥減量配施對(duì)稻-菜輪作下土壤養(yǎng)分及酶活性的影響[J]. 環(huán)境科學(xué), 2016, 37(11): 4446-4456.
HUANG Rong, GAO Ming, WAN Yilin, et al. Effects of straw in combination with reducing fertilization rate on soil nutrients and enzyme activity in the paddy-vegetable rotation soils[J]. Environmental Science, 2016, 37(11): 4446-4456.
[39] 肖勝生. 溫帶半干旱草地生態(tài)系統(tǒng)碳固定及土壤有機(jī)碳庫對(duì)外源氮輸入的響應(yīng)[D]. 北京: 中國科學(xué)院地理科學(xué)與資源研究所, 2010: 82-83
XIAO Shengsheng. Response of exogenous nitrogen input in temperate semi-arid grassland ecosystems and soil organic carbon pool[D]. Beijing: Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 2010: 82-83
[40] 周維杰, 李鐘淏, 李婷玉, 等. 協(xié)同作物提質(zhì)增效和土壤地力提升的最佳氮素有機(jī)替代比例探索——以攀枝花芒果為例[J]. 熱帶作物學(xué)報(bào), 2022, 43(5): 1032-1044.
ZHOU Weijie, LI Zhonghao, LI Tingyu, et al. Optimal nitrogen organic replacement ratio for synergistic crop quality and efficiency enhancement and soil fertility EnhancementTaking Panzhihua mango as an example[J]. Chinese Journal of Tropical Crops, 2022, 43(5): 1032-1044.
[41] 慕平, 張恩和, 王漢寧, 等. 連續(xù)多年秸稈還田對(duì)玉米耕層土壤理化性狀及微生物量的影響[J]. 水土保持學(xué)報(bào), 2011, 25(5): 81-85.
MU Ping, ZHANG Enhe, WANG Hanning, et al. Effects of continuous returning straw to maize tilth soil on chemical character and microbial biomass[J]. Journal of Soil and Water Conservation," 2011, 25(5): 81-85.
[42] 胡嵐, 梁波, 陳云峰, 等. 長期施用不同肥料對(duì)橘園土壤生物群落結(jié)構(gòu)的影響[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào), 2022, 39(1): 80-87.
HU Lan, LIANG Bo, CHEN Yunfeng, et al. Effects of long-term application of different fertilizers on soil biota community composition in citrus orchards[J]. Journal of Agricultural Resources and Environment, 2022, 39(1): 80-87.
[43] 王寧, 馮克云, 南宏宇, 等. 不同水分條件下有機(jī)無機(jī)肥配施對(duì)棉花根系特征及產(chǎn)量的影響[J]. 中國農(nóng)業(yè)科學(xué), 2022, 55(11): 2187-2201.
WANG Ning, FENG Keyun, NAN Hongyu, et al. Effects of combined application of organic fertilizer and chemical fertilizer on root characteristics and yield of cotton under different water conditions[J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[44] 秦建權(quán), 馮躍華, 葉勇, 等. 有機(jī)無機(jī)肥配施對(duì)雜交水稻干物質(zhì)生產(chǎn)、養(yǎng)分吸收及產(chǎn)量形成的影響[J]. 中國稻米, 2017, 23(3): 59-62.
QIN Jianquan, FENG Yuehua, YE Yong, et al. Effects of combined inorganic-organic fertilizer on dry matter production, nutrient absorption and yield formation in hybrid rice[J]. China Rice, 2017, 23(3): 59-62.
[45] 馬常寶, 盧昌艾, 任意, 等. 土壤地力和長期施肥對(duì)潮土區(qū)小麥和玉米產(chǎn)量演變趨勢的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2012, 18(4): 796-802.
MA Changbao, LU Chang’ai, REN Yi, et al. Effect of soil fertility and long-term fertilizer application on the yields of wheat and maize in fluvo-aquic soil[J]. Plant Nutrition and Fertilizer Science, 2012, 18(4): 796-802.
[46] 方暢宇, 屠乃美, 張清壯, 等. 不同施肥模式對(duì)稻田土壤速效養(yǎng)分含量及水稻產(chǎn)量的影響[J]. 土壤, 2018, 50(3): 462-468.
FANG Changyu, TU Naimei, ZHANG Qingzhuang, et al. Effects of fertilization modes on available nutrient contents of reddish paddy soils and rice yields[J]. Soils," 2018, 50(3): 462-468.
[47] 馬臣, 劉艷妮, 梁路, 等. 有機(jī)無機(jī)肥配施對(duì)旱地冬小麥產(chǎn)量和硝態(tài)氮?dú)埩袅苁У挠绊懀跩]. 應(yīng)用生態(tài)學(xué)報(bào), 2018, 29(4): 1240-1248.
MA Chen, LIU Yanni, LIANG Lu, et al. Effects of combined application of chemical fertilizer and organic manure on wheat yield and leaching of residual nitrate-N in dryland soil[J]. Chinese Journal of Applied Ecology, 2018, 29(4): 1240-1248.
[48] 楊文飛, 杜小鳳, 顧大路, 等. 長期施肥對(duì)根系及土壤微生態(tài)環(huán)境、養(yǎng)分和結(jié)構(gòu)的影響綜述[J]. 江西農(nóng)業(yè)學(xué)報(bào), 2020, 32(12): 37-44.
YANG Wenfei, DU Xiaofeng, GU Dalu, et al. Review of effects of long-term fertilization on root and soil micro-ecological environment, nutrients and structure[J]. Acta Agriculturae Jiangxi, 2020, 32(12): 37-44.
[49] 牛新勝, 巨曉棠. 我國有機(jī)肥料資源及利用[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2017, 23(6): 1462-1479.
NIU Xinsheng, JU Xiaotang. Organic fertilizer resources and utilization in China[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1462-1479.
Effects of combination of organic and inorganic fertilizers on fertility and yield of winter wheat in fluvo-aquic soil
ZHANG Zhao1,2, ZHANG Guilong2,TANG Qiuxiang1,YAN Xueying2,ZHANG Yanjun2
(1. College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; 2.Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China)
Abstract:【Objective】 To explore the effects of different fertilization on the fertility of wheat fields and nitrogen use efficiency and yield of winter wheat in the Huanghuaihai fluvo-aquic soil region in the hope of providing theoretical support and technical guidance for optimizing fertilization measures.
【Methods】" Based on the 12-year continuous fertilization treatment positioning experiment in Tianjin fluvo-aquic soil area, different fertilization treatments were set: including control (CK), single application of organic fertilizer (M), 50% reduction of chemical fertilizer combined with organic fertilizer (MF1), conventional quantitative fertilizer combined with organic fertilizer (MF2) and single application of chemical fertilizer (F).
【Results】 The results showed that, compared with the control, the fertilization treatments could significantly increase the soil organic matter and available nitrogen, phosphorus and potassium contents in wheat fields, and the combined application of organic and inorganic fertilizers had the best soil fertility improvement effect.Compared with the control, the soil organic matter increased by 92%, 48%, 78% and 20%, respectively in M, MF1, MF2.In terms of dry matter accumulation and yield, MF1 treatment significantly reduced leaf nitrogen content in booting-mature stage, promoted nitrogen transfer to grains, improved nitrogen use efficiency, and significantly increased the number of grains per ear and 1,000-grain weight, thereby increasing yield.The yields of MF1 and MF2 treatments reached 6,467and 6,345 kg/hm2, respectively, which were 12% and 9% higher than that of treatment F.
【Conclusion】" In conclusion, the combined application mode of chemical nitrogen fertilizer 115 kg/hm2 and organic fertilizer 15,000 kg/hm2 can reduce the chemical nitrogen input by 15% compared with the conventional mode, and keep the yield of winter wheat stable, which can be used as a recommended fertilization technology for winter wheat farmland in the fluvo-aquic soil area of the Huanghuaihai Plain.
Key words:winter wheat;combination of organic and inorganic fertilizers;" yield; nitrogen use efficiency; soil nutrients; dry matter accumulation
Fund projects:National Natural Science Foundation of China (32271651);Chinese academy of Agricultural Sciences Innovation Program (Agro-Environmental Protection Institute)
Correspondence author: TANG Qiuxiang(1980-),female,from Kaifeng,Henan,professor,research direction: farmland ecological environment,(E-mail)tangqiuxiang2004_2@163.com
ZHANG Yanjun(1981-),male,from Yuanping,Shanxi,associate research fellow,research direction: Bildiversity and eco-agriculture,(E-mail)zhangyanjun@caas.cn