doi:10.6048/j.issn.1001-4330.2024.05.002
摘" 要:【目的】研究不同滴灌量對(duì)勻播冬小麥產(chǎn)量形成規(guī)律的響應(yīng),為小麥節(jié)水高產(chǎn)提供依據(jù)。
【方法】以新冬22號(hào)為材料,采用田間試驗(yàn),設(shè)置5種滴灌量處理:
W1(1 800 m3/hm2)、W2(2 250 m3/hm2)、W3(2 700 m3/hm2)、W4(3 150 m3/hm2)和CK(對(duì)照,3 600 m3/hm2),以上5種處理每次滴灌量均為450 m3/hm2,研究不同滴灌量對(duì)勻播冬小麥植株性狀、干物質(zhì)積累的影響,分析不同滴灌量對(duì)勻播冬小麥產(chǎn)量形成響應(yīng)。
【結(jié)果】隨著滴灌量的增加,各處理小麥旗葉SPAD值和干物質(zhì)積累量均呈W4>CK>W(wǎng)3>W(wǎng)2>W(wǎng)1;在小麥成熟期較CK相比,W1、W2和W3分別節(jié)水50%、37.5%和25%,干物質(zhì)積累量、干物質(zhì)分配率、穗長、有效小穗、穗數(shù)、穗粒數(shù)和產(chǎn)量均低于CK;而W4較CK節(jié)水12.5%,其干物質(zhì)積累量、主莖穗長、穗數(shù)、穗粒數(shù)和產(chǎn)量較CK分別高0.80%、0.69%、1.80%、3.57%和2.86%,主莖有效小穗、分蘗穗長、分蘗有效小穗較CK分別低0.71%、0.52%和0.00%。
【結(jié)論】W4處理(3 150 m3/hm2)可以滿足冬小麥不同生長時(shí)期需水量,從而獲得較高的產(chǎn)量。
關(guān)鍵詞:滴灌量;冬小麥;勻播;生長發(fā)育;產(chǎn)量
中圖分類號(hào):S512""" 文獻(xiàn)標(biāo)志碼:A""" 文章編號(hào):1001-4330(2024)05-1048-09
收稿日期(Received):
2023-10-18
基金項(xiàng)目:
新疆維吾爾自治區(qū)重大科技專項(xiàng)子課題“現(xiàn)代灌區(qū)作物高產(chǎn)高效用水技術(shù)研究”(2022A02003-6)
作者簡介:
王潤琪(1997 - ),男,新疆裕民人,碩士研究生,研究方向?yàn)樾←湼弋a(chǎn)栽培,(E-mail)1764865348@qq.com
通訊作者:
石書兵(1966 - ),男,山東商河人,教授,碩士生/博士生導(dǎo)師,研究方向?yàn)樾←湼弋a(chǎn)栽培,(E-mail)ssb@xjau.edu.cn
張金汕(1987-),男,甘肅天水人,講師,博士,碩士生導(dǎo)師,研究方向?yàn)樾←湼弋a(chǎn)栽培,(E-mail)zhangjinshan0530@sina.com
0" 引 言
【研究意義】小麥?zhǔn)切陆饕募Z食作物之一[1]。新疆冬小麥種植面積85.67×104 hm2(1 285.04×104畝)。合理的灌水量對(duì)提高小麥產(chǎn)量、改善品質(zhì)有重要意義[2,3]?!厩叭搜芯窟M(jìn)展】勻播技術(shù)可以使小麥單株?duì)I養(yǎng)均衡,減少苗期植株個(gè)體間的競爭,有利于促進(jìn)個(gè)體和群體光合作用,進(jìn)而達(dá)到高產(chǎn)高效[4-6]。合理的水分供給對(duì)小麥生長發(fā)育及產(chǎn)量形成具有重要作用[7-8],適量滴灌較常規(guī)漫灌更有利于小麥干物質(zhì)積累、促進(jìn)籽粒灌漿和提高產(chǎn)量[9-10]。【本研究切入點(diǎn)】不同生育期灌水對(duì)小麥生長發(fā)育的影響已有相關(guān)研究[11-12]。勻播和滴灌技術(shù)相結(jié)合應(yīng)用于春小麥栽培,能有效促進(jìn)分蘗及幼穗分化,有利于穗數(shù)和穗粒數(shù)的增加,進(jìn)而提高產(chǎn)量[13]。而關(guān)于滴灌量對(duì)勻播冬小麥生長發(fā)育和產(chǎn)量影響的研究報(bào)道較少。有必要研究不同滴灌量對(duì)勻播冬小麥生長發(fā)育以及產(chǎn)量形成的影響。
【擬解決的關(guān)鍵問題】以新冬22號(hào)為材料,采用田間試驗(yàn),設(shè)置5種滴灌量處理,研究不同滴灌量對(duì)勻播冬小麥植株性狀、干物質(zhì)積累和產(chǎn)量形成的影響,為確定新疆冬小麥勻播種植滴灌量及高產(chǎn)栽培提供理論依據(jù)。
1" 材料與方法
1.1" 材 料
試驗(yàn)于2021~2022年在新疆農(nóng)業(yè)科學(xué)院奇臺(tái)麥類試驗(yàn)站(E 89°13′~91°22′,N 42°45′~45°29′,海拔835.70 m)進(jìn)行,全年平均氣溫5.5℃,無霜期153 d,土壤為灌溉灰漠土,pH值為8.25,全氮2.35 g/kg,全磷1.33 g/kg,全鉀17.90 g/kg,有機(jī)質(zhì)含量51.68 g/kg,堿解氮130.6 mg/kg,有效磷15.1 mg/kg,速效鉀396 mg/kg。供試冬小麥品種為新冬22號(hào),基本苗數(shù)為225×104株/hm2。圖1
1.2" 方 法
1.2.1" 試驗(yàn)設(shè)計(jì)
采用完全隨機(jī)區(qū)組設(shè)計(jì),共設(shè)5個(gè)處理,3次重復(fù),共計(jì)15個(gè)小區(qū),小區(qū)面積10m2(5 m×2 m)。立體勻播小區(qū)播深3 cm、株距6.67 cm,勻播滴灌帶配置為1管6行,試驗(yàn)地四周設(shè)置保護(hù)行,其他管理措施與大田管理一致。播前結(jié)合整地,基施尿素300 kg/hm2、重過磷酸鈣(粒狀)300 kg/hm2,拔節(jié)期追施尿素225 kg/hm2,孕穗期追施尿素120 kg/hm2,追肥分別隨水滴施1次。試驗(yàn)于2021年9月30日播種,2022年7月15日收獲。表1
1.2.2" 測(cè)定指標(biāo)
生育進(jìn)程:
冬小麥各生育時(shí)期[14]。
植株性狀:
于冬小麥成熟期,選取15個(gè)長勢(shì)均勻一致的單莖進(jìn)行室內(nèi)考種,測(cè)量株高和莖粗,在各小區(qū)選取長勢(shì)均勻一致的5個(gè)主莖和10個(gè)小麥分蘗,測(cè)量主莖穗長、分蘗穗長、主莖有效小穗和無效小穗、分蘗有效小穗和無效小穗。
旗葉SPAD值:
于冬小麥開花期,各小區(qū)選取長勢(shì)一致的植株旗葉定點(diǎn)測(cè)定5株,重復(fù)3次,采用SPAD-502型葉綠素儀,每7 d測(cè)定其SPAD值。
干物質(zhì)積累:于冬小麥拔節(jié)期、孕穗期、開花期、花后14 d和成熟期,在各小區(qū)選取長勢(shì)均勻一致的冬小麥8株,剪去根(將植株分為葉片、莖鞘、穎殼及穗軸和籽粒部分),放入105℃烘箱中殺青15 min,80℃烘至恒重后稱干重。
產(chǎn)量和產(chǎn)量構(gòu)成因素:
于冬小麥成熟期在各小區(qū)選取1 m2測(cè)產(chǎn),調(diào)查單位面積有效穗數(shù)、穗粒數(shù)和千粒重。
1.3 "數(shù)據(jù)處理
采用Excel 2016和DPS 9.01軟件處理數(shù)據(jù),計(jì)算其平均值和標(biāo)準(zhǔn)差,并進(jìn)行方差分析,使用Excel 2016軟件進(jìn)行圖表制作。
2" 結(jié)果與分析
2.1" 不同滴灌量對(duì)冬小麥生長發(fā)育進(jìn)程的影響
研究表明,勻播冬小麥生育進(jìn)程在不同時(shí)期滴灌量處理表現(xiàn)為CKgt;W4gt;W3gt;W2gt;W1。冬小麥CK生育期為273 d,開花至成熟歷時(shí)39 d;W4較CK提前成熟3 d;W3較CK提前成熟6 d;W2較CK提前成熟7 d;W1生育期為263 d,開花至成熟歷時(shí)29 d,較CK提前成熟10 d。因此,灌水不足會(huì)影響小麥的生長發(fā)育進(jìn)程,主要影響開花至成熟的生長天數(shù),抑制冬小麥的生殖生長。表2
2.2" 不同滴灌量對(duì)冬小麥植株性狀的影響
研究表明,滴灌量對(duì)成熟期冬小麥的株高和莖粗均有影響,株高和莖粗在各處理中均表現(xiàn)為CKgt;W4gt;W3gt;W2gt;W1。在成熟期,各處理的株高和莖粗與W1株高和莖粗差異顯著(P<0.05),較CK相比,W1、W2、W3和W4處理株高分別減少3.23%、1.47%、0.55%和0.09%,較CK相比,W1、W2、W3和W4處理莖粗分別減少5.70%、2.89%、1.45%和0.64%。滴灌量對(duì)冬小麥株高和莖粗的影響顯著,灌水量過少不利于株高和莖粗的增長,適宜灌水量有效促進(jìn)了冬小麥株高和莖粗的增長。圖2
2.3" 不同滴灌量對(duì)冬小麥旗葉SPAD值的影響
研究表明,不同處理的冬小麥旗葉SPAD值花后0至28 d均呈下降趨勢(shì),但下降速率略有不同,花后21 d下降明顯,較花后0 d下降24.81%,在花后28 d最低?;ê?至28 d,下降速率W1處理為39.04%、W2處理為39.03%、W3處理為34.85%、W4處理為27.10%、CK為30.93%。下降速率W1處理SPAD值最大,W4處理最小。各處理間冬小麥SPAD值在花后0、7和14 d均表現(xiàn)為CKgt;W4gt;W3gt;W2gt;W1,花后21和28 d則表現(xiàn)為W4gt;CKgt;W3gt;W2gt;W1。適宜灌水量能保持冬小麥花后旗葉較高的SPAD值,并且可減緩灌漿后期SPAD值的下降幅度。表3
2.4" 不同滴灌量對(duì)冬小麥不同時(shí)期干物質(zhì)積累量的影響
研究表明,冬小麥單株干物質(zhì)積累量隨著生育時(shí)期的推進(jìn)呈逐漸升高的趨勢(shì),于成熟期達(dá)到最大,表現(xiàn)為孕穗期以前干物質(zhì)積累緩慢,從孕穗期到灌漿期增長迅速,灌漿期以后基本保持穩(wěn)定,其中拔節(jié)期、孕穗期和開花期各處理間的干物質(zhì)積累量相差較?。ǚ謩e為0.12、0.54和1.23 g/株),各處理間在灌漿期和成熟期的干物質(zhì)積累量相差較大(分別為1.48和2.28 g/株)。各灌水處理的干物質(zhì)積累量均顯著高于W1處理;各灌水處理中,W4干物質(zhì)積累量達(dá)到最大值(9.86 g/株),高于CK處理的干物質(zhì)積累量,但差異不顯著。成熟期冬小麥干物質(zhì)積累量表現(xiàn)為W4gt;CKgt;W3gt;W2gt;W1,W4較CK節(jié)水12.5%,干物質(zhì)積累量提高0.80%,W4處理有利于提高冬小麥生育后期的干物質(zhì)積累量。圖3
2.5" 不同滴灌量對(duì)冬小麥成熟期干物質(zhì)分配的影響
研究表明,冬小麥成熟期營養(yǎng)器官和生殖器官干物質(zhì)分配率表現(xiàn)為籽粒>莖鞘>穎殼+穗軸>葉片,隨著滴灌量的增加,不同滴灌處理對(duì)成熟期莖鞘、葉片、穎殼及穗軸、籽粒干物質(zhì)分配率存在顯著差異,在勻播條件下,莖鞘干物質(zhì)分配率呈先減小后增大的趨勢(shì),為W1>W(wǎng)2>W(wǎng)3>CK>W(wǎng)4;籽粒和葉片干物質(zhì)分配率呈先增大后減小的趨勢(shì),為W1<W2<W3<CK<W4;穎殼及穗軸干物質(zhì)分配率呈先增大后減小的趨勢(shì),為W1<CK<W4<W3<W2。增加滴灌量降低了營養(yǎng)器官干物質(zhì)分配率,提高了籽粒干物質(zhì)分配率,勻播條件下冬小麥主要通過影響莖鞘和籽粒干物質(zhì)分配率從而影響產(chǎn)量形成。表4
2.6" 不同滴灌量對(duì)冬小麥穗部性狀的影響
研究表明,滴灌量對(duì)勻播冬小麥成熟期主莖和分蘗的穗部性狀有顯著影響。主莖穗長為8.42~8.68 cm,分蘗穗長為8.07~8.34 cm,主莖和分蘗穗長、有效小穗數(shù)差異均表現(xiàn)為W4gt;CKgt;W3gt;W2gt;W1或CKgt;W4gt;W3gt;W2gt;W1,W1、W2和W3與CK相比,主莖穗長分別降低3.00%、0.77%和0.23%,主莖有效小穗數(shù)分別降低6.36%、1.77%和1.06%,分蘗穗長分別降低3.28%、2.36%和0.76%,分蘗有效小穗數(shù)分別降低3.24%、2.67%、1.14%。與CK相比,W4的主莖穗長增大0.69%,主莖有效小穗數(shù)、分蘗穗長、分蘗有效小穗數(shù)分別降低0.71%、0.52%、0.00%,且差異不明顯。W1處理下冬小麥主莖和分蘗的無效小穗較其他處理多。各處理間冬小麥的主莖與分蘗的無效小穗數(shù)表現(xiàn)略有不同,主莖的無效小穗數(shù)表現(xiàn)為CK<W4<W3<W2<W1,分蘗的無效小穗數(shù)表現(xiàn)為CK<W3<W4<W2<W1。主莖穗長、有效小穗和無效小穗的變異系數(shù)均大于分蘗穗。表5
2.7" 不同滴灌量對(duì)冬小麥產(chǎn)量及其構(gòu)成因素的影響
研究表明,滴灌量對(duì)勻播冬小麥產(chǎn)量及其構(gòu)成因素有極顯著影響。勻播條件下,W4產(chǎn)量顯著高于其他處理,較CK高出2.86%;W1、W2和W3較CK分別降低27.87%、15.81%和7.46%;滴灌量對(duì)勻播冬小麥穗數(shù)的影響為W4gt;CKgt;W3gt;W2gt;W1,較CK相比,W4處理下穗數(shù)最大(641.00×104/hm2),高出1.80%,W1、W2、W3的穗數(shù)分別降低2.86%、1.96%和1.22%;W4處理下穗粒數(shù)最大(42.89粒),顯著高于W1、W2和W3處理,W1與W2處理間穗粒數(shù)無顯著差異,W4與CK處理間穗粒數(shù)無顯著差異;較CK相比,W1、W2、W3處理穗粒數(shù)分別降低9.14%、7.05%和1.04%,W4的穗粒數(shù)高出3.57%;滴灌量對(duì)勻播冬小麥千粒重有顯著影響,對(duì)照CK千粒重達(dá)最大值(49.72 g),顯著高于其他處理,表現(xiàn)為CKgt;W4gt;W3gt;W2gt;W1,W1、W2、W3和W4較CK分別降低24.29%、20.61%、7.87%和2.06%。滴灌量對(duì)勻播冬小麥產(chǎn)量及構(gòu)成因素的變異系數(shù)表現(xiàn)為產(chǎn)量>穗粒數(shù)>穗數(shù)>千粒重。表6
3" 討 論
3.1" 不同滴灌量對(duì)冬小麥生長發(fā)育的影響
王克全等[15]研究表明,株高隨灌溉定額的增加而增大,高水分處理(405 mm)與中水分處理(315 mm)下小麥的株高明顯高于低水分處理(225 mm)。小麥拔節(jié)至灌漿的生育階段,土壤水分對(duì)植株高度影響較大[15-16]。譚秀山等[17]研究表明,盆栽試驗(yàn)中在水分過多條件下,小麥莖稈生長旺盛,保持了較長時(shí)間的營養(yǎng)生長,但進(jìn)入生殖生長的時(shí)間延遲,導(dǎo)致小麥貪青晚熟;嚴(yán)重干旱條件下,主莖在抽穗前基本停止伸長,營養(yǎng)生長時(shí)間縮短,提前進(jìn)入了生殖生長,物質(zhì)積累減少,導(dǎo)致小麥早熟,產(chǎn)量降低;適宜水分條件下,營養(yǎng)生長與生殖生長協(xié)調(diào),小麥保持了適中的高度。試驗(yàn)研究中,勻播冬小麥的株高表現(xiàn)為隨灌水量的增加而增高的趨勢(shì),與上述文獻(xiàn)研究結(jié)果一致。因此,不同生育時(shí)期滴灌處理對(duì)冬小麥植株生長有影響,在冬小麥拔節(jié)至孕穗的生育階段進(jìn)行滴灌,會(huì)促進(jìn)冬小麥伸長生長。前人研究滴灌對(duì)小麥株高、葉面積等農(nóng)藝性狀的影響[18-19]報(bào)道較多,但對(duì)莖粗的影響報(bào)道較少。試驗(yàn)研究發(fā)現(xiàn),增加滴灌量可明顯提高小麥旗葉SPAD值,與前人研究[20-21]研究結(jié)論一致。滴灌量過多也會(huì)導(dǎo)致SPAD值下降,灌水雖然有利于保持旗葉較高的SPAD值,但僅靠增加灌水并不能提高旗葉SPAD值,應(yīng)保證適宜灌水量,最終實(shí)現(xiàn)旗葉光合性能的持續(xù)高效,試驗(yàn)結(jié)果與前人研究結(jié)論一致[22]。
3.2" 不同滴灌量對(duì)冬小麥干物質(zhì)積累的影響
干物質(zhì)積累隨著滴灌量的增加呈上升的趨勢(shì)[23],灌拔節(jié)水有利于提高小麥拔節(jié)期之后的干物質(zhì)積累量和總的干物質(zhì)積累量,但過量灌溉不利于拔節(jié)至成熟階段的干物質(zhì)積累,適宜的水分更有利于小麥干物質(zhì)積累[24]。張娜等[25]研究表明,隨著滴灌量增加可有效促進(jìn)干物質(zhì)積累,適當(dāng)增加灌水量可延長冬小麥干物質(zhì)快速積累期的持續(xù)時(shí)間,并使其向營養(yǎng)器官及生殖器官中的分配有所提高,而高水條件卻對(duì)干物質(zhì)最大增長速率有所制約。研究中各處理的冬小麥干物質(zhì)積累量隨著滴灌量的增加呈上升的趨勢(shì),與前人研究結(jié)論一致。
3.3" 不同滴灌量對(duì)冬小麥產(chǎn)量及其構(gòu)成因素的影響
陳凱麗等[26]研究認(rèn)為,在小麥整個(gè)生育時(shí)期,孕穗期、灌漿期和成熟期的耗水量對(duì)產(chǎn)量構(gòu)成因素影響很大。薛佳欣等[23]、林平等[27]研究表明,隨灌水次數(shù)的增加,灌漿中后期的灌溉速率提高,單位面積穗數(shù)、穗粒數(shù)和千粒重均有不同幅度的增高。試驗(yàn)研究中,W4較CK節(jié)水12.5%,且有利于穗部發(fā)育,可以構(gòu)建合理的單位面積穗數(shù)、穗粒數(shù)群體結(jié)構(gòu),提高千粒質(zhì)量,有效提高了產(chǎn)量。W1、W2和W3較CK相比,分別節(jié)水50%、37.5%、25%,但不利于小麥生長發(fā)育,甚至影響產(chǎn)量。小麥籽粒產(chǎn)量隨灌水量增加而提高,灌水量達(dá)到一定數(shù)值后,繼續(xù)增加灌水量,進(jìn)而導(dǎo)致產(chǎn)量下降,與前人研究一致[28]。
4" 結(jié) 論
W1、W2和W3處理下的勻播冬小麥植株高度、莖稈粗細(xì)程度、SPAD值、干物質(zhì)積累量、穗部性狀和產(chǎn)量及構(gòu)成因素均顯著低于CK;W4較CK節(jié)水12.5%,穗粒數(shù)高出3.57%,穗數(shù)高出1.80%,產(chǎn)量高出2.86%。因此適宜的水分更有利于勻播冬小麥的生長發(fā)育,W4更有利于冬小麥植株的生長發(fā)育,可以顯著提高花后旗葉SPAD值和干物質(zhì)積累量,保持合理的單位面積穗數(shù)、穗粒數(shù)和千粒重,增產(chǎn)效應(yīng)明顯,進(jìn)而獲得較高的產(chǎn)量。W4處理(滴灌量3 150 m3/hm2) 可作為較適宜的滴灌量。
參考文獻(xiàn)(References)
[1]
張金波, 嚴(yán)勇亮, 王小波, 等. 新疆春小麥育成品種遺傳演變分析[J]. 新疆農(nóng)業(yè)科學(xué), 2020, 57(3): 418-426.
ZHANG Jinbo, YAN Yongliang, WANG Xiaobo, et al. Analysis of the genetic evolution of cultivated spring wheat varieties in Xinjiang[J]. Xinjiang Agricultural Sciences," 2020, 57(3): 418-426.
[2] 肖治林, 吳昊, 顧漢柱, 等. 不同栽培措施集成對(duì)稻茬小麥產(chǎn)量、農(nóng)藝及光合特性的影響[J]. 麥類作物學(xué)報(bào), 2022, 42(8): 988-1000.
XIAO Zhilin, WU Hao, GU Hanzhu, et al. Effect of different integrated cultivation modes on yield, agronomic and photosynthetic characteristics of wheat following rice stubble[J]. Journal of Triticeae Crops, 2022, 42(8): 988-1000.
[3] 王玉嬌, 常旭虹, 王德梅, 等. 播種方式對(duì)不同品種小麥產(chǎn)量和品質(zhì)的影響[J]. 作物雜志, 2023,(1): 122-128.
WANG Yujiao, CHANG Xuhong, WANG Demei, et al. Effects of sowing methods on yield and quality of different varieties of wheat[J]. Crops, 2023,(1): 122-128.
[4] 趙廣才, 郝德有, 常旭虹, 等. 小麥立體勻播技術(shù)[J]. 農(nóng)業(yè)科技通訊, 2015,(7): 184-186.
ZHAO Guangcai, HAO Deyou, CHANG Xuhong, et al. Three-dimensional uniform sowing technology for wheat[J]. Bulletin of Agricultural Science and Technology, 2015,(7): 184-186.
[5] 郝德有, 郝志青. 小麥機(jī)械化勻播無壟栽培理論與技術(shù)[J]. 北京農(nóng)業(yè), 2014,(21): 15-17.
HAO Deyou, HAO Zhiqing. Theory and Technology of Mechanized Uniform Seeding and Ridgeless Cultivation of Wheat[J]. Beijing Agriculture, 2014,(21): 15-17.
[6] 劉沖, 賈永紅, 張金汕, 等. 播種方式和灌水量對(duì)春小麥干物質(zhì)和產(chǎn)量的影響[J]. 麥類作物學(xué)報(bào), 2019, 39(6): 728-737.
LIU Chong, JIA Yonghong, ZHANG Jinshan, et al. Effects of sowing patterns and irrigation amount on dry matter and yield of spring wheat[J]. Journal of Triticeae Crops," 2019, 39(6): 728-737.
[7] 任巍, 姚克敏, 于強(qiáng), 等. 水分調(diào)控對(duì)冬小麥同化物分配與水分利用效率的影響研究[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào), 2003, 11(4): 92-94.
REN Wei, YAO Kemin, YU Qiang, et al. Effect of water control in combination of depth and amount on dry mat ter partition and water use efficiency of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2003, 11(4): 92-94.
[8] Zhang B C, Li F M, Huang G B, et al. Yield performance of spring wheat improved by regulated deficit irrigation in an arid area[J]. Agricultural Water Management, 2006, 79(1): 28-42.
[9] Kang S Z, Zhang L, Liang Y L, et al. Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China[J]. Agricultural Water Management, 2002, 55(3): 203-216.
[10] Bai S S, Kang Y H, Wan S Q. Winter wheat growth and water use under different drip irrigation regimes in the North China PlainWinter wheat growth and water use under different drip irrigation regimes in the North China Plain[J]. Irrigation Science," 2020, 38(3): 321-335.
[11] 佟國香, 周吉紅, 毛思帥, 等. 春季不同時(shí)期灌水對(duì)小麥產(chǎn)量的影響[J]. 農(nóng)業(yè)科技通訊, 2021,(7): 169-171, 264.
TONG Guoxiang, ZHOU Jihong, MAO Sishuai, et al. The impact of irrigation at different stages of spring on wheat yield[J]. Bulletin of Agricultural Science and Technology, 2021,(7): 169-171, 264.
[12] 楊思, 張曉琪, 徐家瑞, 等. 灌水時(shí)期對(duì)冬小麥生長發(fā)育及耗水特性的影響[J]. 灌溉排水學(xué)報(bào), 2021, 40(6): 36-44.
YANG Si, ZHANG Xiaoqi, XU Jiarui, et al. Effects of irrigation period on growth and water consumption characteristics of winter wheat[J]. Journal of Irrigation and Drainage, 2021, 40(6): 36-44.
[13] 楊飛, 張戰(zhàn)勝, 陳永偉, 等. 勻播滴灌對(duì)小麥分蘗消長規(guī)律及產(chǎn)量三要素的影響[J]. 耕作與栽培, 2018(2): 12-14.
YANG Fei, ZHANG Zhansheng, CHEN Yongwei, et al. Influence of uniform sowing and drip irrigation on the rule of tillering and three factors of wheat yield[J]. Tillage and Cultivation, 2018(2): 12-14.
[14] 曹衛(wèi)星. 作物栽培學(xué)總論[M]. 北京: 科學(xué)出版社, 2011.
CAO Weixing. General Introduction to Crop Cultivation[M]. Beijing: Science Press, 2011.
[15] 王克全, 何新林, 王振華, 等. 不同灌水處理對(duì)滴灌春小麥生長及產(chǎn)量的影響研究[J]. 節(jié)水灌溉, 2010,(9): 41-42, 47.
WANG Kequan, HE Xinlin, WANG Zhenhua, et al. Effect of different drip irrigation treatments on growth and yield of spring wheat[J]. Water Saving Irrigation, 2010,(9): 41-42, 47.
[16] 王振華, 鄭旭榮, 姜國軍. 不同灌水量對(duì)滴灌春小麥生長與生理指標(biāo)的影響[J]. 核農(nóng)學(xué)報(bào), 2015, 29(3): 538-548.
WANG Zhenhua, ZHENG Xurong, JIANG Guojun. Effects of irrigation amount on the growth and physiological indexes of drip irrigated spring wheat[J]. Journal of Nuclear Agricultural Sciences, 2015, 29(3): 538-548.
[17] 譚秀山, 秦青寧, 公艷, 等. 水分脅迫對(duì)冬小麥農(nóng)藝性狀的影響及兩者間的定量數(shù)學(xué)模型[J]. 山東農(nóng)業(yè)科學(xué), 2012, 44(2): 15-19.
TAN Xiushan, QIN Qingning, GONG Yan, et al. Effect of water stress on agronomic characters of winter wheat and their quantitative mathematical models[J]. Shandong Agricultural Sciences," 2012, 44(2): 15-19.
[18] 楊靜敬, 路振廣, 張玉順, 等. 水分虧缺對(duì)冬小麥生長發(fā)育及產(chǎn)量影響的試驗(yàn)研究[J]. 灌溉排水學(xué)報(bào), 2013, 32(1): 116-120.
YANG Jingjing, LU Zhenguang, ZHANG Yushun, et al. Effect of water stress on the growth and yield of winter wheat[J]. Journal of Irrigation and Drainage, 2013, 32(1): 116-120.
[19] 姚寧, 宋利兵, 劉健, 等. 不同生長階段水分脅迫對(duì)旱區(qū)冬小麥生長發(fā)育和產(chǎn)量的影響[J]. 中國農(nóng)業(yè)科學(xué), 2015, 48(12): 2379-2389.
YAO Ning, SONG Libing, LIU Jian, et al. Effects of water stress at different growth stages on the development and yields of winter wheat in arid region[J]. Scientia Agricultura Sinica, 2015, 48(12): 2379-2389.
[20] 劉義國, 位國峰, 商健, 等. 不同滴灌量對(duì)冬小麥旗葉衰老及產(chǎn)量的影響[J]. 灌溉排水學(xué)報(bào), 2015, 34(10): 96-101.
LIU Yiguo, WEI Guofeng, SHANG Jian, et al. Effects of drip irrigation amount on the flag leaf senescence and yield of winter wheat[J]. Journal of Irrigation and Drainage, 2015, 34(10): 96-101.
[21] 韓東偉, 何建寧, 李浩然, 等. 灌水時(shí)期對(duì)冬小麥個(gè)體、群體結(jié)構(gòu)和冠層光合作用的影響[J]. 江蘇農(nóng)業(yè)學(xué)報(bào), 2022, 38(3): 577-586.
HAN Dongwei, HE Jianning, LI Haoran, et al. Effects of irrigation period on individual structure, population structure and canopy photosynthesis of winter wheat[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(3): 577-586.
[22] 惠海濱, 林琪, 劉義國, 等. 灌水量和灌水期對(duì)超高產(chǎn)小麥灌漿期光合特性及產(chǎn)量的影響[J]. 西北農(nóng)業(yè)學(xué)報(bào), 2012, 21(8): 77-83.
HUI Haibin, LIN Qi, LIU Yiguo, et al. Effects of irrigation amount and stage on photosynthetic characteristics and yield of super-high-yield wheat at filling stage[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(8): 77-83.
[23] 薛佳欣, 張江偉, 陳宗培, 等. 灌漿期冬小麥生理特性和產(chǎn)量對(duì)不同灌水量的響應(yīng)[J]. 麥類作物學(xué)報(bào), 2020, 40(9): 1111-1119.
XUE Jiaxin, ZHANG Jiangwei, CHEN Zongpei, et al. Response of physiological characteristic at grain filling stage and yield of winter wheat to different irrigation treatments[J]. Journal of Triticeae Crops," 2020, 40(9): 1111-1119.
[24] 雷鈞杰, 張永強(qiáng), 張宏芝, 等. 不同滴灌量對(duì)冬小麥干物質(zhì)積累、轉(zhuǎn)運(yùn)及產(chǎn)量的影響[J]. 新疆農(nóng)業(yè)科學(xué), 2016, 53(4): 596-603.
LEI Junjie, ZHANG Yongqiang, ZHANG Hongzhi, et al. Effect of drip irrigation amount on dry matter accumulation, translocation and yield in winter wheat[J]. Xinjiang Agricultural Sciences," 2016, 53(4): 596-603.
[25] 張娜, 張永強(qiáng), 李大平, 等. 滴灌量對(duì)冬小麥光合特性及干物質(zhì)積累過程的影響[J]. 麥類作物學(xué)報(bào), 2014, 34(6): 795-801.
ZHANG Na, ZHANG Yongqiang, LI Daping, et al. Effect of drip irrigation amount on photosynthesis characteristics and dry matter accumulation of winter wheat[J]. Journal of Triticeae Crops, 2014, 34(6): 795-801.
[26] 陳凱麗, 趙經(jīng)華, 黃紅建, 等. 不同滴灌灌水定額對(duì)小麥的耗水特性和產(chǎn)量的影響[J]. 灌溉排水學(xué)報(bào), 2017, 36(3): 65-68, 84.
CHEN Kaili, ZHAO Jinghua, HUANG Hongjian, et al. Effect of different irrigation quota on water consumption characteristics and yeld of wheat[J]. Journal of Irrigation and Drainage, 2017, 36(3): 65-68, 84.
[27] 林平, 李順, 葛振勇, 等. 不同生育期灌水對(duì)小麥產(chǎn)量及農(nóng)藝性狀的影響與分析[J]. 農(nóng)業(yè)科技通訊, 2020,(6): 47-50.
LIN Ping, LI Shun, GE Zhenyong, et al. The impact and analysis of irrigation at different growth stages on wheat yield and agronomic traits[J]. Bulletin of Agricultural Science and Technology, 2020,(6): 47-50.
[28] 嚴(yán)勇亮, 叢花, 張金波, 等. 水氮調(diào)控對(duì)兩種穗型冬小麥品種農(nóng)藝性狀及產(chǎn)量的影響[J]. 新疆農(nóng)業(yè)科學(xué), 2015, 52(8): 1388-1393.
YAN Yongliang, CONG Hua, ZHANG Jinbo, et al. Effects of irrigation and nitrogen on agronomic traits and yield in winter wheat with two spike- typles[J]. Xinjiang Agricultural Sciences, 2015, 52(8): 1388-1393.
Effect of different drip irrigation on the growth, development, and yield of uniform sowing winter wheat
WANG Runqi1, JIA Yonghong2, WANG Yujiao1, LIU Yue1, LI Dandan1, DONG Yanxue1,Gulinigaer Tuerhong1, ZHANG Lulu1, ZHANG Jinshan1, SHI Shubing1
(1." College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; 2. Qitai Triticeae Crops Experiment Station, Xinjiang Academy of Agricultural Sciences, Qitai Xinjiang 831800, China)
Abstract:【Objective】 This project aims to explore the response of the yield formation pattern of uniform sowing winter wheat to drip irrigation and achieve water-saving and high-yield wheat.
【Methods】" Using Xindong 22 as the experimental material, field experiments were conducted to study the effects of different drip irrigation volume on plant traits, dry matter accumulation, and yield formation of evenly sown winter wheat, including W1 (1,800 m3/hm2), W2 (2,250 m3/hm2), W3 (2,700 m3/hm2), W4 (3,150m3/hm2), and CK (control, 3,600 m3/hm2).The response of yield formation of uniform sowing winter wheat to different drip irrigation volumes was analyzed.
【Results】" With the increase of drip irrigation volumes, the SPAD value and dry matter accumulation of each treatment showed a variation pattern of W4gt;CKgt;W3gt;W2gt;W1; At maturity, compared with CK, W1, W2, and W3 saved water by 50%, 37.5% and 25%, respectively.The dry matter accumulation, dry matter allocation rate, ear length, effective spikelets, ear number, grain number per ear and yield of W1, W2, and W3 were all lower than CK; W4 saved water by 12.5% compared to CK, and its dry matter accumulation, main stem spike length, spike number, spike grain number, and yield were 0.80%, 0.69%, 1.80%, 3.57% and 2.86% higher than those of CK, respectively.The effective spikelets of main stem, tillering spike length, and tillering effective spikelets were 0.71%, 0.52% and 0.00% lower than those of CK, respectively.
【Conclusion】 Overall, it can be concluded that W4 treatment (3,150 m3/hm2) can meet the water requirements for winter wheat growth and achieve higher yields.
Key words:drip irrigation volume; winter wheat; uniform sowing; growth and development; yield
Fund project:Major Science and Technology Special Project of the Xinjiang Uygur Autonomous Region \"Research on High Yield and Efficient Water Use Technology for Crops in Modern Irrigation Areas\" (2022A02003-6)
Correspondence author: SHI Shubing (1966-), male, from Shanghe, Shandong , professor, doctoral supervisor, research direction: wheat high yield cultivation, (E - mail)ssb@xjau.edu.cn
ZHANG Jinshan (1987-) , male, from Tianshui, Gansu, lecturer, Ph.D.,master′s supervisor,research direction: wheat high yield cultivation, (E-mail)zhangjinshan0530@sina.com