doi:10.6048/j.issn.1001-4330.2024.05.001
摘" 要:【目的】研究土壤水分對(duì)不同抗旱性春小麥品種葉片保護(hù)性酶活性及產(chǎn)量的影響,為選育春小麥抗旱品種及制定節(jié)水高產(chǎn)措施提供理論依據(jù)。
【方法】在大田條件下,以抗旱性較強(qiáng)的品種新春46號(hào)、抗旱性中等的品種新春37號(hào)、抗旱性較弱的品種新春26號(hào)為材料,設(shè)置3種水分處理,研究土壤水分對(duì)不同抗旱性春小麥品種旗葉超氧化物歧化酶(SOD)、過(guò)氧化物酶(POD)、過(guò)氧化氫酶(CAT)活性、丙二醛(MDA)含量及產(chǎn)量的影響。
【結(jié)果】隨著水分虧缺程度的加劇,春小麥旗葉SOD、CAT活性在揚(yáng)花期呈升高的趨勢(shì),而在灌漿期則呈先升高后降低的趨勢(shì);POD活性在揚(yáng)花期呈先升高后降低的趨勢(shì),灌漿期則呈升高的趨勢(shì);MDA含量呈升高的趨勢(shì);SOD、POD活性表現(xiàn)為抗旱性較強(qiáng)的品種新春46號(hào)gt;抗旱性中等的品種新春37號(hào)gt;抗旱性較弱的品種新春26號(hào),MDA活性在春小麥品種間則呈相反的趨勢(shì)。收獲穗數(shù)、穗粒數(shù)和產(chǎn)量均隨著水分虧缺程度的加劇而降低,抗旱性較強(qiáng)的品種新春46號(hào)在有限灌溉和虧缺灌溉處理下,其收獲穗數(shù)和穗粒數(shù)降低幅度小于新春37號(hào)和新春26號(hào),且產(chǎn)量高于新春37號(hào)和新春26號(hào)。
【結(jié)論】抗旱性較強(qiáng)的品種新春46號(hào)在有限灌溉和虧缺灌溉條件下,旗葉SOD、POD酶活性較高,MDA含量較低,活性氧清除能力較強(qiáng),有效延緩了小麥植株的衰老,收獲穗數(shù)和穗粒數(shù)較抗旱性中等的新春37號(hào)和抗旱性較弱的新春26號(hào)下降幅度低,在水分虧缺條件下有利于獲得較高的產(chǎn)量。
關(guān)鍵詞:春小麥;土壤水分;抗旱性品種;保護(hù)性酶活性;產(chǎn)量
中圖分類(lèi)號(hào):S512""" 文獻(xiàn)標(biāo)志碼:A""" 文章編號(hào):1001-4330(2024)05-1041-07
收稿日期(Received):
2023-10-11
基金項(xiàng)目:
新疆維吾爾自治區(qū)天山青年計(jì)劃-杰出青年科技人才培養(yǎng)項(xiàng)目“新疆高產(chǎn)春小麥品種節(jié)水機(jī)制的生理生態(tài)學(xué)基礎(chǔ)研究”(2020Q009);新疆維吾爾自治區(qū)重大科技專(zhuān)項(xiàng)子課題“新疆小麥生產(chǎn)氣象災(zāi)害防控關(guān)鍵技術(shù)研究與集成示范”(2022B02001-3)
作者簡(jiǎn)介:
張宏芝(1983-), 男, 甘肅永昌人, 副研究員, 研究方向?yàn)樾←湼弋a(chǎn)栽培, (E-mail)dreamzhz@163.com
通訊作者:
樊哲儒(1964-), 男, 甘肅人, 研究員, 研究方向?yàn)樾←溸z傳育種, (E-mail)fzr518@163.com
張躍強(qiáng)(1976-), 男, 新疆奇臺(tái)人, 研究員, 研究方向?yàn)樾←溸z傳育種, (E-mail)zhangyqyhm@163.com
0" 引 言
【研究意義】干旱是導(dǎo)致作物產(chǎn)量低而不穩(wěn)的主要因素之一[1-2]。在滴灌條件下,選用具有較強(qiáng)抗旱能力的小麥品種,通過(guò)滴灌精確控制水分,提升小麥生物節(jié)水潛力,延緩植株衰老。因此,在高產(chǎn)穩(wěn)產(chǎn)前提下實(shí)現(xiàn)高效用水是新疆小麥獲得高產(chǎn)的關(guān)鍵措施?!厩叭搜芯窟M(jìn)展】水分脅迫將影響作物體內(nèi)活性氧的產(chǎn)生和抗氧化酶活性之間的平衡系統(tǒng),當(dāng)脅迫程度較輕時(shí),超氧化物歧化酶(SOD)、過(guò)氧化物酶(POD)和過(guò)氧化氫酶(CAT)可通過(guò)酶活力升高來(lái)清除體內(nèi)產(chǎn)生的活性氧,使其不至于傷害植物[3]。當(dāng)遭受干旱脅迫時(shí),作物細(xì)胞中活性氧產(chǎn)生和清除的平衡會(huì)被破壞,體內(nèi)的防御酶SOD、POD、CAT將被抑制,MDA含量增加,導(dǎo)致細(xì)胞受到傷害[4]。在施氮條件下,隨著水分脅迫的加劇,SOD、POD、CAT活性均有所增加,其中POD活性對(duì)干旱脅迫響應(yīng)最快[5]?!颈狙芯壳腥朦c(diǎn)】不同水分處理對(duì)小麥品種保護(hù)性酶活性的影響已有研究,但不同水分處理對(duì)滴灌條件下不同抗旱性春小麥品種保護(hù)性酶活性及產(chǎn)量和產(chǎn)量構(gòu)成因素的影響研究尚較少。需研究土壤水分對(duì)不同抗旱性春小麥品種保護(hù)性酶活性及產(chǎn)量的影響?!緮M解決的關(guān)鍵問(wèn)題】選用前期篩選的不同抗旱性春小麥品種為材料,分析土壤水分對(duì)不同抗旱性春小麥品種SOD、POD、CAT活性和MDA含量及產(chǎn)量的影響,研究土壤水分對(duì)不同抗旱性春小麥品種衰老特性的影響,為春小麥水分管理和抗旱品種的選育提供理論依據(jù)。
1" 材料與方法
1.1" 材 料
試驗(yàn)于2021~2022年在新疆農(nóng)業(yè)科學(xué)院核技術(shù)生物技術(shù)研究所軍戶農(nóng)場(chǎng)小麥育種基地(87°01′E, 43°96′N(xiāo))進(jìn)行,海拔717.2 m,土壤類(lèi)型為灰漠土。選擇抗旱性較強(qiáng)的品種新春46號(hào)、抗旱性中等的品種新春37號(hào)、抗旱性較弱的品種新春26號(hào)為材料。
1.2" 方 法
1.2.1" 試驗(yàn)設(shè)計(jì)
試驗(yàn)為裂區(qū)設(shè)計(jì),水分處理為主區(qū),品種為副區(qū)。水分處理設(shè)置3個(gè)水平,W1:生育期滴水總量300 m3/667m2(常規(guī)灌溉);W2:生育期滴水總量250 m3/667m2(有限灌溉);W3:生育期滴水總量200 m3/667m2(虧缺灌溉),水分處理出苗后滴水8次;小區(qū)面積15 m2=5 m×3 m,3次重復(fù),水分處理間設(shè)置隔離帶。采用水表和球閥控制水量。所有處理基施磷酸二銨375 kg/hm2,2葉1心期追施尿素75 kg/hm2,拔節(jié)期追施尿素225 kg/hm2,孕穗期追施尿素75 kg/ hm2(追肥隨水滴施);播種量375 kg/hm2,行距16 cm。
1.2.2" 測(cè)定指標(biāo)
1.2.2.1" 保護(hù)性酶活性和丙二醛含量
于春小麥揚(yáng)花期和灌漿中期取不同處理旗葉,每處理取15片葉,
經(jīng)液氮速凍后放入超低溫冰箱,使用ELISA(酶聯(lián)免疫吸附)試劑盒法測(cè)定
超氧化物歧化酶(SOD)、過(guò)氧化物酶(POD)、過(guò)氧化氫酶(CAT)活性及丙二醛(MDA)含量。
1.2.2.2" 產(chǎn)量及產(chǎn)量構(gòu)成
小麥?zhǔn)斋@期進(jìn)行田間測(cè)產(chǎn),每處理取2 m2樣方,每處理重復(fù)5次,取平均值;每處理取定點(diǎn)1 m行長(zhǎng)進(jìn)行室內(nèi)考種(單位面積產(chǎn)量、穗數(shù)、穗粒數(shù)和千粒重)。
1.3" 數(shù)據(jù)處理
采用DPS軟件、Duncan多重比較法進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析。
2" 結(jié)果與分析
2.1" 不同處理下春小麥SOD酶活性的變化
研究表明,隨著水分虧缺程度的加劇,春小麥揚(yáng)花期旗葉SOD酶活性升高,灌漿期SOD酶活性呈先升高后降低的趨勢(shì),以W2(有限灌溉脅迫)處理較高。水分虧缺處理前期,葉片清除活性氧的能力增強(qiáng),可維持活性氧代謝平衡,而長(zhǎng)期水分虧缺則導(dǎo)致春小麥生長(zhǎng)后期酶活性氧代謝紊亂、細(xì)胞膜受到傷害、SOD酶活性降低。有限灌溉和虧缺灌溉條件下,SOD酶活性表現(xiàn)為抗旱性較強(qiáng)的品種新春46號(hào)gt;抗旱性中等的品種新春37號(hào)gt;抗旱性較弱的品種新春26號(hào)。圖1
2.2" 不同處理下春小麥POD酶活性的變化
研究表明,隨著水分虧缺程度的加劇,春小麥揚(yáng)花期旗葉POD活性呈先升高后降低的趨勢(shì),灌漿期呈上升的趨勢(shì)。春小麥揚(yáng)花期品種間POD活性差異不明顯,灌漿期品種間POD活性表現(xiàn)為抗旱性較強(qiáng)的品種新春46號(hào)gt;抗旱性中等的品種新春37號(hào)gt;抗旱性較弱的品種新春26號(hào)。圖2
2.3" 不同處理下春小麥CAT酶活性的變化
研究表明,隨著水分虧缺程度的加劇,春小麥揚(yáng)花期旗葉CAT活性升高,灌漿期呈先升高后降低的趨勢(shì),以有限灌溉處理較高。春小麥品種間CAT活性差異不明顯。圖3
2.4" 不同處理下春小麥MDA含量的變化
研究表明,隨著水分虧缺程度的加劇春小麥揚(yáng)花期和灌漿期旗葉MDA含量均升高,尤其是虧缺灌溉處理。春小麥旗葉MDA含量表現(xiàn)為抗旱性較強(qiáng)的品種新春46號(hào)<抗旱性中等的品種新春37號(hào)<抗旱性較弱的品種新春26號(hào)。圖4
2.5" 不同處理下春小麥產(chǎn)量及產(chǎn)量的構(gòu)成因素
研究表明,有限灌溉和虧缺灌溉條件下,產(chǎn)量均表現(xiàn)為抗旱性較強(qiáng)的品種新春46號(hào)gt;抗旱性中等的品種新春37號(hào)gt;抗旱性較弱的品種新春26號(hào),且新春46號(hào)在2種水分虧缺處理下產(chǎn)量下降幅度較新春37號(hào)和新春26號(hào)低。收獲穗數(shù)和穗粒數(shù)均隨著水分虧缺程度的加劇而顯著降低,千粒重下降不明顯;品種間表現(xiàn)為新春46號(hào)在有限灌溉和虧缺灌溉處理下收獲穗數(shù)和穗粒數(shù)降低幅度小于新春37號(hào)和新春26號(hào)。表1
3" 討 論
3.1
小麥葉片衰老與葉片的活性氧積累,以及活性氧清除系統(tǒng)能力降低,導(dǎo)致細(xì)胞生物膜和其他生物大分子結(jié)構(gòu)與功能受到破壞有關(guān)[2-3]。SOD、POD、CAT是3種主要的抗氧化酶,可以降低植物體內(nèi)逆境環(huán)境造成的氧化脅迫,水分虧缺對(duì)小麥旗葉和穗器官抗氧化酶活性有顯著影響[6-7]。隨著灌水量的減少,植株衰老時(shí)間加快,過(guò)氧化物酶(POD)和過(guò)氧化氫酶(CAT)活性均呈先增后降的趨勢(shì),峰值出現(xiàn)時(shí)間提前;旗葉丙二醛(MDA)含量逐漸升高,籽粒灌漿中后期增量顯著[8]。
蔡昆爭(zhēng)等[9]研究表明,干旱脅迫在小麥不同生育期均造成葉片和根系的 SOD、POD、CAT 活性顯著提高。輕度或中度干旱脅迫
初期,各種酶的活性緩慢上升,重度干旱脅迫或干旱持續(xù)時(shí)間過(guò)長(zhǎng),酶活性逐漸減弱或失活[10]。試驗(yàn)研究表明,隨著水分虧缺程度的加劇,春小麥旗葉SOD、CAT活性在揚(yáng)花期呈升高的趨勢(shì),灌漿期則呈先升高后降低的趨勢(shì);POD活性揚(yáng)花期呈先升高后降低的趨勢(shì),灌漿期則呈升高的趨勢(shì);MDA含量呈升高的趨勢(shì)。張仁和等[11]在玉米上的研究也發(fā)現(xiàn),干旱脅迫下葉片抗氧化酶活性呈先升高后降低的趨勢(shì),干旱脅迫初期對(duì)保護(hù)系統(tǒng)酶活性升高有誘導(dǎo)作用,及時(shí)清除過(guò)量活性氧,從而維持活性氧代謝平衡,重度脅迫下活性氧清除酶的活性下降、活性氧代謝紊亂、細(xì)胞膜受傷害。
3.2
干旱條件下,抗旱性弱的小麥品種抗氧化酶保護(hù)系統(tǒng)不協(xié)調(diào),并導(dǎo)致膜脂過(guò)氧化程度增強(qiáng);而灌漿后期POD活性提高增強(qiáng)
了膜脂過(guò)氧化程度,旗葉衰老加速[12]。相同處理?xiàng)l件下,抗旱性品種小麥MDA含量相對(duì)較低,抗氧化酶活性顯著高于水分敏感性品種[13]?;ê蟾珊得{迫下,持綠型作物能夠保持較高的超氧化物歧化酶(SOD)和過(guò)氧化物酶(POD)活性,提高脯氨酸含量,降低丙二醛(MDA)含量,使綠葉面積和光合生產(chǎn)力得到有效提高[14-15]。試驗(yàn)研究表明,SOD、POD活性抗旱性較強(qiáng)的品種新春46號(hào)gt;抗旱性中等的品種新春37號(hào)gt;抗旱性較弱的品種新春26號(hào),CAT活性品種間差異較小,MDA含量表現(xiàn)為抗旱性較強(qiáng)的品種新春46號(hào)lt;抗旱性中等的品種新春37號(hào)lt;抗旱性較弱的品種新春26號(hào)??购敌暂^強(qiáng)的品種,其保護(hù)酶的活性也較高[16]。同一水分處理下保護(hù)系統(tǒng)酶活性不同品種間的差異較大,抗旱性高的品種明顯高于抗旱性低的品種[13,17]。
小麥拔節(jié)期適度干旱雖然顯著降低成穗數(shù),但增加了穗粒數(shù)、而且延緩了開(kāi)花后葉片衰老、顯著提高葉片凈光合速率,籽粒灌漿速率、千粒重、籽粒產(chǎn)量和水分利用效率[18]。然而拔節(jié)期過(guò)度干旱則會(huì)降低小麥有效穗數(shù)和穗粒數(shù),嚴(yán)重干旱條件下小麥千粒重、單株和單位面積籽粒產(chǎn)量亦顯著降低[19-20]。研究表明,隨著水分虧缺程度的加劇,收獲穗數(shù)、穗粒數(shù)和產(chǎn)量均顯著降低,抗旱性較強(qiáng)的品種新春46號(hào)在有限灌溉和虧缺灌溉處理下,其收獲穗數(shù)和穗粒數(shù)降低幅度小于新春37號(hào)和新春26號(hào),產(chǎn)量降低幅度也較小。干旱脅迫下高抗品種減產(chǎn)幅度小,減緩了干旱對(duì)產(chǎn)量的影響。干旱脅迫使小麥的有效穗數(shù)、穗粒數(shù)、千粒重及產(chǎn)量均顯著下降。輕度干旱脅迫下,有效穗數(shù)和產(chǎn)量降幅較大;嚴(yán)重干旱脅迫下,穗粒數(shù)、千粒重和產(chǎn)量下降的幅度均更明顯[19]。
4" 結(jié) 論
抗旱性較強(qiáng)的品種新春46號(hào)在有限灌溉和虧缺灌溉條件下,旗葉SOD、POD酶活性較高,MDA含量較低,活性氧清除能力較強(qiáng),有效的延緩小麥植株的衰老;收獲穗數(shù)和穗粒數(shù)較抗旱性中等和抗旱性較弱的品種下降幅度低,在水分虧缺條件下有利于獲得較高的產(chǎn)量。在小麥實(shí)際生產(chǎn)中的應(yīng)根據(jù)不同小麥品種的抗旱性強(qiáng)弱,合理進(jìn)行水分運(yùn)籌,延緩小麥植株衰老,延長(zhǎng)葉片的功能期,從而提高產(chǎn)量。
參考文獻(xiàn)(References)
[1]
Deng X P, Shan L, Zhang H P, et al. Improving agricultural water use efficiency in arid and semiarid areas of China[J]. Agricultural Water Management, 2006, 80(1/2/3): 23-40.
[2] 屈艷萍, 高輝, 呂娟, 等. 基于區(qū)域?yàn)?zāi)害系統(tǒng)論的中國(guó)農(nóng)業(yè)旱災(zāi)風(fēng)險(xiǎn)評(píng)估[J]. 水利學(xué)報(bào), 2015, 46(8): 908-917.
QU Yanping, GAO Hui, LYU Juan, et al. Agricultural drought disaster risk assessment in China based on the regional disaster system theory[J]. Journal of Hydraulic Engineering, 2015, 46(8): 908-917.
[3] 魏煒, 趙欣平, 呂輝, 等. 三種抗氧化酶在小麥抗干旱逆境中的作用初探[J]. 四川大學(xué)學(xué)報(bào)(自然科學(xué)版), 2003, 40(6): 1172-1175.
WEI Wei, ZHAO Xinping, LYU Hui, et al. The study of the function of three antioxidant enzymes in wheat leaf under drought stress[J]. Journal of Sichuan University (Natural Science Edition), 2003, 40(6): 1172-1175.
[4] 孔東, 晏云, 段艷, 等. 不同水氮處理對(duì)冬小麥生長(zhǎng)及產(chǎn)量影響的田間試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2008, 24(12): 36-40.
KONG Dong, YAN Yun, DUAN Yan, et al. Field experiment on growth and yields of winter wheat under different water and nitrogen treatments[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(12): 36-40.
[5] 張迪, 孫婷, 王冀川, 等. 不同水氮組合對(duì)滴灌冬小麥葉片保護(hù)性酶活性及產(chǎn)量的影響[J]. 新疆農(nóng)業(yè)科學(xué), 2018, 55(10): 1775-1785.
ZHANG Di, SUN Ting, WANG Jichuan, et al. Effects of different water and nitrogen combinations on protective enzyme activities and yield of winter wheat under drip irrigation[J]. Xinjiang Agricultural Sciences," 2018, 55(10): 1775-1785.
[6] Gill M B, Cai K F, Zhang G P, et al. Brassinolide alleviates the drought-induced adverse effects in barley by modulation of enzymatic antioxidants and ultrastructure[J]. Plant Growth Regulation, 2017, 82(3): 447-455.
[7] Liu M X, Chen J J, Guo Z F, et al. Differential responses of polyamines and antioxidants to drought in a centipedegrass mutant in comparison to its wild type plants[J]. Frontiers in Plant Science, 2017, 8: 792.
[8] 李清瑤. 灌水量對(duì)強(qiáng)筋小麥旗葉衰老和籽粒發(fā)育特性的調(diào)控效應(yīng)及其生理基礎(chǔ)[D]. 秦皇島: 河北科技師范學(xué)院, 2021.
LI Qingyao. Effects of Irrigation Volume on Flag Leaf Senescence and Grain Development Characteristics of Strong Gluten Wheat and Its Physiological Basis[D]. Qinhuangdao: Hebei Normal University of Science amp; Technology, 2021.
[9] 蔡昆爭(zhēng), 吳學(xué)祝, 駱世明, 等. 不同生育期水分脅迫對(duì)水稻根系活力、葉片水勢(shì)和保護(hù)酶活性的影響[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2008, 29(2): 7-10.
CAI Kunzheng, WU Xuezhu, LUO Shiming, et al. Effects of water stress at different growth stages on root activity, leaf water potential and protective enzymes activity in rice[J]. Journal of South China Agricultural University, 2008, 29(2): 7-10.
[10] 張永福, 黃鶴平, 銀立新, 等. 冷(熱)激對(duì)干旱脅迫下玉米活性氧清除及膜脂過(guò)氧化的調(diào)控機(jī)制[J]. 江蘇農(nóng)業(yè)科學(xué), 2015, 43(5): 56-60.
ZHANG Yongfu, HUANG Heping, YIN Lixin, et al. Regulation mechanism of cold (heat) shock on active oxygen scavenging and membrane lipid peroxidation in maize under drought stress[J]. Jiangsu Agricultural Sciences, 2015, 43(5): 56-60.
[11] 張仁和, 鄭友軍, 馬國(guó)勝, 等. 干旱脅迫對(duì)玉米苗期葉片光合作用和保護(hù)酶的影響[J]. 生態(tài)學(xué)報(bào), 2011, 31(5): 1303-1311.
ZHANG Renhe, ZHENG Youjun, MA Guosheng, et al. Effects of drought stress on photosynthetic traits and protective enzyme activity in maize seeding[J]. Acta Ecologica Sinica, 2011, 31(5): 1303-1311.
[12] 王征宏. 干旱對(duì)小麥灌漿期物質(zhì)轉(zhuǎn)運(yùn)的調(diào)控[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2009.
WANG Zhenghong. Regulation of Drought Stress on Assimilate Translocation during Grain Filling in Wheat[D]. Yangling: Northwest A amp; F University, 2009.
[13] 葉君, 鄧西平, 王仕穩(wěn), 等. 干旱脅迫下褪黑素對(duì)小麥幼苗生長(zhǎng)、光合和抗氧化特性的影響[J]. 麥類(lèi)作物學(xué)報(bào), 2015, 35(9): 1275-1283.
YE Jun, DENG Xiping, WANG Shiwen, et al. Effects of melatonin on growth, photosynthetic characteristics and antioxidant system in seedling of wheat under drought stress[J]. Journal of Triticeae Crops, 2015, 35(9): 1275-1283.
[14] Song Y W, Xiang F Y, Zhang G Z, et al. Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset in Arabidopsis thaliana[J]. Frontiers in Plant Science," 2016, 7: 181.
[15] Zhang K W, Gan S S. An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves[J]. Plant Physiology," 2012, 158(2): 961-969.
[16] Sgherri C L M, Maffei M, Navari-Izzo F. Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering[J]. Journal of Plant Physiology, 2000, 157(3): 273-279.
[17] 楊貝貝, 趙丹丹, 任永哲, 等. 不同小麥品種對(duì)干旱脅迫的形態(tài)生理響應(yīng)及抗旱性分析[J]. 河南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2017, 51(2): 131-139.
YANG Beibei, ZHAO Dandan, REN Yongzhe, et al. Drought resistance of different wheat cultivars and physiological response to drought stress[J]. Journal of Henan Agricultural University," 2017, 51(2): 131-139.
[18] 胡洋山, 湯穎子, 李治, 等. 小麥分蘗成穗數(shù)相關(guān)分子標(biāo)記在重組自交系(RIL)群體中的有效性驗(yàn)證及實(shí)用性評(píng)價(jià)[J]. 麥類(lèi)作物學(xué)報(bào), 2018, 38(1): 8-15.
HU Yangshan, TANG Yingzi, LI Zhi, et al. Evaluation and validation of molecular markers associated with maximum tiller number and spike number per unit area of wheat in a RIL population[J]. Journal of Triticeae Crops, 2018, 38(1): 8-15.
[19] 金欣欣, 姚艷榮, 賈秀領(lǐng), 等. 基因型和環(huán)境對(duì)小麥產(chǎn)量、品質(zhì)和氮素效率的影響[J]. 作物學(xué)報(bào), 2019, 45(4): 635-644.
JIN Xinxin, YAO Yanrong, JIA Xiuling, et al. Effects of genotype and environment on wheat yield, quality, and nitrogen use efficiency[J]. Acta Agronomica Sinica, 2019, 45(4): 635-644.
[20] 楊文平, 單長(zhǎng)卷, 胡喜巧, 等. 土壤干旱對(duì)冬小麥拔節(jié)期葉片碳代謝的影響[J]. 河南農(nóng)業(yè)科學(xué), 2008, 37(9): 20-22, 26.
YANG Wenping, SHAN Changjuan, HU Xiqiao, et al. Effects of soil drought on carbon metabolism of winter wheat during jointing stage[J]. Journal of Henan Agricultural Sciences, 2008, 37(9): 20-22, 26.
Effects of soil moisture on leaf protective enzyme activities and yield of spring wheat cultivars with different drought resistance
ZHANG Hongzhi1, WANG Lihong1, SHI Jia1, KONG Depeng2, WANG Zhong1, GAO Xin1, LI Jianfeng1, WANG Chunsheng1, XIA Jianqiang1, FAN Zheru1, ZHANG Yueqiang1
(1. Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Agricultural Ministry/Xinjiang Engineering Technology Research Center of Crop Chemical Regulation/ Xinjiang Key Laboratory of Crop Biotechnology / Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; 2. Agricultural Technology Extension Master Station of Xinjiang Uygur Autonomous Region, Urumqi 830000, China)
Abstract:【Objective】 To study the effects of soil moisture on the yield of protective enzyme active agent in different drought-resistant varieties in the hope of providing theoretical basis for the breeding of drought-resistant spring wheat varieties.
【Methods】" Under field conditions, Xinchun 46 with strong drought resistance, Xinchun 37 with medium drought resistance and Xinchun 26 with weak drought resistance were used as experimental materials to study the effects of soil moisture on SOD, POD, CAT activities, MDA content and yield of flag leaves of spring wheat varieties with different drought resistance.
【Results】" With the increase of water deficit, the activities of SOD and CAT in flag leaves of wheat increased at flowering stage, and first increased and then decreased at filling stage.POD activity increased at flowering stage and then decreased, and increased at grout stage.MDA content showed an increasing trend.The SOD and POD activity of drought-resistant cultivar Xinchun 46 gt; drought-resistant medium cultivar Xinchun 37 gt; drought-resistant weak cultivar Xinchun 26 showed an opposite trend among varieties.The harvest panicle number, grain number per ear and yield decreased with the increase of water deficit.The harvest panicle number and grain number per ear of Xinchun 46 with strong drought resistance decreased less than those of Xinchun 37 and Xinchun 26 under limited irrigation and deficit irrigation, and the yield of Xinchun 46 under water deficit was higher than those of the other two varieties.
【Conclusion】" Under the condition of limited irrigation and deficit irrigation, the flag leaves of Xinchun 46 with strong drought resistance had higher SOD and POD enzyme activities, lower MDA content, and stronger active oxygen scavenging ability, which effectively delayed the senility of wheat plants.Compared with the cultivars with moderate drought resistance and weak drought resistance, the number of harvested ears and grain per ear decreased less, which was conducive to higher yield under the condition of water deficit.
Key words:spring wheat; soil moisture; drought-resistant varieties; protective activity; yield
Fund projects:Tianshan Youth Plan-Cultivation Project for Outstanding Young Scientific and Technological Talents of Autonomous Region \"Physiological and Ecological Basis Research on Water-saving Mechanism of High-Yield Spring Wheat Varieties in Xinjiang\"(2020Q009);Sub-project of Major Science and Technology Special Project of the Autonomous Region \"Research and Integrated Demonstration on Key Technologies of Meteorological Disaster Prevention and Control in Wheat Production in Xinjiang\"(2022B02001-3)
Correspondence author:FAN Zheru(1964-), male, from Gansu, researcher, research direction: wheat mutation breeding, (E-mail)fzr518@163.com
ZHANG Yueqiang(1976-), male, from Qitai, Xinjiang, researcher, research direction: wheat mutation breeding, (E-mail)zhangyqyhm@163.com