摘要:非酒精性脂肪肝(NAFLD)是全球肝臟疾病最常見(jiàn)的原因之一,定義為在無(wú)顯著飲酒史和其他肝臟疾病的患者中存在≥5%的肝細(xì)胞脂肪變性。目前,在全球范圍內(nèi),NAFLD發(fā)病率正以驚人的速度在增長(zhǎng),但其具體的發(fā)病機(jī)制尚不完全清楚。NAFLD發(fā)病機(jī)理中,最引人注目的線(xiàn)索來(lái)自于人類(lèi)遺傳學(xué)。全基因組研究表明,Patatin樣磷脂酶域3(PNPLA3)、跨膜6超家族成員2(TM6SF2)、載脂蛋白C3(APOC3)、跨溶血脂酰肌醇?;D(zhuǎn)移酶1(MBOAT7)和葡萄糖激酶調(diào)節(jié)蛋白(GCKR)中不同的單核苷酸多態(tài)性(SNPs)對(duì)NAFLD的發(fā)生和預(yù)后有相當(dāng)大的影響。本文就近年來(lái)NAFLD遺傳易感性中的5種基因的多態(tài)性展開(kāi)綜述,以期對(duì)該疾病的發(fā)病機(jī)制提供新的見(jiàn)解以及對(duì)臨床提供新的治療方向。
關(guān)鍵詞:非酒精性脂肪肝;PNPLA3;TM6SF2;基因多態(tài)性
中圖分類(lèi)號(hào):R575.5 " " " " " " " " " " " " " " " "文獻(xiàn)標(biāo)識(shí)碼:A " " " " " " " " " " " " " " " " "DOI:10.3969/j.issn.1006-1959.2023.24.043
文章編號(hào):1006-1959(2023)24-0183-05
Research Progress on Gene Polymorphisms Related to Non-alcoholic Fatty Liver Disease
WANG Jing1,CAO Ming-bo2
(Department of Gastroenterology,People's Hospital of Zhengzhou University/Henan Provincial People's Hospital,
Zhengzhou 450000,Henan,China)
Abstract:Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of liver disease worldwide. It is defined as the presence of ≥5% hepatocellular steatosis in patients without a significant history of alcohol consumption and other liver diseases. The prevalence of NAFLD is currently increasing at an alarming rate globally, but its exact pathogenesis is not completely understood. The most compelling clue to the pathogenesis of NAFLD comes from human genetics. Genome-wide studies have shown that different single nucleotide polymorphisms (SNPs) in patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), apolipoprotein C3 (APOC3), membrane bound O-acyltransferase domain containing 7 (MBOAT7) and glucokinase regulatory protein (GCKR) have a considerable impact on NAFLD onset and long-term prognosis. This article reviews the polymorphisms of five genes in the genetic susceptibility of NAFLD in recent years, in order to provide new insights into the pathogenesis of the disease and provide new directions for clinical treatment.
Key words:Non-alcoholic fatty liver disease;PNPLA3;TM6SF2;Gene polymorphism
非酒精性脂肪肝(non-alcoholic fatty liver disease,NAFLD)是最常見(jiàn)的肝臟疾病之一,與肥胖、2型糖尿?。╰ype 2 diabetes mellitus,T2DM)、胰島素抵抗(insulin resistance,IR)密切相關(guān)。有研究顯示[1],1990-2019年NAFLD的全球流行率約為30%,趨勢(shì)分析顯示,截至2019年,全球37%的成年人可能患有NAFLD。有研究認(rèn)為[2],單純脂肪變性是良性病變,而NASH患者發(fā)展為肝硬化和肝細(xì)胞癌(hepatocellular carcinoma,HCC)的風(fēng)險(xiǎn)明顯高于單純肝脂肪變性患者,且死亡風(fēng)險(xiǎn)明顯高于單純肝脂肪變性患者。NAFLD的發(fā)病機(jī)制尚未完全明確,越來(lái)越多的證據(jù)表明,關(guān)鍵基因的異常表達(dá)或突變導(dǎo)致了NAFLD的發(fā)生和進(jìn)展[3],包括胰島素抵抗、脂肪組織分泌的激素、營(yíng)養(yǎng)因素和腸道菌群在內(nèi)的“多重攻擊”假說(shuō)認(rèn)為多重攻擊共同作用于具有基因易感性的NAFLD,對(duì)NAFLD的發(fā)病機(jī)制提供了更準(zhǔn)確的解釋[4]。
非酒精性脂肪肝是一種多因素疾病,高達(dá)50%的相對(duì)風(fēng)險(xiǎn)歸因于遺傳易感性,證據(jù)來(lái)自于大量的對(duì)家族、雙胞胎和不同種族的研究中,NAFLD的易感性不同[3]。全基因組關(guān)聯(lián)研究(genome-wide association studies,GWAS)中發(fā)現(xiàn)了許多與NAFLD相關(guān)的變異,但在大多數(shù)情況下,優(yōu)勢(shì)比(odds ratio,OR)值相對(duì)較小。很多研究表明[5-7],在大規(guī)模人群研究中,PNPLA3、TM6SF2、ApoC3、MBOAT7和GCKR的單核苷酸多態(tài)性(single nucleotide polymorphisms,SNPs)與NAFLD的發(fā)生發(fā)展存在潛在的聯(lián)系。本文主要圍繞PNPLA3、TM6SF2、ApoC3、MBOAT7和GCKR 5種基因的單核苷酸多態(tài)性和非酒精性脂肪肝病之間的聯(lián)系進(jìn)行闡述,并對(duì)相關(guān)的發(fā)病機(jī)制進(jìn)行探討,以期為臨床用藥提供新的方向。
1 PNPLA3多態(tài)性降低甘油脂類(lèi)的水解
NAFLD最重要的遺傳因素之一是含有蛋白3的patatin樣磷脂酶結(jié)構(gòu)域(patatin-like phospholipase domain-containing protein 3,PNPLA3)的單核苷酸多態(tài)性(rs738409)。編碼PNPLA3的I148M變異的rs738409 C>G SNP,占NAFLD遺傳易感性的最大比例[8]。PNPLA3 I148M變異增加了與NAFLD相關(guān)的所有肝損傷的易感性,包括從脂肪變性到NASH、纖維化和HCC,是一種常見(jiàn)的肝臟疾病風(fēng)險(xiǎn)因子[9]。
研究表明[10],攜帶PNPLA3多態(tài)性的種族人群發(fā)生NAFLD的風(fēng)險(xiǎn)更大。在PNPLA3 rs738409多態(tài)性中,不同基因型與非酒精性脂肪肝的聯(lián)系也有很大區(qū)別。研究認(rèn)為[11],CC基因型(OR=0.48)發(fā)生非酒精性脂肪肝的風(fēng)險(xiǎn)較低,而CG和GG基因型的這一比例分別為1.19和2.05,因此這些基因型發(fā)生非酒精性脂肪肝的概率大幅增高。因此,在PNPLA3基因型多態(tài)性對(duì)NAFLD的影響中,G等位基因可能發(fā)揮重要作用。
PNPLA3變異導(dǎo)致NAFLD的具體機(jī)制尚未研究清楚。之前有相關(guān)研究表明[12],在胰島素抵抗過(guò)程中,PNPLA3在肝細(xì)胞、肝星狀細(xì)胞和脂肪細(xì)胞中被胰島素誘導(dǎo)。PNPLA3具有?;饷富钚裕伤鈫熙8视?、二酰甘油和三酰甘油(三種主要的甘油脂)。該蛋白的水解功能在rs738409多態(tài)性中丟失,當(dāng)野生型蛋白被迅速降解時(shí),變異蛋白不僅沒(méi)有脂肪酶活性,還會(huì)發(fā)生積累,損害脂質(zhì)重塑和翻轉(zhuǎn),同時(shí)可能導(dǎo)致肝內(nèi)甘油三酯儲(chǔ)存和胰島素抵抗,進(jìn)而很大可能發(fā)生NAFLD[13-16]。這些研究表明,PNPLA3基因多態(tài)性導(dǎo)致PNPLA3本身具有的甘油酯類(lèi)水解性丟失,進(jìn)一步導(dǎo)致肝內(nèi)脂肪積累,是促進(jìn)NAFLD進(jìn)展的主要原因。
2 TM6SF2多態(tài)性促進(jìn)肝臟脂肪蓄積
最初,Kozlitina J等[17]發(fā)現(xiàn)TM6SF2中的一個(gè)非同義突變SNP(rs58542926)(E167K),即跨膜6超家族2號(hào)成員中的第19號(hào)染色體上功能未知的基因,在質(zhì)子磁共振波譜(proton magnetic resonance spectroscopy,1H-MRS)定量中與肝臟甘油三酯含量(hepatic triglyceride content,HTGC)相關(guān)聯(lián),這種變異也與血脂異常和心血管風(fēng)險(xiǎn)相關(guān)。編碼TM6SF2 E167K變體的rs58542926 C>T通過(guò)減少脂質(zhì)分泌,有利于肝脂肪在細(xì)胞內(nèi)脂滴中積累,從而增加包括NASH和嚴(yán)重纖維化的肝損傷的易感性。與此同時(shí),E167K變體通過(guò)減少循環(huán)脂質(zhì)來(lái)預(yù)防心血管疾病[18]。
NAFLD和TM6SF2之間的緊密聯(lián)系在2014年的全基因組關(guān)聯(lián)研究中首次被發(fā)現(xiàn),Liu YL等[19]證實(shí),在NAFLD患者中,TM6SF2 rs58542926 C>T(E167K)等位基因影響肝纖維化,與PNPLA3 G等位基因多態(tài)性、肥胖、T2DM和年齡等混雜危險(xiǎn)因素?zé)o關(guān)。從細(xì)胞內(nèi)液中的脂滴到極低密度脂蛋白(very low-density lipoprotein,VLDL)合成、分泌,這種脂質(zhì)的流量調(diào)節(jié)參與了肝臟脂肪積累和肝臟疾病的發(fā)展。TM6SF2 E167K變異相關(guān)的NAFLD的發(fā)生機(jī)制強(qiáng)調(diào)了這一概念,即在人體中,TM6SF2調(diào)節(jié)VLDL中甘油三酯的富集,也調(diào)節(jié)脂質(zhì)合成和分泌脂蛋白顆粒的數(shù)量,而E167K是一種功能缺失的變體,其使更多的脂質(zhì)進(jìn)入肝臟,進(jìn)而肝臟脂肪蓄積,最終發(fā)展為NAFLD[20,21]。TM6SF2主要作用是可以促進(jìn)肝臟中脂質(zhì)的分泌,其變體喪失這一功能,便導(dǎo)致了脂肪在肝中的蓄積,促進(jìn)NAFLD的發(fā)展。
3 APOC3多態(tài)性增加外源甘油三酯的蓄積
NAFLD常與肥胖、胰島素抵抗和血脂異常有關(guān),這些都包含在代謝綜合征(metabolic syndrome,MetS)的定義中。MetS患者表現(xiàn)為高密度脂蛋白(high-density lipoprotein,HDL)分解代謝增加,導(dǎo)致HDL膽固醇水平降低。在NAFLD患者中,也常表現(xiàn)為低HDL膽固醇。HDL是由多種生物分子組成的復(fù)雜脂蛋白顆粒家族,主要包括蛋白質(zhì)和脂質(zhì)[22]。越來(lái)越多的證據(jù)表明[23],HDL的生理作用取決于其蛋白質(zhì)載體。除載脂蛋白A1(apolipoprotein A1,APOA1)外,高密度脂蛋白中最豐富的蛋白質(zhì)是載脂蛋白C3(apolipoprotein C3,APOC3),其是一種主要在肝臟中合成的促炎糖蛋白。
先前的研究表明[24],APOC3基因的多態(tài)性可能與NAFLD的遺傳易感性有關(guān)。針對(duì)中國(guó)和印度人群的多項(xiàng)研究報(bào)告表明[25,26],APOC3變異等位基因(rs2854116[T-455C]和rs2854117[C-482T])增加了IR和NAFLD的風(fēng)險(xiǎn)。2020年,在中國(guó)進(jìn)行的另一項(xiàng)研究表明[27],APOC3 rs2070667位點(diǎn)的等位基因?qū)ρ酗@著的下調(diào)作用。在APOC3 rs2070667位點(diǎn)攜帶A而非G等位基因的NAFLD患者,更容易發(fā)生肝臟炎癥。一項(xiàng)隨機(jī)試驗(yàn)使用了一種合成APOC3的反義抑制劑,結(jié)果顯示空腹甘油三酯顯著降低[28]。因此,APOC3有可能通過(guò)影響循環(huán)甘油三酯來(lái)調(diào)節(jié)肝臟脂肪積累。其本能在其他類(lèi)型載體蛋白的相互作用下抑制肝臟對(duì)乳糜微粒的攝取,進(jìn)而減少肝內(nèi)外源性甘油三酯的蓄積。APOC3基因多態(tài)性導(dǎo)致肝內(nèi)脂質(zhì)增多,促進(jìn)NAFLD的發(fā)展。
4 MBOAT7多態(tài)性促進(jìn)肝臟炎癥
跨溶血脂酰肌醇?;D(zhuǎn)移酶1(membrane bound O-acyltransferase domain-containing 7,MBOAT7)基因非編碼區(qū)的rs641738 C>T突變體與非酒精性脂肪肝、酒精性肝病、乙型肝炎和丙型肝炎等肝臟疾病的纖維化相關(guān)[29]。在rs641738 C>T變異的攜帶者中,觀察到正常肝臟中MBOAT7蛋白水平的降低[30]。此外,在MBOAT7基因敲除的小鼠中,發(fā)現(xiàn)其體內(nèi)重塑了肝臟磷脂酰肌醇(phosphatidylinositol,PI)和溶血磷脂酰肌醇(lysophosphatidylinositol,LPI)水平,從而促進(jìn)了高胰島素血癥和肝臟胰島素抵抗[31]。關(guān)于MBOAT7的人類(lèi)基因數(shù)據(jù)表明一系列不同的肝臟疾病與纖維化密切相關(guān)。纖維化是NAFLD的關(guān)鍵預(yù)后標(biāo)記物,也是目前許多NASH臨床研究的終點(diǎn)。然而,rs641738 C>T變異導(dǎo)致NAFLD發(fā)展,特別是肝纖維化的具體機(jī)制尚不完全清楚。
Mancina RM等[32]已經(jīng)證明MBOAT7 rs641738 C>T與更多的壞死炎癥相關(guān)。Helsley RN等[31]研究表明高脂肪喂養(yǎng)(high-fat diet,HFD)的MBOAT7缺陷小鼠導(dǎo)致總巨噬細(xì)胞和M2巨噬細(xì)胞在肝臟中的積累減少,而CD8+T細(xì)胞和M1巨噬細(xì)胞則增加。此外,相關(guān)研究表明[33],MBOAT7是一種跨膜蛋白,通過(guò)將花生四烯醇輔酶A添加到1-硬脂酰-溶血磷脂酰肌醇中,從而生成sn-1-硬脂酰-sn-2-花生四烯酰-磷脂酰肌醇,參與Lands循環(huán)中PI的?;溨貥?gòu)。研究表明[34],如果MBOAT7在肝臟中缺失,這反過(guò)來(lái)可能導(dǎo)致LPI水平升高和PI譜改變,從而導(dǎo)致高PI周轉(zhuǎn)率,推動(dòng)甘油三酯在肝臟中的合成。同時(shí),LPI通過(guò)ATP結(jié)合盒亞家族C成員1(ATP binding cassette subfamily C member 1,ABCC1)癌基因,從細(xì)胞中輸出,從而使其成為一種候選的前纖維化脂質(zhì)介質(zhì),可能直接與星狀細(xì)胞室相互作用,促進(jìn)炎癥和纖維化[35]。最近一項(xiàng)研究表明[31],與健康人相比,肝纖維化患者的循環(huán)LPI水平顯著升高;同時(shí),外源性L(fǎng)PI處理的肥胖小鼠的肝臟中促纖維化基因的表達(dá)增加。因此,LPI可能在纖維化的發(fā)展中發(fā)揮信號(hào)作用,并且此種作用與炎癥無(wú)關(guān)。MBOAT7下調(diào)與NAFLD的聯(lián)系不僅體現(xiàn)在使肝臟甘油三酯的合成增多,在促進(jìn)肝臟炎癥方面的影響也同樣不可忽視??傊?,肝臟MBOAT7的下調(diào)與肥胖和胰島素抵抗期間的NAFLD發(fā)展和纖維化有關(guān)。
5 GCKR多態(tài)性使肝臟攝取葡萄糖增多
近年來(lái),一些全基因組關(guān)聯(lián)研究分析顯示GCKR rs780094和rs1260326與日本[36]、伊朗[37]、中國(guó)[6]人群的NAFLD風(fēng)險(xiǎn)密切相關(guān)。此外,另一項(xiàng)包含26 552例參與者的研究也證明了GCKR rs780094和rs1260326多態(tài)性均與NAFLD風(fēng)險(xiǎn)增加顯著相關(guān)[38]。一項(xiàng)關(guān)于歐洲人群的研究顯示[39],使NAFLD風(fēng)險(xiǎn)增加的等位基因在代謝指標(biāo)上表現(xiàn)出不同的關(guān)聯(lián)譜,GCKR rs1260326與脂肪肝在循環(huán)脂質(zhì)和脂蛋白上相關(guān)聯(lián)。于歐洲展開(kāi)的基于電子健康檔案的GWAS研究表明[40],控制BMI變量后,GCKR是NAFLD的易感位點(diǎn),并且GCKR位點(diǎn)的遺傳變異可能調(diào)節(jié)與肥胖或甘油三酯水平升高相關(guān)的NAFLD風(fēng)險(xiǎn)。
葡萄糖激酶調(diào)節(jié)蛋白由GCKR基因編碼,是一種主要抑制肝臟中己糖激酶葡萄糖激酶(glucokinase,GCK)活性的蛋白。GCK是體內(nèi)糖酵解通路的首個(gè)關(guān)鍵酶,作為葡萄糖傳感器調(diào)節(jié)胰島素的釋放從而調(diào)節(jié)葡萄糖代謝,維持機(jī)體血糖平衡。有報(bào)道稱(chēng)其與肝臟胰島素敏感性密切相關(guān),在NAFLD的發(fā)生發(fā)展中起著至關(guān)重要的作用[9,41]。研究發(fā)現(xiàn)[40],GCKR基因座的變異與肝臟脂肪積累存在相關(guān)性,該研究表明,GCKR位點(diǎn)的遺傳變異可能調(diào)節(jié)與肥胖或甘油三酯水平升高相關(guān)的NAFLD風(fēng)險(xiǎn)。rs1260326位點(diǎn)位于GCKR基因上,表現(xiàn)為T(mén)錯(cuò)義突變?yōu)镃。一項(xiàng)針對(duì)白種人、美國(guó)人和冰島人的研究表明rs1260326的變異可能導(dǎo)致GCKR抑制功能缺陷,導(dǎo)致葡萄糖激酶活性升高和肝葡萄糖攝取增多[42];另一項(xiàng)研究中進(jìn)行了rs1260326變體與代謝參數(shù)、血脂異常和糖尿病的關(guān)聯(lián)分析,發(fā)現(xiàn)T等位基因與較低的空腹血糖、空腹胰島素水平和高甘油三酯水平密切相關(guān)[43]。因此,胰島素水平和甘油三酯水平在rs1260326與NAFLD的發(fā)生之間可能起中介作用。GCKR基因多態(tài)性導(dǎo)致肝攝取葡萄糖增多,從而更多的轉(zhuǎn)化為脂質(zhì),加速進(jìn)展為NAFLD。
6 總結(jié)與展望
NAFLD發(fā)病率在全球范圍內(nèi)逐步上升,目前,NAFLD在成人中的患病率高達(dá)20%~30%,在工業(yè)化國(guó)家中患病率更高。因此,對(duì)于NAFLD的發(fā)病機(jī)制與治療的研究十分重要,可以改善相當(dāng)多肝病患者的生活質(zhì)量,符合當(dāng)代社會(huì)的發(fā)展。NAFLD的發(fā)病機(jī)制尚不明確,但越來(lái)越多的研究表明NAFLD具有相當(dāng)大程度的遺傳易感性。因此,尋找基因標(biāo)志物和研究相關(guān)基因于NAFLD發(fā)病機(jī)制中扮演的角色對(duì)NAFLD的預(yù)防和后續(xù)治療至關(guān)重要。多年來(lái),關(guān)于NAFLD全基因組研究目標(biāo)主要集中在PNPLA3和TM6SF2上。近年又發(fā)現(xiàn)了APOC3、MBOAT7和GCKR SNPs與NAFLD相關(guān)聯(lián)。然而,在以基因組為基礎(chǔ)治療NAFLD的具體臨床應(yīng)用之前,仍有幾個(gè)重要的問(wèn)題和技術(shù)挑戰(zhàn)有待解決,具體包括擴(kuò)大研究人群,關(guān)注不同人群間的差異性,深入學(xué)習(xí)掌握相關(guān)基因的作用,研究基因間、基因與環(huán)境間的相互作用及相關(guān)基因作為治療靶點(diǎn)的實(shí)用性和可能性等。解決這些問(wèn)題后不僅可以治療肝病,還有助于解決其它醫(yī)學(xué)難題。
參考文獻(xiàn):
[1]Le MH,Yeo YH,Li X,et al.2019 Global NAFLD Prevalence: A Systematic Review and Meta-analysis[J].Clin Gastroenterol Hepatol,2022,20(12):2809-2817.e28.
[2]Simon TG,Roelstraete B,Khalili H,et al.Mortality in biopsy-confirmed nonalcoholic fatty liver disease: results from a nationwide cohort[J].Gut,2021,70(7):1375-1382.
[3]Eslam M,Valenti L,Romeo S.Genetics and epigenetics of NAFLD and NASH: Clinical impact[J].J Hepatol,2018,68(2):268-279.
[4]Santos-Laso A,Gutiérrez-Larra?觡aga M,Alonso-Pe?觡a M,et al.Pathophysiological Mechanisms in Non-Alcoholic Fatty Liver Disease: From Drivers to Targets[J].Biomedicines,2021,10(1):46.
[5]Ahadi M,Molooghi K,Masoudifar N,et al.A review of non-alcoholic fatty liver disease in non-obese and lean individuals[J].J Gastroenterol Hepatol,2021,36(6):1497-1507.
[6]Yuan F,Gu Z,Bi Y,et al.The association between rs1260326 with the risk of NAFLD and the mediation effect of triglyceride on NAFLD in the elderly Chinese Han population[J].Aging (Albany NY),2022,14(6):2736-2747.
[7]Trépo E,Valenti L.Update on NAFLD genetics: From new variants to the clinic[J].J Hepatol,2020,72(6):1196-1209.
[8]Salari N,Darvishi N,Mansouri K,et al.Association between PNPLA3 rs738409 polymorphism and nonalcoholic fatty liver disease: a systematic review and meta-analysis[J].BMC Endocr Disord,2021,21(1):125.
[9]Pusec CM,De Jesus A,Khan MW,et al.Hepatic HKDC1 Expression Contributes to Liver Metabolism[J].Endocrinology,2019,160(2):313-330.
[10]Negoita F,Blomdahl J,Wasserstrom S,et al.PNPLA3 variant M148 causes resistance to starvation-mediated lipid droplet autophagy in human hepatocytes[J].J Cell Biochem,2019,120(1):343-356.
[11]BasuRay S,Wang Y,Smagris E,et al.Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis[J].Proc Natl Acad Sci U S A,2019,116(19):9521-9526.
[12]陳立震.TM6SF2基因E167K多態(tài)性聯(lián)合PNPLA3基因I148M多態(tài)性在非酒精性脂肪肝發(fā)生中的作用研究[D].青島:中國(guó)海洋大學(xué),2019.
[13]BasuRay S,Smagris E,Cohen JC,et al.The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation[J].Hepatology,2017,66(4):1111-1124.
[14]Mitsche MA,Hobbs HH,Cohen JC.Patatin-like phospholipase domain–containing protein 3 promotes transfer of essential fatty acids from triglycerides to phospholipids in hepatic lipid droplets[J].J Biol Chem,2018,293(18):6958-6968.
[15]Donati B,Motta BM,Pingitore P,et al.The rs2294918 E434K variant modulates patatin-like phospholipase domain-containing 3 expression and liver damage[J].Hepatology,2016,63(3):787-798.
[16]Luukkonen PK,Nick A,H?觟ltt?覿-Vuori M,et al.Human PNPLA3-I148M variant increases hepatic retention of polyunsaturated fatty acids[J].JCI Insight,2019,4(16):e127902.
[17]Kozlitina J,Smagris E,Stender S,et al.Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease[J].Nat Genet,2014,46(4):352-356.
[18]Newberry EP,Hall Z,Xie Y,et al.Liver-Specific Deletion of Mouse Tm6sf2 Promotes Steatosis, Fibrosis, and Hepatocellular Cancer[J].Hepatology,2021,74(3):1203-1219.
[19]Liu YL,Reeves HL,Burt AD,et al.TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease[J].Nat Commun,2014,5:4309.
[20]Luukkonen PK,Zhou Y,Nidhina Haridas PA,et al.Impaired hepatic lipid synthesis from polyunsaturated fatty acids in TM6SF2 E167K variant carriers with NAFLD[J].J Hepatol,2017,67(1):128-136.
[21]Kim DS,Jackson AU,Li YK,et al.Novel association of TM6SF2 rs58542926 genotype with increased serum tyrosine levels and decreased apoB-100 particles in Finns[J].J Lipid Res,2017,58(7):1471-1481.
[22]Darabi M,Kontush A.High-density lipoproteins (HDL): Novel function and therapeutic applications. Biochim Biophys Acta Mol Cell Biol Lipids[J].2022,1867(1):159058.
[23]Ramms B,Gordts PLSM.Apolipoprotein C-III in triglyceride-rich lipoprotein metabolism[J].Curr Opin Lipidol,2018,29(3):171-179.
[24]Chen BF,Chien Y,Tsai PH,et al.A PRISMA-compliant meta-analysis of apolipoprotein C3 polymorphisms and nonalcoholic fatty liver disease[J].J Chin Med Assoc,2021,84(10):923-929.
[25]Jain V,Kumar A,Ahmad N,et al.Genetic polymorphisms associated with obesity and non-alcoholic fatty liver disease in Asian Indian adolescents[J].J Pediatr Endocrinol Metab,2019,32(7):749-758.
[26]Kumar A,Shalimar,Walia GK,et al.Genetics of nonalcoholic fatty liver disease in Asian populations[J].J Genet,2019,98:29.
[27]Xu QY,Li H,Cao HX,et al.APOC3 rs2070667 Associates with Serum Triglyceride Profile and Hepatic Inflammation in Nonalcoholic Fatty Liver Disease[J].Biomed Res Int,2020,2020:8869674.
[28]Morze J,Koch M,Aroner SA,et al.Associations of HDL Subspecies Defined by ApoC3 with Non-Alcoholic Fatty Liver Disease: The Multi-Ethnic Study of Atherosclerosis[J].J Clin Med,2020,9(11):3522.
[29]Thangapandi VR,Knittelfelder O,Brosch M,et al.Loss of hepatic Mboat7 leads to liver fibrosis[J].Gut,2021,70(5):940-950.
[30]Zusi C,Morandi A,Maguolo A,et al.Association between MBOAT7 rs641738 polymorphism and non-alcoholic fatty liver in overweight or obese children[J].Nutr Metab Cardiovasc Dis,2021,31(5):1548-1555.
[31]Helsley RN,Varadharajan V,Brown AL,et al.Obesity-linked suppression of membrane-bound O-acyltransferase 7 (MBOAT7) drives non-alcoholic fatty liver disease[J].Elife,2019,8:e49882.
[32]Mancina RM,Dongiovanni P,Petta S,et al.The MBOAT7-TMC4 Variant rs641738 Increases Risk of Nonalcoholic Fatty Liver Disease in Individuals of European Descent[J].Gastroenterology,2016,150(5):1219-1230.e6.
[33]Caddeo A,Jamialahmadi O,Solinas G,et al.MBOAT7 is anchored to endomembranes by six transmembrane domains[J].J Struct Biol,2019,206(3):349-360.
[34]Tanaka Y,Shimanaka Y,Caddeo A,et al.LPIAT1/MBOAT7 depletion increases triglyceride synthesis fueled by high phosphatidylinositol turnover[J].Gut,2021,70(1):180-193.
[35]Pi?觡eiro R,Maffucci T,F(xiàn)alasca M.The putative cannabinoid receptor GPR55 defines a novel autocrine loop in cancer cell proliferation[J].Oncogene,2011,30(2):142-152.
[36]Zain SM,Mohamed Z,Mohamed R.Common variant in the glucokinase regulatory gene rs780094 and risk of nonalcoholic fatty liver disease: a meta-analysis[J].J Gastroenterol Hepatol,2015,30(1):21-27.
[37]Mohammadi S,F(xiàn)arajnia S,Shadmand M,et al.Association of rs780094 polymorphism of glucokinase regulatory protein with non-alcoholic fatty liver disease[J].BMC Res Notes,2020,13(1):26.
[38]Li J,Zhao Y,Zhang H,et al.Contribution of Rs780094 and Rs1260326 Polymorphisms in GCKR Gene to Non-alcoholic Fatty Liver Disease: A Meta-Analysis Involving 26,552 Participants[J].Endocr Metab Immune Disord Drug Targets,2021,21(9):1696-1708.
[39]Sliz E,Sebert S,Würtz P,et al.NAFLD risk alleles in PNPLA3, TM6SF2, GCKR and LYPLAL1 show divergent metabolic effects[J].Hum Mol Genet,2018,27(12):2214-2223.
[40]Ghodsian N,Abner E,Emdin CA,et al.Electronic health record-based genome-wide meta-analysis provides insights on the genetic architecture of non-alcoholic fatty liver disease[J].Cell Rep Med,2021,2(11):100437.
[41]Samuel VT,Shulman GI.Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases[J].Cell Metab,2018,27(1):22-41.
[42]Gao H,Liu S,Zhao Z,et al.Association of GCKR Gene Polymorphisms with the Risk of Nonalcoholic Fatty Liver Disease and Coronary Artery Disease in a Chinese Northern Han Population[J].J Clin Transl Hepatol,2019,7(4):297-303.
[43]Lin Z,Wang Y,Zhang B,et al.Association of type 2 diabetes susceptible genes GCKR, SLC30A8, and FTO polymorphisms with gestational diabetes mellitus risk: a meta-analysis[J].Endocrine,2018,62(1):34-45.
收稿日期:2022-12-23;修回日期:2023-02-13
編輯/王萌