摘要:糖尿病腎病(DN)是2型糖尿病最常見(jiàn)的并發(fā)癥,也是全球終末期腎病(ESRD)發(fā)生的主要原因之一。目前DN的發(fā)病機(jī)制尚未明確,對(duì)其機(jī)制的深入研究有利于疾病的早期診斷、嚴(yán)重性評(píng)估和針對(duì)性治療。外泌體在細(xì)胞間通訊發(fā)揮重要作用,其含有特定細(xì)胞類型的核酸、蛋白質(zhì)等生物活性分子,使其具有成為高度特異性和敏感性生物標(biāo)志物的潛力。外泌體參與了DN發(fā)生發(fā)展,然而其病理機(jī)制尚未完全闡明,因此本綜述重點(diǎn)關(guān)注外泌體在DN中的病理生理學(xué)機(jī)制,以期為DN的早期診斷和精準(zhǔn)治療提供新方向。
關(guān)鍵詞:外泌體;糖尿病腎??;病理機(jī)制
中圖分類號(hào):R587.2 " " " " " " " " " " " " " " " " 文獻(xiàn)標(biāo)識(shí)碼:A " " " " " " " " " " " " " " " " DOI:10.3969/j.issn.1006-1959.2023.24.042
文章編號(hào):1006-1959(2023)24-0178-05
The Mechanism of Exosomes in Diabetic Nephropathy
SONG Lan-lan1,2,F(xiàn)U Wen-jin2
(1.Graduate School of Guangdong Medical University,Zhanjiang 524000,Guangdong,China;
2.Laboratory of Houjie People's Hospital Affiliated to Guangdong Medical University,Dongguan 523945,Guangdong,China)
Abstract:Diabetic nephropathy (DN) is the most common complication of type 2 diabetes mellitus and one of the leading causes of end-stage renal disease (ESRD) worldwide. At present, the pathogenesis of DN has not been clarified. In-depth study of the mechanism is conducive to early diagnosis, severity assessment and targeted treatment of the disease. Exosomes play an important role in cell-to-cell communication, containing specific cell types of nucleic acids, proteins and other biologically active molecules, making them have the potential to become highly specific and sensitive biomarkers. Exosomes are involved in the occurrence and development of DN, but its pathological mechanism has not been fully elucidated. Therefore, this review focuses on the pathophysiological mechanism of exosomes in DN, in order to provide a new direction for the early diagnosis and precise treatment of DN.
Key words:Exosomes;Diabetes nephropathy;Pathological mechanism
糖尿病腎?。╠iabetic nephropathy,DN)是糖尿病的微血管并發(fā)癥,是2型糖尿病最常見(jiàn)的并發(fā)癥[1],是全球終末期腎?。╡nd stage renal disease,ESRD)發(fā)生的主要原因之一,近年DN的發(fā)病率和死亡率呈逐年遞增趨勢(shì)[2]。在診斷出2型糖尿病的十年后[3],大約40%的糖尿病患者會(huì)出現(xiàn)DN[4],早期診斷和治療是預(yù)防DN發(fā)生發(fā)展的有效手段。長(zhǎng)期以來(lái),蛋白尿一直被認(rèn)為是評(píng)估和監(jiān)測(cè)腎功能的重要指標(biāo)。然而,在蛋白尿發(fā)生之前,約三分之一的患者腎功能下降[5],并且蛋白尿的影響因素較多,僅檢測(cè)蛋白尿來(lái)監(jiān)測(cè)DN的發(fā)病率和評(píng)估疾病的進(jìn)展難以滿足臨床需要。腎臟穿刺活檢是診斷DN的金標(biāo)準(zhǔn),但這對(duì)患者而言是侵入性的檢查,在穿刺過(guò)程中存在出血、感染等風(fēng)險(xiǎn),不適用于常規(guī)篩查。因此,尋找無(wú)創(chuàng)、敏感性高的生物標(biāo)志物用來(lái)診斷DN至關(guān)重要。外泌體(exosomes)是細(xì)胞間通訊的重要分子,參與多種生理和病理過(guò)程,并且許多體液中的檢測(cè)證明了它在各種不利環(huán)境中的穩(wěn)定性。近年來(lái),外泌體被認(rèn)為是潛在的疾病生物標(biāo)志物,幾乎在各種類型的細(xì)胞和體液(包括血漿、尿液、唾液、乳汁、腦脊液和腹水等)中都很容易獲得。越來(lái)越多的研究發(fā)現(xiàn)外泌體的功能,這使其可能成為多種疾病預(yù)防或診斷標(biāo)志物[6]。因此,充分探究外泌體在DN中的發(fā)生機(jī)制,發(fā)現(xiàn)早期診斷標(biāo)志物和針對(duì)性治療靶點(diǎn)具有重要意義。本文擬對(duì)近年來(lái)外泌體參與DN發(fā)病機(jī)制及治療的研究進(jìn)展予以綜述,以期為DN的臨床治療提供參考。
1外泌體概述
1.1外泌體的生物學(xué)特征 "外泌體是源自內(nèi)吞作用的納米級(jí)囊泡,大小范圍約30~150 nm,呈杯形或球形,被脂質(zhì)雙層結(jié)構(gòu)封閉[7]。其產(chǎn)生首先是質(zhì)膜向內(nèi)出芽形成早期內(nèi)體;早期內(nèi)體中的蛋白質(zhì)和其他生物分子被進(jìn)一步包裝形成腔內(nèi)囊泡(intraluminal vesicles,ILV),這些囊泡逐漸聚集形成大的多泡體(multivesicular bodies,MVB);MVB一部分被送至溶酶體與其所有成分一起被降解,一部分與細(xì)胞質(zhì)膜融合后并將其內(nèi)容物釋放到細(xì)胞外環(huán)境中[8,9]。外泌體中含有蛋白質(zhì)、脂質(zhì)和多種類型核酸,包括信使RNA(mRNA)、微小RNA(miRNA)和長(zhǎng)鏈非編碼RNA(lncRNA)等。外泌體參與到轉(zhuǎn)錄、翻譯、修飾等過(guò)程,從而調(diào)節(jié)靶細(xì)胞的基因表達(dá)和功能,在細(xì)胞間的信號(hào)傳遞中發(fā)揮了重要作用[10]。
1.2外泌體提取方法 "如何有效獲得高純度外泌體是目前面臨的難點(diǎn)問(wèn)題。外泌體傳統(tǒng)的分離技術(shù)包括超速離心法、密度梯度離心法、超濾、免疫親和捕獲法、尺寸排阻色譜等[11]。超速離心的原理是基于外泌體和雜質(zhì)之間的密度和大小差異,根據(jù)樣品的密度和大小進(jìn)行差速離心。該技術(shù)是最廣泛使用的分離方法,能夠同時(shí)提取大量樣本且干擾因素少;但存在重現(xiàn)性低、損傷外泌體等不足[12]。密度梯度離心是在超速離心的基礎(chǔ)上改進(jìn)的分離技術(shù),可與超速離心結(jié)合使用;其使用兩種或多種不同密度的分離介質(zhì),以將高度純化的外泌體與其他細(xì)胞外來(lái)源RNA分離,但是存在操作繁瑣、產(chǎn)量低等問(wèn)題[13]。超濾是一種基于分子大小的分離方法,是最簡(jiǎn)單的外泌體分離方法之一。外泌體通過(guò)一種或多種具有不同孔徑或截留分子量(MWCO)的過(guò)濾膜去除雜質(zhì)而獲得。該方法簡(jiǎn)單,適合于大樣本;然而耗時(shí)長(zhǎng)且不適合血液樣本,濾膜表面的外泌體堵塞可能導(dǎo)致回收率低[14]。免疫親和捕獲技術(shù)依賴于抗原抗體之間的特異性反應(yīng)分離,特異性強(qiáng)、分離度高,適用于從特定來(lái)源分離外泌體,但存在分離成本高、對(duì)試劑和儲(chǔ)存條件要求高等缺點(diǎn)[15]。尺寸排阻色譜是一種基于分子大小差異的分離技術(shù)。通過(guò)重力或低速離心來(lái)完成外泌體的分離,較好地保護(hù)了外泌體的生物學(xué)功能,提高了外泌體回收率并去除了大多數(shù)可溶性污染物,但具有相似孔徑大小的其他顆??赡芘c外泌體共同洗脫[16]。因外泌體組成的復(fù)雜性和變化性,到目前為止,尚無(wú)標(biāo)準(zhǔn)化的技術(shù)來(lái)分離和純化外泌體,不同分離方法所得到的外泌體也較難進(jìn)行比較。研發(fā)一種標(biāo)準(zhǔn)化、有效的分離方法迫在眉睫,是外泌體充分應(yīng)用于臨床診斷、治療的先決條件。
2外泌體在DN中的作用機(jī)制
DN的主要病理特征包括功能性(如蛋白尿和腎小球?yàn)V過(guò)率下降)和結(jié)構(gòu)性(細(xì)胞外基質(zhì)的沉積、腎小球基底膜增厚、足細(xì)胞損傷、腎小管間質(zhì)炎癥和纖維化等)改變[17]。外泌體參與了DN的發(fā)生和發(fā)展,與腎臟纖維化、炎癥反應(yīng)、細(xì)胞自噬、氧化應(yīng)激、細(xì)胞凋亡和細(xì)胞增殖等多種因素密切相關(guān),但其確切機(jī)制尚未明了,以下將對(duì)部分因素進(jìn)行介紹。
2.1纖維化 "纖維化是DN病理學(xué)中的重要致病因素。腎纖維化導(dǎo)致細(xì)胞外基質(zhì)的過(guò)度沉積,并導(dǎo)致腎臟實(shí)質(zhì)性損害[18]。將正常葡萄糖(normal glucose,NG)和高葡萄糖(high glucose,HG)處理的腎小球內(nèi)皮細(xì)胞(glomerular endothelial cells,GECs)釋放的外泌體對(duì)比分析,發(fā)現(xiàn)高葡萄糖處理的GECs釋放更多的外泌體[19]。外泌體通過(guò)TGF-β1/Smad3信號(hào)通路促進(jìn)腎小球系膜細(xì)胞(glomerular mesangial cells,GMCs)中α-平滑肌肌動(dòng)蛋白(α-smooth muscle actin,α-SMA)的表達(dá),導(dǎo)致細(xì)胞外基質(zhì)蛋白過(guò)度產(chǎn)生,以促進(jìn)DN腎纖維化。劉蘇等[20]證實(shí)了在db/db小鼠血漿外泌體中miR-296-5p水平明顯下降,靶向腎小管上皮細(xì)胞(tubular epithelial cells,TECs)Snail1并使其上調(diào),促進(jìn)腎小管上皮細(xì)胞間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT),加速DN腎間質(zhì)纖維化。因此,外泌體miR-296-5p可能是DN早期診斷和病情評(píng)估的潛在標(biāo)志物,但有待進(jìn)一步通過(guò)細(xì)胞實(shí)驗(yàn)及藥物干預(yù)實(shí)驗(yàn)的驗(yàn)證。在細(xì)胞培養(yǎng)模型中,miR-188-5p通過(guò)PTEN/PI3K/Akt通路,調(diào)節(jié)人近端腎小管細(xì)胞中高葡糖糖誘導(dǎo)的上皮細(xì)胞EMT。Lee WC等[21]對(duì)DN患者尿液外泌體進(jìn)行分析,發(fā)現(xiàn)尿液外泌體miR-188-5p表達(dá)上調(diào),促進(jìn)EMT介導(dǎo)腎臟纖維化。諸多研究表明,外泌體中一些分子介導(dǎo)了促纖維化信號(hào)通路的激活,在腎纖維化的進(jìn)展過(guò)程中發(fā)揮了重要作用,這些發(fā)現(xiàn)可能為DN的發(fā)病機(jī)制和治療提供新的線索。
2.2炎癥反應(yīng) "炎癥反應(yīng)是腎臟損害的潛在機(jī)制,通過(guò)增加巨噬細(xì)胞的黏附以及促炎細(xì)胞因子和趨化因子的過(guò)度表達(dá)來(lái)促進(jìn)DN的發(fā)生和進(jìn)展[22,23]。Lv LL等[24]研究發(fā)現(xiàn),與T2DM患者相比,DN患者的尿外泌體miR-19b-3p表達(dá)顯著增加,且與白蛋白尿的嚴(yán)重程度呈正相關(guān)。研究證明,TECs分泌的外泌體miR-19b-3p可以通過(guò)巨噬細(xì)胞的囊泡介導(dǎo)內(nèi)化發(fā)揮其調(diào)節(jié)作用,增強(qiáng)了腎小管間質(zhì)炎癥反應(yīng)。因此,外泌體miR-19b-3p可能作為腎臟疾病的潛在生物標(biāo)志物。炎癥反應(yīng)是DN發(fā)生和進(jìn)展的關(guān)鍵因素之一,另有研究發(fā)現(xiàn)[25],牛血清白蛋白(bovine serum albumin,BSA)誘導(dǎo)的腎近端小管上皮細(xì)胞(proximal tubular epithelial cells,PTECs)抑制外泌體分泌可促進(jìn)細(xì)胞中miR-26a-5p的表達(dá),從而抑制CHAC1/NF-κB通路,防止PTECs的炎癥反應(yīng),延緩DN的發(fā)生。外泌體通過(guò)炎癥反應(yīng)介導(dǎo)DN的致病機(jī)制,其為DN的研究提供了新的認(rèn)識(shí),為DN的治療提供了新的靶點(diǎn)。
2.3細(xì)胞自噬 "自噬是一種細(xì)胞穩(wěn)態(tài)的自我平衡機(jī)制,涉及溶酶體介導(dǎo)的細(xì)胞內(nèi)成分降解的重要過(guò)程。因此,自噬在正常細(xì)胞功能和體內(nèi)平衡中發(fā)揮著重要作用[26]。在糖尿病腎病模型中,間充質(zhì)干細(xì)胞(mesenchymal stem cell,MSCs)衍生的外泌體上調(diào),通過(guò)抑制mTOR通路進(jìn)而增強(qiáng)自噬活性,具有腎臟保護(hù)作用以及抗纖維化能力[27]。在高糖誘導(dǎo)的M2巨噬細(xì)胞中,外泌體miR-25-3p的表達(dá)隨著血糖濃度的增加而上調(diào),通過(guò)抑制雙特異性蛋白磷酸酶1(DUSP1)的表達(dá)來(lái)激活足細(xì)胞自噬,進(jìn)而減輕高糖誘導(dǎo)的足細(xì)胞損傷[28]。同樣,相關(guān)研究發(fā)現(xiàn)[29,30],糖尿病小鼠中脂肪干細(xì)胞(adipose-derived stem cells,ADSCs)衍生的外泌體miR-486表達(dá)增強(qiáng),通過(guò)靶向調(diào)節(jié)Smad1并降低其表達(dá),從而導(dǎo)致足細(xì)胞中Smad1/mTOR信號(hào)通路的抑制,促使自噬活性增強(qiáng)并且減少足細(xì)胞凋亡。這些研究為DN的治療提供了一種重要途徑。越來(lái)越多的證據(jù)表明,自噬活性的增強(qiáng)可能會(huì)減輕DM相關(guān)腎臟損傷,這些研究為DN的治療提供了一個(gè)新的方向。
2.4氧化應(yīng)激 "氧化應(yīng)激在高血糖引起的細(xì)胞損傷中起關(guān)鍵作用。近年來(lái),很多學(xué)者關(guān)注到氧化應(yīng)激在DN中的作用。Gao C等[31]最新研究發(fā)現(xiàn),DN患者血清外泌體miR-4449水平隨著疾病的進(jìn)展而增加且和蛋白尿水平顯著相關(guān)。miR-4449的過(guò)表達(dá)可以抑制HIC1,加速了DN進(jìn)展中的氧化應(yīng)激反應(yīng)。Xie Y等[32]研究結(jié)果表明,DN患者尿液外泌體衍生的miR-877-3p水平升高,可能與自主神經(jīng)病變引起的腎臟氧化應(yīng)激和交感神經(jīng)去神經(jīng)支配有關(guān),從而導(dǎo)致腎小管凋亡??傊?,這些研究表明,HG條件下改變外泌體表達(dá)情況,進(jìn)而調(diào)節(jié)下游通路促進(jìn)氧化應(yīng)激,造成腎臟功能損傷,加速DN進(jìn)展;但這些潛在機(jī)制仍需進(jìn)一步的研究和評(píng)估。
2.5細(xì)胞凋亡 "細(xì)胞凋亡是一個(gè)程序性細(xì)胞死亡過(guò)程,其特征是體積減少、細(xì)胞表面起泡、染色質(zhì)凝聚、DNA的核小體間切割和凋亡小體的形成等[33]。Eissaa S等[34]通過(guò)對(duì)比T2DN患者和健康人群尿外泌體,發(fā)現(xiàn)T2DN患者尿外泌體miR-133b、miR-342和miR-30a的表達(dá)水平顯著上調(diào),其中miR-30家族的異常表達(dá)促進(jìn)HG條件下的足細(xì)胞凋亡,可能是DN進(jìn)展過(guò)程中的重要病理機(jī)制。此外,人尿源性干細(xì)胞(hUSCs)來(lái)源的外泌體通過(guò)抑制caspase-3過(guò)表達(dá),減少糖尿病大鼠的尿量和尿微量白蛋白排泄,防止足細(xì)胞和腎小管上皮細(xì)胞凋亡,從而保護(hù)1型糖尿病大鼠免受腎損傷[35]。研究表明[36],骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cell,BMSCs)衍生的外泌體miR-let-7a表達(dá)增加,通過(guò)下調(diào)泛素特異性蛋白酶22來(lái)抑制糖尿病大鼠腎臟細(xì)胞凋亡,提示BMSCs來(lái)源的外泌體在DN中發(fā)揮了保護(hù)作用,但其具體作用機(jī)制仍需進(jìn)一步研究。外泌體通過(guò)參與調(diào)控細(xì)胞凋亡來(lái)介導(dǎo)糖尿病腎臟損傷,這為DN治療研究提供新靶點(diǎn)。
2.6細(xì)胞增殖 "Duan YR等[37]研究認(rèn)為,足細(xì)胞中血管內(nèi)皮生長(zhǎng)因子A(VEGFA)的上調(diào)導(dǎo)致DN患者腎小球選擇性和濾過(guò)的改變、足細(xì)胞丟失和腎功能下降。人尿源性干細(xì)胞(urine-derived stem cells,hUSCs)衍生的外泌體過(guò)表達(dá)miR-16-5p,可起到抑制VEGFA的作用,同時(shí)促進(jìn)足細(xì)胞增殖和抑制凋亡,通過(guò)防止足細(xì)胞損傷來(lái)輕DN造成的損害。然而,Zhu QJ等[38]研究發(fā)現(xiàn),HG條件下巨噬細(xì)胞外泌體釋放增加,外泌體中的TGF-β1 mRNA通過(guò)激活TGF-β1/Smad3通路在巨噬細(xì)胞和系膜細(xì)胞之間發(fā)揮作用,導(dǎo)致系膜細(xì)胞的活化和增殖。進(jìn)一步表明外泌體可能是促進(jìn)系膜增殖和腎纖維化的關(guān)鍵因素,為DN的病理機(jī)制研究提供了新的見(jiàn)解。因此,細(xì)胞增殖在DN中的作用研究目前還存在爭(zhēng)議,仍有待進(jìn)一步的研究,但均強(qiáng)調(diào)了外泌體在糖尿病腎病發(fā)病機(jī)制中的調(diào)節(jié)作用。
3外泌體在DN中的治療前景
目前,DN患者仍以藥物治療為主,主要的治療策略是針對(duì)可改變的危險(xiǎn)因素進(jìn)行嚴(yán)格控制,但這些控制并不總能有效阻止DN的進(jìn)展[39]。因此,迫切需要探索有效的腎臟治療策略,以減緩DN發(fā)展。外泌體參與了DN相關(guān)的病理生理過(guò)程,具有診斷和作為治療靶點(diǎn)、監(jiān)測(cè)治療效果的潛力。Zhang Y等[40]研究發(fā)現(xiàn),人臍帶來(lái)源的間充質(zhì)干細(xì)胞(umbilical cord-derived MSCs,UC-MSCs)衍生的miR-146a-5p,通過(guò)與腫瘤壞死因子受體相關(guān)因子6(tumor necrosis factor receptor-associated factor-6,TRAF6)/信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子(signal transducer and activator of transcription,STAT1)通路結(jié)合并抑制其表達(dá),促進(jìn)M2巨噬細(xì)胞極化來(lái)恢復(fù)DN大鼠腎臟病理?yè)p傷,這可能為DN的有效治療提供新療法。Hao Y等[41]研究證實(shí),脂肪來(lái)源的間充質(zhì)干細(xì)胞(adipose-derived-Mesenchymal stem cell,adMSC)衍生的外泌體通過(guò)攜帶miR-125a來(lái)緩解DN的進(jìn)展。miR-125a可以直接與HDAC1(histone deacetylase 1)結(jié)合并進(jìn)一步下調(diào)ET-1(endothelin-1)的表達(dá),從而減輕HG對(duì)患者腎功能造成的損害,為DN的治療提供了新的認(rèn)識(shí)。上述分析表明,外泌體是DN治療的潛在方式。然而,外泌體治療DN的確切分子機(jī)制尚未完全闡明,在臨床中的應(yīng)用需要進(jìn)行更多的驗(yàn)證。
4總結(jié)
DN是2型糖尿病最常見(jiàn)的微血管并發(fā)癥,也是全球ESRD發(fā)生的主要原因之一,其發(fā)病機(jī)制至今尚未明確。外泌體在DN的發(fā)生發(fā)展、診斷和治療中發(fā)揮了重要作用,為糖尿病腎病的早期診斷和靶向治療提供了新思路。然而,由于外泌體作用機(jī)制復(fù)雜,仍需在基礎(chǔ)和臨床試驗(yàn)中進(jìn)一步驗(yàn)證。隨著研究的深入,外泌體在DN發(fā)生發(fā)展中的機(jī)制將會(huì)充分研究,不僅有助于DN的早期診斷和治療,還將延緩DM患者的ERSD進(jìn)程。
參考文獻(xiàn):
[1]Long AN,Dagogo-Jack S.Comorbidities of diabetes and hypertension: mechanisms and approach to target organ protection[J].J Clin Hypertens (Greenwich),2011,13(4):244-251.
[2]Maggiore U,Budde K,Heemann U,et al.Long-term risks of kidney living donation: review and position paper by the ERA-EDTA DESCARTES working group[J].Nephrol Dial Transplant,2017,32(2):216-223.
[3]van den Born JC,Hammes HP,Greffrath W,et al.Gasotransmitters in Vascular Complications of Diabetes[J].Diabetes,2016,65(2):331-345.
[4]Alicic RZ,Rooney MT,Tuttle KR.Diabetic Kidney Disease: Challenges, Progress, and Possibilities[J].Clin J Am Soc Nephrol,2017,12(12):2032-2045.
[5]Tabaei BP,Al-Kassab AS,Ilag LL,et al.Does microalbuminuria predict diabetic nephropathy?[J].Diabetes Care,2001,24(9):1560-1566.
[6]Zhou R,Chen KK,Zhang J,et al.The decade of exosomal long RNA species: an emerging cancer antagonist[J].Mol Cancer,2018,17(1):75.
[7]Chen J,Li P,Zhang T,et al.Review on Strategies and Technologies for Exosome Isolation and Purification[J].Front Bioeng Biotechnol,2022,9:811971.
[8]Kalra H,Drummen GP,Mathivanan S.Focus on Extracellular Vesicles: Introducing the Next Small Big Thing[J].Int J Mol Sci,2016,17(2):170.
[9]Doyle LM,Wang MZ.Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis[J].Cells,2019,8(7):727.
[10]van Balkom BW,Pisitkun T,Verhaar MC,et al.Exosomes and the kidney: prospects for diagnosis and therapy of renal diseases[J].Kidney Int,2011,80(11):1138-1145.
[11]Ciardiello C,Cavallini L,Spinelli C,et al.Focus on Extracellular Vesicles: New Frontiers of Cell-to-Cell Communication in Cancer[J]. Int J Mol Sci,2016,17(2):175.
[12]Lin S,Yu Z,Chen D,et al.Progress in Microfluidics-Based Exosome Separation and Detection Technologies for Diagnostic Applications[J].Small,2020,16(9):e1903916.
[13]Wu X,Showiheen SAA,Sun AR,et al.Exosomes Extraction and Identification[J].Methods Mol Biol,2019,2054:81-91.
[14]Lobb RJ,Becker M,Wen SW,et al.Optimized exosome isolation protocol for cell culture supernatant and human plasma[J].J Extracell Vesicles,2015,4:27031.
[15]Royo F,Diwan I,Tackett MR,et al.Comparative miRNA Analysis of Urine Extracellular Vesicles Isolated through Five Different Methods[J].Cancers (Basel),2016,8(12):112.
[16]Mol EA,Goumans MJ,Doevendans PA,et al.Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation[J].Nanomedicine,2017,13(6):2061-2065.
[17]Hung PH,Hsu YC,Chen TH,et al.Recent Advances in Diabetic Kidney Diseases: From Kidney Injury to Kidney Fibrosis[J]. Int J Mol Sci,2021,22(21):11857.
[18]Djudjaj S,Boor P.Cellular and molecular mechanisms of kidney fibrosis[J].Mol Aspects Med,2019,65:16-36.
[19]Wu XM,Gao YB,Cui FQ,et al.Exosomes from high glucose-treated glomerular endothelial cells activate mesangial cells to promote renal fibrosis[J].Biol Open,2016,5(4):484-491.
[20]劉蘇,徐巍龍,查敏,等.miR-296-5p在糖尿病腎病db/db小鼠血漿外泌體中的表達(dá)及功能[J].南京醫(yī)科大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,42(1):14-22.
[21]Lee WC,Li LC,Ng HY,et al.Urinary Exosomal MicroRNA Signatures in Nephrotic, Biopsy-Proven Diabetic Nephropathy[J].J Clin Med,2020,9(4):1220.
[22]Nikolic-Paterson DJ,Atkins RC.The role of macrophages in glomerulonephritis[J].Nephrol Dial Transplant,2001,16 Suppl 5:3-7.
[23]Alicic RZ,Johnson EJ,Tuttle KR.Inflammatory Mechanisms as New Biomarkers and Therapeutic Targets for Diabetic Kidney Disease[J].Adv Chronic Kidney Dis,2018,25(2):181-191.
[24]Lv LL,F(xiàn)eng Y,Wu M,et al.Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury[J].Cell Death Differ,2020,27(1):210-226.
[25]Li S,Jia Y,Xue M,et al.Inhibiting Rab27a in renal tubular epithelial cells attenuates the inflammation of diabetic kidney disease through the miR-26a-5p/CHAC1/NF-kB pathway[J].Life Sci,2020,261:118347.
[26]Kimura T,Isaka Y,Yoshimori T.Autophagy and kidney inflammation[J].Autophagy,2017,13(6):997-1003.
[27]Ebrahim N,Ahmed IA,Hussien NI,et al.Mesenchymal Stem Cell-Derived Exosomes Ameliorated Diabetic Nephropathy by Autophagy Induction through the mTOR Signaling Pathway[J].Cells,2018,7(12):226.
[28]Huang H,Liu H,Tang J,et al.M2 macrophage-derived exosomal miR-25-3p improves high glucose-induced podocytes injury through activation autophagy via inhibiting DUSP1 expression[J].IUBMB Life,2020,72(12):2651-2662.
[29]Jin J,Shi Y,Gong J,et al.Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte[J].Stem Cell Res Ther,2019,10(1):95.
[30]蘭凱,張光偉,劉樹(shù)義,等.骨化三醇對(duì)糖尿病腎病大鼠尿液Smad1水平的影響[J].醫(yī)學(xué)信息,2021,34(1):75-77.
[31]Gao C,Wang B,Chen Q,et al.Serum exosomes from diabetic kidney disease patients promote pyroptosis and oxidative stress through the miR-4449/HIC1 pathway[J].Nutr Diabetes,2021,11(1):33.
[32]Xie Y,Jia Y,Cuihua X,et al.Urinary Exosomal MicroRNA Profiling in Incipient Type 2 Diabetic Kidney Disease[J].J Diabetes Res,2017,2017:6978984.
[33]Turkmen K.Inflammation, oxidative stress, apoptosis, and autophagy in diabetes mellitus and diabetic kidney disease: the Four Horsemen of the Apocalypse[J].Int Urol Nephrol,2017,49(5):837-844.
[34]Eissa S,Matboli M,Bekhet MM.Clinical verification of a novel urinary microRNA panal: 133b, -342 and -30 as biomarkers for diabetic nephropathy identified by bioinformatics analysis[J].Biomed Pharmacother,2016,83:92-99.
[35]Jiang ZZ,Liu YM,Niu X,et al.Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats[J].Stem Cell Res Ther,2016,7:24.
[36]Mao R,Shen J,Hu X.BMSCs-derived exosomal microRNA-let-7a plays a protective role in diabetic nephropathy via inhibition of USP22 expression[J].Life Sci,2021,268:118937.
[37]Duan YR,Chen BP,Chen F,et al.Exosomal microRNA-16-5p from human urine-derived stem cells ameliorates diabetic nephropathy through protection of podocyte[J].J Cell Mol Med,2021,25(23):10798-10813.
[38]Zhu QJ,Zhu M,Xu XX,et al.Exosomes from high glucose-treated macrophages activate glomerular mesangial cells via TGF-β1/Smad3 pathway in vivo and in vitro[J].FASEB J,2019,33(8):9279-9290.
[39]Sifuentes-Franco S,Padilla-Tejeda DE,Carrillo-Ibarra S,et al.Oxidative Stress, Apoptosis, and Mitochondrial Function in Diabetic Nephropathy[J].Int J Endocrinol,2018,2018:1875870.
[40]Zhang Y,Le X,Zheng S,et al.MicroRNA-146a-5p-modified human umbilical cord mesenchymal stem cells enhance protection against diabetic nephropathy in rats through facilitating M2 macrophage polarization[J].Stem Cell Res Ther,2022,13(1):171.
[41]Hao Y,Miao J,Liu W,et al.Mesenchymal Stem Cell-Derived Exosomes Carry MicroRNA-125a to Protect Against Diabetic Nephropathy by Targeting Histone Deacetylase 1 and Downregulating Endothelin-1[J].Diabetes Metab Syndr Obes,2021,14:1405-1418.
收稿日期:2022-12-20;修回日期:2023-02-06
編輯/王萌