王杏, 喬莉, 馬歡, 王超, 張會(huì)欣△
苦參堿通過上調(diào)KLF4/Nrf2通路減輕H2O2誘導(dǎo)的人臍靜脈內(nèi)皮細(xì)胞氧化損傷*
王杏1, 喬莉2, 馬歡1, 王超1, 張會(huì)欣2△
(1河北省人民醫(yī)院代謝病重點(diǎn)實(shí)驗(yàn)室,石家莊 050051;2石家莊學(xué)院化工學(xué)院,石家莊 050035)
基于KLF4/Nrf2途徑探討苦參堿對(duì)過氧化氫(hydrogen peroxide, H2O2)誘導(dǎo)的人臍靜脈內(nèi)皮細(xì)胞(human umbilical vein endothelial cells, HUVECs)氧化損傷的作用及機(jī)制。培養(yǎng)HUVECs,采用CCK-8方法篩選苦參堿實(shí)驗(yàn)濃度。將HUVECs分為對(duì)照組、模型組和低、中、高濃度(0.5、1和2 mmol/L)苦參堿組,以H2O2(0.5 mmol/L)誘導(dǎo)建立HUVECs氧化損傷模型,檢測(cè)細(xì)胞活力、細(xì)胞內(nèi)活性氧(reactive oxygen species, ROS)、丙二醛(malondialdehyde, MDA)含量、超氧化物歧化酶(superoxide dismutase, SOD)活性和谷胱甘肽過氧化物酶(glutathione peroxidase, GPX)活性;RT-qPCR和Western blot方法檢測(cè)細(xì)胞中Krüppel樣因子4(Krüppel-like factor 4, KLF4)、核因子E2相關(guān)因子2(nuclear factor E2-related factor 2, Nrf2)、血紅素加氧酶1(heme oxygenase-1, HO-1)、醌氧化還原酶1(quinone oxidoreductase 1, NQO1)及γ-谷氨酰半胱氨酸合成酶(γ-glutamyl cysteine synthetase, γ-GCS)的mRNA和蛋白表達(dá)水平。進(jìn)一步采用siRNA技術(shù)敲減基因表達(dá),與苦參堿共同作用,觀察上述指標(biāo)的變化。與模型組比較,苦參堿組細(xì)胞活力上升(<0.05),ROS水平和MDA含量降低(<0.05),SOD和GPX活性上升(<0.05),KLF4、Nrf2、HO-1、NOQ1及γ-GCS表達(dá)水平升高(<0.05)。抑制KLF4的表達(dá)后,苦參堿逆轉(zhuǎn)H2O2引起的細(xì)胞活力降低、ROS升高及抗氧化應(yīng)激分子表達(dá)的作用均顯著減弱(<0.05)??鄥A能夠通過激活KLF4/Nrf2通路、抑制氧化應(yīng)激來減輕H2O2誘導(dǎo)的HUVECs氧化損傷。
苦參堿;人臍靜脈內(nèi)皮細(xì)胞;氧化應(yīng)激;KLF4/Nrf2信號(hào)通路
心血管疾?。╟ardiovascular diseases, CVD),是一類涉及心臟或血管的疾病,具有高患病率、高致殘率和高死亡率的特點(diǎn)[1]。心血管疾病的產(chǎn)生過程與內(nèi)皮細(xì)胞功能障礙密切相關(guān),維持血管內(nèi)皮功能已成為血管相關(guān)疾病治療方法之一[2]。血管內(nèi)皮細(xì)胞是血管壁的內(nèi)層細(xì)胞,在保持血管功能和結(jié)構(gòu)完整性方面起著關(guān)鍵作用,氧化應(yīng)激可導(dǎo)致脂質(zhì)過氧化,誘發(fā)黏附分子和炎癥因子的表達(dá)及炎癥細(xì)胞浸潤,引起血管內(nèi)皮細(xì)胞功能紊亂和損傷,促進(jìn)病理性血管重塑和動(dòng)脈粥樣硬化形成[3]。因此,開發(fā)具有抗氧化活性的藥物已成為心血管疾病研究的目標(biāo)和有效策略。
苦參堿(matrine, MT)又名母菊堿、苦甘草、苦豆根,是一種天然植物堿,同時(shí)苦參堿作為一種單體,具有化學(xué)結(jié)構(gòu)明確的優(yōu)點(diǎn),具備開發(fā)成新藥的天然優(yōu)勢(shì),在我國已被批準(zhǔn)用于慢性乙型病毒性肝炎的治療。苦參堿可抑制病毒活性、抗氧化、提高免疫力和抑制腫瘤等[4-5],近期研究表明苦參堿對(duì)心血管系統(tǒng)疾病有著廣泛的藥理作用,可減輕冠脈結(jié)扎缺血、缺血再灌注、異丙腎上腺素、高血脂、糖尿病和阿霉素引起的心肌損傷[6],能夠?qū)辜?xì)菌內(nèi)毒素、缺血再灌注和纖維蛋白原降解產(chǎn)物對(duì)血管內(nèi)皮細(xì)胞的損傷[7],提示苦參堿有潛力應(yīng)用于心血管疾病的治療[8]。Krüppel樣因子4(Krüppel-like factor 4, KLF4)屬于KLF家族,研究認(rèn)為KLF4是參與胚胎發(fā)育、細(xì)胞分化和腫瘤發(fā)生的一種轉(zhuǎn)錄因子,大量研究已經(jīng)表明KLF4對(duì)內(nèi)皮細(xì)胞具有保護(hù)作用,與調(diào)節(jié)血管舒張、抑制炎癥和氧化應(yīng)激等有關(guān)[9],KLF4水平降低會(huì)損傷內(nèi)皮細(xì)胞,引發(fā)動(dòng)脈粥樣硬化,導(dǎo)致心血管疾病的發(fā)生,因此KLF4研究為心血管防治提供了新靶標(biāo)[10-11]。核因子E2相關(guān)因子2(nuclear factor E2-related factor 2, Nrf2)信號(hào)通路是機(jī)體內(nèi)一條重要的抗氧化通路。然而苦參堿對(duì)內(nèi)皮細(xì)胞氧化損傷是否有作用,以及KLF4/Nrf2在其中的作用機(jī)制尚不清楚。本研究采用過氧化氫(hydrogen peroxide, H2O2)致人臍靜脈內(nèi)皮細(xì)胞(human umbilical vein endothelial cells, HUVECs)氧化損傷,觀察苦參堿對(duì)H2O2誘導(dǎo)的HUVECs氧化損傷的作用,并進(jìn)一步通過沉默觀察苦參堿對(duì)內(nèi)皮細(xì)胞氧化損傷作用的分子機(jī)制,為心血管疾病的防治提供實(shí)驗(yàn)依據(jù)。
1.1細(xì)胞株HUVECs來源于ATCC。
1.2藥品與試劑苦參堿(質(zhì)量分?jǐn)?shù)>98%,批號(hào)519-02-8)購自上海阿拉丁生化科技股份有限公司; H2O2購自山東利爾康醫(yī)療科技有限公司;CCK-8細(xì)胞檢測(cè)試劑盒(批號(hào)E606335)購自上海生工生物技術(shù)有限公司;活性氧(reactive oxygen species, ROS)測(cè)定試劑盒(批號(hào)E004-1-1)、丙二醛(malondialdehyde, MDA)測(cè)定試劑盒(批號(hào)A003-1-2)、超氧化物歧化酶(superoxide dismutase, SOD)測(cè)定試劑盒(批號(hào)A001-3-2)和谷胱甘肽過氧化物酶(glutathione peroxidase, GPX)測(cè)定試劑盒(批號(hào)A005-1-2)購自南京建成生物工程研究所。兔源KLF4多克隆抗體(批號(hào)ab129473)、兔源Nrf2多克隆抗體(批號(hào)ab92946)、兔源血紅素加氧酶1(heme oxygenase-1, HO-1)多克隆抗體(批號(hào)ab13243)、兔源醌氧化還原酶1(quinone oxidoreductase 1, NQO1)多克隆抗體(批號(hào)ab34173)和兔源γ-谷氨酰半胱氨酸合成酶(γ-glutamyl cysteine synthetase, γ-GCS)多克隆抗體(批號(hào)ab254663)均購自Abcam。小干擾RNA(KLF4-siRNA)及陰性對(duì)照siRNA(negative control siRNA, NC-siRNA)均由上海吉?jiǎng)P基因公司合成,序列見表1。RT-qPCR引物由上海生工生物技術(shù)公司合成,序列見表2。
表1 KLF4小干擾RNA序列
表2 RT-qPCR引物序列
F: forward; R: reverse.
2.1HUVECs培養(yǎng)HUVECs接種于含10%胎牛血清的DMEM培養(yǎng)液中,放置在5% CO2、37 ℃恒溫二氧化碳培養(yǎng)箱,按照細(xì)胞生長密度對(duì)HUVECs換液和傳代,取對(duì)數(shù)生長期的細(xì)胞進(jìn)行后續(xù)實(shí)驗(yàn)。
2.2苦參堿對(duì)HUVECs活力的影響培養(yǎng)HUVECs,根據(jù)參考文獻(xiàn)[7]選擇濃度為0、0.5、1、2、4和8 mmol/L的苦參堿(以DMEM培養(yǎng)液溶解)處理24 h,加入CCK-8試劑,采用多功能酶標(biāo)儀測(cè)定450 nm波長處的吸光度(),每組設(shè)置6個(gè)復(fù)孔,以培養(yǎng)液調(diào)零為陰性對(duì)照組。細(xì)胞相對(duì)活力(%)=(給藥組-陰性對(duì)照組)/(對(duì)照組-陰性對(duì)照組)×100%。
2.3苦參堿對(duì)H2O2誘導(dǎo)的HUVECs損傷的影響
2.3.1實(shí)驗(yàn)分組及給藥培養(yǎng)HUVECs,分為對(duì)照(control)組、模型組(H2O2組)、低濃度苦參堿(L-MT+H2O2)組、中濃度苦參堿(M-MT+H2O2)組和高濃度苦參堿(H-MT+H2O2)組。模型組加入0.5 mmol/L H2O2誘導(dǎo)HUVECs損傷;低、中、高濃度苦參堿組分別加入0.5、1和2 mmol/L苦參堿和0.5 mmol/L H2O2共同培養(yǎng);對(duì)照組常規(guī)培養(yǎng)。培養(yǎng)24 h后收集細(xì)胞。
2.3.2CCK-8法檢測(cè)細(xì)胞活力收集細(xì)胞,加入CCK-8試劑,按試劑盒說明書檢測(cè)細(xì)胞活力。
2.3.3化學(xué)熒光法檢測(cè)細(xì)胞中ROS水平收集細(xì)胞,制成單細(xì)胞懸液,按照說明書的步驟,測(cè)定500 nm處的熒光光度()值,熒光光度值可反映細(xì)胞內(nèi)活性氧的水平,ROS含量(%)=(給藥組/對(duì)照組)×100%。
2.3.4檢測(cè)細(xì)胞中MDA、SOD和GPX水平收集細(xì)胞,加入細(xì)胞裂解液,離心后取上清。按照說明書的步驟,TBA法檢測(cè)細(xì)胞中MDA含量;WST-1法檢測(cè)細(xì)胞中SOD活性;比色法檢測(cè)細(xì)胞中GPX活性。
2.3.5RT-qPCR法檢測(cè)KLF4、Nrf2、HO-1、NOQ1和γ-GCS的mRNA表達(dá)[12]收集細(xì)胞,加入TRIzol試劑,提取總RNA,逆轉(zhuǎn)錄后,采用熒光定量PCR儀連續(xù)檢測(cè)熒光并進(jìn)行擴(kuò)增,擴(kuò)增條件為:94 ℃ 5 min;94 ℃ 30 s,60 ℃ 30 s,72 ℃ 30 s,共40個(gè)循環(huán);最后60 ℃ 5 min。相對(duì)表達(dá)量用2-ΔΔCt法計(jì)算。采用擴(kuò)展儀器自帶軟件樣點(diǎn)擬合法分析結(jié)果,以相對(duì)定量值反映mRNA表達(dá)水平。
2.3.6Western blot法檢測(cè)KLF4、Nrf2、HO-1、NOQ1和γ-GCS的蛋白表達(dá)[12]收集細(xì)胞并加入細(xì)胞裂解液吹打裂解細(xì)胞,冰浴下充分裂解10 min,重復(fù)3次,獲得細(xì)胞總蛋白,檢測(cè)目標(biāo)細(xì)胞的蛋白質(zhì)含量,經(jīng)過聚丙烯酰胺凝膠電泳分離后,進(jìn)行轉(zhuǎn)膜。然后加入封閉液室溫封閉2 h,分別加入Ⅰ抗及內(nèi)參照β-actin抗體溶液,4 ℃孵育過夜。次日經(jīng)3次洗膜后加入相應(yīng)的Ⅱ抗溶液進(jìn)行反應(yīng),洗膜后用化學(xué)發(fā)光法顯色。采用成像分析系統(tǒng)分析蛋白條帶,以目的蛋白和內(nèi)參照蛋白的灰度比值反映目的蛋白表達(dá)水平。
2.4KLF4-siRNA轉(zhuǎn)染驗(yàn)證實(shí)驗(yàn)[12]培養(yǎng)HUVECs細(xì)胞,分為對(duì)照(control)組、NC-siRNA組、KLF4-siRNA1組、KLF4-siRNA2組和KLF4-siRNA3組。NC-siRNA組利用Lipo2000轉(zhuǎn)染NC-siRNA,KLF4-siRNA各組利用Lipo2000轉(zhuǎn)染KLF4-siRNA1、KLF4-siRNA2或KLF4-siRNA3,對(duì)照組常規(guī)培養(yǎng)。培養(yǎng)24 h后收集細(xì)胞,RT-qPCR和Western blot方法檢測(cè)KLF4 mRNA和KLF4蛋白表達(dá)。
2.5苦參堿和KLF4-siRNA聯(lián)合處理對(duì)H2O2誘導(dǎo)的HUVECs損傷的作用培養(yǎng)HUVECs,分為control組、H2O2組、MT+H2O2組、MT+NC-siRNA+H2O2組和MT+KLF4-siRNA+H2O2組。MT+H2O2組加入2 mmol/L苦參堿和0.5 mmol/L H2O2;MT+NC-siRNA+H2O2組為2 mmol/L苦參堿0.5 mmol/L H2O2加入到轉(zhuǎn)染NC-siRNA的細(xì)胞;MT+KLF4-siRNA+H2O2組為2 mmol/L苦參堿0.5 mmol/L H2O2加入到轉(zhuǎn)染KLF4-siRNA2的細(xì)胞;control組常規(guī)培養(yǎng)。培養(yǎng)24 h后收集細(xì)胞,按照2.3.2~2.3.6進(jìn)行各指標(biāo)檢測(cè)。
采用SPSS 22.0統(tǒng)計(jì)軟件分析數(shù)據(jù),計(jì)量數(shù)據(jù)采用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,多組間比較采用單因素方差分析,組間兩兩比較采用LSD-檢驗(yàn),以<0.05為差異具有統(tǒng)計(jì)學(xué)意義。
不同濃度苦參堿作用于HUVECs 24 h,結(jié)果顯示0.5、1和2 mmol/L的苦參堿作用后HUVECs活力高于90%;4和8 mmol/L苦參堿組比對(duì)照組細(xì)胞活力顯著降低(<0.05),因此選擇0.5、1和2 mmol/L的苦參堿作用24 h進(jìn)行后續(xù)實(shí)驗(yàn),見圖1。
Figure 1. Effect of matrine (MT) on the viability of HUVECs. Mean±SD. n=6. *P<0.05 vs control group.
與對(duì)照組比較,模型組HUVECs活力顯著降低(<0.05);與模型組比較,苦參堿各劑量組HUVECs活力顯著升高(<0.05),見圖2。
Figure 2. Effect of matrine (MT) on the viability of HUVECs induced by H2O2. Mean±SD. n=6. *P<0.05 vs control group;#P<0.05 vs H2O2 group.
與對(duì)照組比較,模型組ROS和MDA含量顯著升高(<0.05),SOD和GPX活性顯著降低(<0.05);與模型組比較,苦參堿各劑量組ROS和MDA含量顯著降低(<0.05),SOD和GPX活性顯著升高(<0.05),見圖3。
Figure 3. Effect of matrine (MT) on ROS, MDA, SOD and GPX levels in HUVECs induced by H2O2. Mean±SD. n=6. *P<0.05 vs control group;#P<0.05 vs H2O2 group.
與對(duì)照組比較,模型組KLF4 mRNA和蛋白表達(dá)顯著降低(<0.05),Nrf2、HO-1、NOQ1、γ-GCS mRNA和蛋白表達(dá)顯著下降(<0.05);與模型組比較,苦參堿低、中、高劑量組KLF4 mRNA和蛋白表達(dá)顯著上調(diào)(<0.05),Nrf2、HO-1、NOQ1、γ-GCS mRNA和蛋白表達(dá)顯著上調(diào)(<0.05),見圖4。
Figure 4. Effect of matrine (MT) on KLF4, Nrf2, HO-1, NOQ1 and γ-GCSmRNA and proteinexpression in HUVECs induced by H2O2.A: the mRNA expression was determined by RT-qPCR; B: the protein expression was determined by Western blot. Mean±SD. n=3. *P<0.05 vs control group;#P<0.05 vs H2O2 group.
與NC-siRNA組比較,KLF4-siRNA轉(zhuǎn)染組KLF4 mRNA和KLF4蛋白表達(dá)顯著降低(<0.05),KLF4-siRNA2組降低最為顯著,敲減效率為90%,表明基因沉默成功,因此選擇KLF4-siRNA2進(jìn)行后續(xù)實(shí)驗(yàn),見圖5。
Figure 5. KLF4 expression in HUVECs after transfection with KLF4-siRNA.A: the mRNA expression of KLF4 was determined by RT-qPCR; B: the protein expression of KLF4 was determined by Western blot. Mean±SD. n=3. *P<0.05 vs NC-siRNA group.
與MT+NC-siRNA+H2O2組比較,MT+KLF4-siRNA+H2O2組細(xì)胞活力顯著降低(<0.05),ROS和MDA含量顯著上升(<0.05),SOD和GPX活性顯著降低(<0.05),MT+NC-siRNA+H2O2組與MT+H2O2比較,上述指標(biāo)均無顯著差異(>0.05),見圖6。
Figure 6. Effect of matrine (MT) combined with KLF4-siRNA on the viability and the oxidative stress-related indicators of HUVECs.A: the viability of HUVECs; B to E: the levels of ROS, MDA, SOD and GPX in HUVECs. Mean±SD. n=6. *P<0.05 vs control group;#P<0.05 vs H2O2 group;△P<0.05 vs MT+NC-siRNA+H2O2 group.
與MT+NC-siRNA+H2O2組比較,MT+KLF4-siRNA+H2O2組Nrf2、HO-1、NOQ1和γ-GCS mRNA和蛋白表達(dá)顯著下降(<0.05),MT+NC-siRNA+H2O2組與MT+H2O2比較,上述指標(biāo)均無顯著差異(>0.05),見圖7。
Figure 7. Effect of matrine (MT) combined with KLF4-siRNA on the expression of oxidative stress-related factors in HUVECs. A: the mRNA expression was determined by RT-qPCR; B: the protein expression was determined by Western blot. Mean±SD. n=3. *P<0.05 vs control group;#P<0.05 vs H2O2 group;△P<0.05 vs MT+NC-siRNA+H2O2 group.
本研究通過血管內(nèi)皮細(xì)胞損傷模型證實(shí)了苦參堿可有效抑制血管內(nèi)皮細(xì)胞的氧化應(yīng)激反應(yīng),上調(diào)KLF4的表達(dá),激活Nrf2,并進(jìn)一步啟動(dòng)下游HO-1、NOQ1、γ-GCS等抗氧化應(yīng)激分子的增加,從而減輕血管內(nèi)皮細(xì)胞的氧化應(yīng)激損傷,發(fā)揮內(nèi)皮細(xì)胞保護(hù)的重要作用。我們的研究為苦參堿應(yīng)用于血管損傷性疾病的干預(yù)提供了重要的數(shù)據(jù)積累。
苦參堿是從中藥苦參中分離的一種喹嗪類生物堿,具有傳統(tǒng)中草藥和單體化合物的雙重優(yōu)勢(shì)??鄥A及其衍生物具有抗氧化、抗炎、免疫調(diào)節(jié)、抗腫瘤、血管保護(hù)等廣泛的生物活性,且安全性良好[13-14]。苦參堿在預(yù)防和改善動(dòng)脈粥樣硬化、高血壓、缺血再灌注損傷、心律失常和糖尿病心血管并發(fā)癥等心血管疾病方面具有獨(dú)特的優(yōu)勢(shì)[15],如Guo等[16]報(bào)道了苦參堿通過激活JAK2/STAT3通路調(diào)節(jié)Hsp70表達(dá)保護(hù)心肌細(xì)胞免受缺血/再灌注損傷,Hu等[17]報(bào)道了苦參堿通過維持AMPKα/UCP2通路減輕阿霉素誘導(dǎo)的心肌細(xì)胞氧化應(yīng)激損傷。上述研究結(jié)論與本研究結(jié)果基本一致,證實(shí)了苦參堿對(duì)心血管的保護(hù)作用。所不同的是,我們的研究結(jié)果側(cè)重于闡明苦參堿對(duì)血管內(nèi)皮細(xì)胞損傷的作用及機(jī)制。
活性氧物質(zhì)ROS具有細(xì)胞信號(hào)傳導(dǎo)和維持體內(nèi)平衡的作用,ROS可誘導(dǎo)細(xì)胞發(fā)生氧化應(yīng)激損傷,使細(xì)胞功能被破壞,引起內(nèi)皮功能障礙[18]。H2O2因子刺激內(nèi)皮細(xì)胞可產(chǎn)生大量的ROS,進(jìn)一步使內(nèi)皮細(xì)胞中氧化與抗氧化之間的平衡被打破,從而導(dǎo)致了內(nèi)皮細(xì)胞氧化應(yīng)激損傷[19-20]。KLF4是血管內(nèi)穩(wěn)態(tài)的重要調(diào)節(jié)因子,可以通過調(diào)節(jié)血管舒張、抑制炎癥、凝血和氧化應(yīng)激等途徑發(fā)揮內(nèi)皮細(xì)胞的保護(hù)作用,越來越多的研究表明KLF4在心血管疾病中發(fā)揮重要作用[21-22]。然而KLF4在內(nèi)皮細(xì)胞氧化應(yīng)激中的作用尚不清楚。本研究以H2O2成功誘導(dǎo)了HUVECs氧化應(yīng)激損傷,并進(jìn)一步證實(shí)了H2O2可抑制人臍靜脈內(nèi)皮細(xì)胞KLF4表達(dá),同時(shí)引起了細(xì)胞氧化應(yīng)激損傷,表現(xiàn)為ROS和MDA含量升高,SOD和GPX活性下降。這提示H2O2誘導(dǎo)人臍靜脈內(nèi)皮細(xì)胞損傷可能與KLF4表達(dá)抑制有關(guān)。
本研究還發(fā)現(xiàn),H2O2誘導(dǎo)了HUVECs中ROS的產(chǎn)生,后者驅(qū)動(dòng)“ROS信號(hào)傳導(dǎo)”的氧化還原反應(yīng),導(dǎo)致氧化應(yīng)激。Nrf2是調(diào)節(jié)氧化應(yīng)激反應(yīng)的關(guān)鍵因子,可調(diào)控其下游抗氧化因子HO-1、NOQ1和γ-GCS的表達(dá),在機(jī)體中發(fā)揮維持氧化還原穩(wěn)態(tài)的作用[23]。有研究表明,苦參堿能夠通過激活p38 MAPK/Nrf2/ARE的活性,抑制氧化應(yīng)激反應(yīng),對(duì)抗晚期糖基化終產(chǎn)物誘導(dǎo)的ROS介導(dǎo)的內(nèi)皮細(xì)胞凋亡[24]。本研究結(jié)果認(rèn)為苦參堿能夠降低氧自由基生成,提高細(xì)胞內(nèi)部抗氧化功能,減輕大量氧物質(zhì)引起的損傷,升高Nrf2及其下游抗氧化因子HO-1、NOQ1和γ-GCS的表達(dá),能夠抑制HUVECs細(xì)胞氧化應(yīng)激損傷,保護(hù)人臍靜脈內(nèi)皮細(xì)胞。
H2O2誘導(dǎo)HUVEC細(xì)胞損傷后,KLF4表達(dá)下降,而苦參堿能夠促進(jìn)KLF4 mRNA和蛋白表達(dá),因此推測(cè)轉(zhuǎn)錄因子KLF4與苦參堿抑制H2O2誘導(dǎo)的氧化應(yīng)激損傷相關(guān)。已有研究表明KLF4能夠直接結(jié)合到基因的啟動(dòng)子區(qū)域,并增強(qiáng)Nrf2的轉(zhuǎn)錄活性,促進(jìn)Nrf2的表達(dá),從而影響氧化應(yīng)激反應(yīng)[25]。我們進(jìn)一步采用siRNA技術(shù)沉默基因表達(dá),結(jié)果顯示沉默逆轉(zhuǎn)了苦參堿對(duì)HUVECs活力的升高和對(duì)ROS生成的抑制,并逆轉(zhuǎn)了苦參堿上調(diào)的Nrf2、HO-1、NOQ1和γ-GCS表達(dá)水平,表明基因沉默能夠逆轉(zhuǎn)苦參堿對(duì)H2O2誘導(dǎo)的HUVECs的一系列作用,進(jìn)一步表明苦參堿能夠通過上調(diào)KLF4信號(hào),降低H2O2誘導(dǎo)的內(nèi)皮細(xì)胞氧化應(yīng)激損傷。
綜上所述,本研究證實(shí)了苦參堿可以有效抑制血管內(nèi)皮細(xì)胞的氧化應(yīng)激反應(yīng),保護(hù)內(nèi)皮細(xì)胞功能。其作用機(jī)制為上調(diào)KLF4表達(dá),激活Nrf2,并進(jìn)一步啟動(dòng)下游HO-1、NOQ1、γ-GCS等抗氧化應(yīng)激分子的表達(dá),從而減輕內(nèi)皮細(xì)胞的氧化應(yīng)激損傷,發(fā)揮內(nèi)皮細(xì)胞保護(hù)的重要作用。
[1] Zhao D, Liu J, Wang M, et al. Epidemiology of?cardiovascular disease in China: current features and implications[J]. Nat Rev Cardiol, 2019, 16(4):203-212.
[2] Park K, Li Q, Lynes MD, et al. Endothelial?cells?induced progenitors into brown fat to reduce?atherosclerosis[J]. Circ Res, 2022, 131(2):168-183.
[3] Forman HJ, Zhang H. Targeting?oxidative?stress?in disease: promise and limitations of antioxidant therapy[J]. Nat Rev Drug Discov, 2021, 20(9):689-709.
[4] Zhang X, Hu C, Zhang N, et al. Matrine?attenuates pathological cardiac fibrosis via RPS5/p38 in mice[J]. Acta Pharmacol Sin, 2021, 42(4):573-584.
[5]胡亞娥,楊萍,茅家慧. 氧化苦參堿通過下調(diào)Toll樣受體4抑制非小細(xì)胞肺癌細(xì)胞遷移和侵襲[J]. 中國病理生理雜志, 2021,37(8):1438-1446.
Hu YE, Yang P, Mao JH. Oxymatrine inhibits cell migration and invasion in non-small-cell lung cancer by down-regulating Toll-like receptor 4[J]. Chin J Pathophysiol, 2021, 37(8):1438-1446.
[6]張明發(fā),沈雅琴. 苦參堿的心臟保護(hù)作用及其機(jī)制的研究進(jìn)展[J]. 現(xiàn)代藥物與臨床, 2021, 36(2):414-420.
Zhang MF, Shen YQ. Research progress on cardioprotective effect and its mechanism of matrine[J]. Mod Drugs Clin, 2021, 36(2):414-420.
[7]張明發(fā),沈雅琴.苦參堿對(duì)血管的藥理作用研究進(jìn)展[J].抗感染藥學(xué), 2021, 18(5):619-623, 627.
Zhang MF, Shen YQ. Research progress on pharmacologic effects of matrine on blood vessels[J]. Anti Infect Pharm, 2021, 18(5):619-623, 627.
[8] Xu J, Lv M, Xu H. The advances in bioactivities, mechanisms of action and structural optimizations of?matrine?and its derivatives[J]. Mini Rev Med Chem, 2022, 22(13):1716-1734.
[9] Yap C, Mieremet A, de Vries CJM, et al. Six shades of vascular smooth muscle cells illuminated by KLF4 (Krüppel-like factor 4)[J]. Arterioscler Thromb Vasc Biol, 2021, 41(11):2693-2707.
[10] 楊清媛,黃拓,吳健,等. KLF4對(duì)內(nèi)皮細(xì)胞功能影響及其機(jī)制研究的進(jìn)展[J]. 心血管康復(fù)醫(yī)學(xué)雜志, 2021, 30(1):64-67.
Yang QY, Hang T, Wu J, et al. Research progression on influence of KLF4 to endothelial cell function and its mechanisms[J]. Chin J Cardiovasc Rehabil Med, 2021, 30(1):64-67.
[11] Zhang X, Wang L, Han Z, et al. KLF4 alleviates cerebral vascular injury by ameliorating vascular endothelial inflammation and regulating tight junction protein expression following ischemic stroke[J]. J Neuroinflammation, 2020, 17(1):107-123.
[12] Wang C, Han M, Zhao XM, et al. Krüppel-like factor 4 is required for the expression of vascular smooth muscle cell differentiation marker genes induced by all-trans retinoic acid[J]. J Biochem, 2008, 144(3):313-321.
[13] Wang WJ, Ma YM, He MT, et al. Oxymatrine?alleviates hyperglycemic cerebral ischemia/reperfusion injury via protecting microvessel[J]. Neurochem Res, 2022, 47(5):1369-1382.
[14] Zhang X, Yao W, Zhao W, et al. The construction of neurogenesis-related ceRNA network of ischemic stroke treated by oxymatrine[J]. Neuroreport, 2022, 33(15):641-648.
[15] Sun XY, Jia LY, Rong Z, et al. Research advances on matrine[J]. Front Chem, 2022, 10:867318.
[16] Guo S, Gao C, Xiao W, et al. Matrine protects cardiomyocytes from ischemia/reperfusion injury by regulating HSP70 expression via activation of the JAK2/STAT3 pathway[J]. Shock, 2018, 50(6):664-670.
[17] Hu C, Zhang X, Wei W, et al. Matrine attenuates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via maintaining AMPKα/UCP2 pathway[J]. Acta Pharm Sin B, 2019, 9(4):690-701.
[18] Yang S, Lian G. ROS?and diseases: role in metabolism and energy supply[J]. Mol Cell Biochem, 2020, 467(1/2):1-12.
[19] Oh Y, Ahn CB, Je JY. Cytoprotective role of edible seahorse ()-derived peptides in H2O2-induced oxidative stress in human umbilical vein endothelial cells[J]. Mar Drugs, 2021, 19(2):86-99.
[20] Xu PW, Yuan XF, Zhao B. Bioactive polyphenols separated from hemp seed shells ameliorate H2O2-induced oxidative stress injury in human umbilical vein endothelial cells[J]. J Food Sci, 2023, 88(1):537-551.
[21] Yang C, Xiao X, Huang L, et al. Role of Kruppel-like factor 4 in atherosclerosis[J]. Clin Chim Acta, 2021, 512(1):135-141.
[22] Kotlyarov S, Kotlyarova A. Participation of krüppel-like factors in atherogenesis[J]. Metabolites, 2023, 13(3):448-470.
[23] Lu Q, Zhang Y, Zhao C, et al. Copper induces oxidative stress and apoptosis of hippocampal neuron via pCREB/BDNF/ and Nrf2/HO-1/NQO1 pathway[J]. J Appl Toxicol, 2022, 42(4):694-705.
[24] Sun Y, Xu L, Cai Q, et al. Research progress on the pharmacological effects of matrine[J]. Front Neurosci, 2022, 16:977374.
[25] Hishikawa A, Hayashi K, Itoh H. Transcription factors as therapeutic targets in chronic kidney disease[J]. Molecules, 2018, 23(5):1123-1136.
Matrine alleviates H2O2-induced oxidative damage in human umbilical vein endothelial cells by up-regulating KLF4/NRF2 pathway
WANG Xing1, QIAO Li2, MA Huan1, WANG Chao1, ZHANG Huixin2△
(1,,050051,;2,,050035,)
To investigate the mechanism and the protective effect of matrine against hydrogen peroxide (H2O2)-induced oxidative injury in human umbilical vein endothelial cells (HUVECs) based on the KLF4/Nrf2 pathway.The HUVECs were cultured and screened to determine the experimental concentration of matrine using CCK-8 method. The HUVECs were divided into control group, model group, and low-, medium- and high-concentration (0.5, 1 and 2 mmol/L) matrine groups. An oxidative injury model of HUVECs was induced by H2O2(0.5 mmol/L), and cell viabilty and intracellular reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GPX) levels were detected. The mRNA and protein levels of Krüppel-like factor 4 (KLF4), nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), quinone oxidoreductase 1 (NQO1) and γ-glutamyl cysteine synthetase (γ-GCS) were detected using RT-qPCR and Western blot. Changes in these indicators were observed after siRNA-mediated knockdown ofgene expression and cotreatment with matrine.Compared with model group, the cell viability was increased (<0.05), ROS and MDA levels were decreased (<0.05), SOD and GPX activity was increased (<0.05), and the expression levels of KLF4, NRF2, HO-1, NOQ1 and γ-GCS were increased in matrine groups (<0.05). Inhibiting KLF4 expression significantly weakened the protective effect of matrine against H2O2-induced decrease in cell viability, increase in ROS, and expression of oxidative stress-related molecules (<0.05).Matrine can alleviate H2O2-induced oxidative injury in HUVECs by activating KLF4/Nrf2 pathway and inhibiting oxidative stress.
matrine; human umbilical vein endothelial cells; oxidative stress; KLF4/Nrf2 pathway
R363; R543
A
10.3969/j.issn.1000-4718.2023.09.005
1000-4718(2023)09-1570-08
2023-05-22
2023-08-12
國家自然科學(xué)基金面上項(xiàng)目(No. 81370900);河北省中醫(yī)藥科研計(jì)劃項(xiàng)目(No. 2023005);石家莊學(xué)院博士科研啟動(dòng)基金(No. 22BS002)
Tel: 0311-66617323; E-mail: hxzhang76@163.com
(責(zé)任編輯:李淑媛,余小慧)