趙亞昆, 邵棟, 鄭瑜佳, 張珂煜, 田燕歌, 李建生△
肺結節(jié)動物模型的研究進展*
趙亞昆1,2, 邵棟1, 鄭瑜佳1, 張珂煜1, 田燕歌1,3, 李建生1,2△
(1河南中醫(yī)藥大學呼吸疾病中醫(yī)藥防治省部共建協(xié)同創(chuàng)新中心,河南省中醫(yī)藥防治呼吸病重點實驗室,河南 鄭州 450046;2河南中醫(yī)藥大學第一附屬醫(yī)院,河南 鄭州 450046;3河南中醫(yī)藥大學中醫(yī)藥科學院,河南 鄭州 450046)
肺結節(jié);動物模型;肉芽腫性結節(jié);非典型腺瘤樣增生;腺癌
近年來,隨著多層計算機斷層掃描的普遍應用和肺癌篩查的廣泛實施,肺結節(jié)在全球的檢出率顯著提高[1-2]。臨床上對于進展緩慢或長期不變化的結節(jié)多以隨訪觀察為主,缺乏有效預防和治療藥物[3]。穩(wěn)定且可重復的、接近臨床病理特征的肺結節(jié)動物模型不僅是肺結節(jié)發(fā)病機制研究的關鍵工具,而且在治療肺結節(jié)、預防肺癌的藥物研發(fā)中有著無可替代的地位。臨床上常見的肺結節(jié)類型包括肉芽腫性結節(jié)、腺瘤、非典型腺瘤樣增生(atypical adenomatous hyperplasia, AAH)、早期腺癌等,肺結節(jié)動物模型也以此類型多見[4]。因此,本文總結了以上常見肺結節(jié)動物模型,對其制備方法、模型特點進行綜述,為肺結節(jié)發(fā)病機制和尋找有效治療藥物與方法提供參考。
肉芽腫性結節(jié)可累及任何器官,但超過90%的結節(jié)病患者肺部明顯受累。肉芽腫性肺結節(jié)由巨噬細胞及其演變的多核巨細胞、上皮樣細胞聚集而成,呈非干酪樣肉芽腫,可見成纖維細胞的膠原帶,伴有不同程度的Th1淋巴細胞炎癥或纖維化[5]。研究表明,大多肉芽腫模型通過給予結核分枝桿菌(mycobacterium tuberculosis, MTB)及相關因子、痤瘡丙酸桿菌(propionibacterium acnes, P.acnes)及相關制劑,碳納米管(multi-walled carbon nanotubes, MWCNTs)等方法建立。見表1。
表1 肉芽腫性結節(jié)主要動物模型的分類和比較
mKatG:catalase-peroxidase; SodA: superoxide dismutase A peptide;.:; MWCNTs: multiwalled carbon nanotubes.
1.1結核分枝桿菌及其相關因子誘導的肺結節(jié)動物模型有研究檢測臨床結節(jié)病標本,大量結節(jié)病患者肺部存在MTB DNA和其他分枝桿菌DNA,認為MTB感染很可能是結節(jié)病的病因之一[6]。在不少探究肉芽腫性肺結節(jié)發(fā)病機制的研究中,使用了結核分枝桿菌及其相關因子誘導實驗動物產生肺結節(jié)模型。向雌性Lewis大鼠或C57BL/6小鼠腹腔注射重組結核分枝桿菌過氧化氫酶-過氧化物酶(M.tuberculosis catalase-peroxidase, mKatG)后將瓊脂糖珠與mKatG偶聯(lián)并通過氣管滴注給藥,產生上皮樣非干酪性肉芽腫伴活化的CD4+T細胞和巨噬細胞、高度極化的輔助T細胞1(Th1)型,T-helpere 1,細胞因子表達,以及局部產生免疫調節(jié)細胞因子的免疫病理學特征,成功誘導肉芽腫。然而瓊脂糖珠與mKatG偶聯(lián)形成的結合珠誘導肉芽腫缺乏直接的臨床相關性,可能會限制該模型更廣泛的應用[7]。除了mKatG外,與結節(jié)病肉芽腫相關的分枝桿菌超氧化物歧化酶A(superoxide dismutase A peptide, SodA)也用于建立肉芽腫性結節(jié)病的動物模型,活化的巨噬細胞產生趨化因子,進一步募集促進肉芽腫的免疫細胞以支持結節(jié)病肉芽腫的形成,該肉芽腫性肺結節(jié)以Th1肺泡炎,伴有CD4+T細胞增多為特征,在組織學和免疫學上與人類結節(jié)病相似[8]。
1.2痤瘡丙酸桿菌及其相關制劑誘導的肺結節(jié)動物模型根據對肺結節(jié)患者的免疫學檢查,也是一種肉芽腫結節(jié)的致病微生物[9]。Nishiwaki等[10]將熱滅活的與完全弗氏佐劑皮下注射到小鼠足墊中進行反復免疫,從小鼠腹股溝淋巴結中獲得致敏的CD4+T細胞,并將其注射到正常小鼠的尾靜脈,通過Th1型細胞因子干擾素-γ(Interferon-γ, IFN-γ)表達淋巴細胞和CD4+T細胞數(shù)量的增加在肝臟和肺部發(fā)生上皮樣和單核細胞聚集,進而產生肉芽腫,該免疫模型與結節(jié)病患者的組織病理學特征具有相當大的相似性,但該模型無肺部病變特異性。Kishi等[11]向C57BL/6小鼠靜脈注射熱滅活的后,小鼠Th1趨化因子CXC配體9(C-X-C motif chemokine ligand 9, CXCL9)和CXCL10 mRNA表達受到的刺激而升高,進而產生與臨床結節(jié)病的組織學和生化檢查結果相似的肉芽腫,該肉芽腫性結節(jié)模型在建立兩周后開始緩解。Werner等[12]將從結節(jié)病患者氣管內分離出的滴注進小鼠氣管,經局部Th1細胞因子IFN-γ和CD4+T細胞數(shù)量升高,產生由上皮樣細胞和淋巴細胞聚集的致密肉芽腫組織。然而,該模型所產生的肺泡內肉芽腫與過敏性肺炎有較大相似性[13],且模型在28 d出現(xiàn)自限性[14],故經支氣管給予痤瘡丙酸桿菌的模型仍然存在爭議。
1.3碳納米管誘導的肺結節(jié)動物模型MWCNTs呼吸暴露可引起實驗動物肺部炎癥和纖維化,出現(xiàn)局部肉芽腫和間質瘤的風險大大提高。Huizar等[15]建立了一種MWCNTs誘導慢性肉芽腫性炎癥的小鼠模型,MWCNTs損傷導致炎性細胞因子釋放,隨后巨噬細胞和T細胞募集、附著并轉化。肉芽腫內的骨橋蛋白被基質金屬蛋白酶(metalloproteinases, MMP)結合并實現(xiàn)巨噬細胞裂解,骨橋蛋白和MMP的持續(xù)表達,隨后巨噬細胞轉化為上皮樣和多核巨細胞,形成肉芽腫。該模型肉芽腫持續(xù)長達90 d,填補了慢性肉芽腫模型的空白。Mohan等[16]使用該模型時,認為MWCNTs誘導由肺泡巨噬細胞介導的適應性免疫失調,導致肉芽腫形成。模型顯示病變主要是巨噬細胞浸潤,其中許多免疫細胞呈梭形,與人類結節(jié)病中成熟肉芽腫的特征相似,模型小鼠縱隔淋巴結有明顯的淋巴結病變,通過轉錄組學對小鼠和人類肺泡免疫細胞進行的通路富集分析,MWCNTs小鼠模型和人類慢性肉芽腫性肺結節(jié)病之間的多個機制相似,但口咽給藥和相對高劑量的MWCNTs與人類現(xiàn)實生活中的環(huán)境暴露明顯不同,可能限制該模型的應用[17]。
1.4-/-小鼠肺結節(jié)動物模型編碼載脂蛋白E,是一種與脂質顆粒相關的蛋白質。內源性表達的缺乏導致巨噬細胞中膽固醇負荷的不平衡,刺激細胞因子和蛋白酶的分泌,并引發(fā)隨后的炎癥和細胞外基質降解[18]。ApoE小鼠在含膽酸高脂肪飲食中表現(xiàn)出類似于人類結節(jié)病的肉芽腫性肺炎癥[19]。Samokhin等[20]使用含膽酸高脂肪飲食飼養(yǎng)缺陷小鼠建立肉芽腫性肺結節(jié)模型小鼠,肉芽腫由上皮樣細胞、巨噬細胞和T細胞組成,一些肉芽腫含有成纖維細胞和多核巨細胞,其形成與再吸收可能與組織蛋白酶K存在聯(lián)系。然而,該模型一般用于動脈粥樣硬化等心血管疾?。?1]。
肺癌是目前世界上發(fā)病率和死亡率最高的惡性腫瘤,早期肺癌往往表現(xiàn)為肺部結節(jié)。肺癌中最常見的組織類型是非小細胞肺癌(non-small cell lung cancer, NSCLC),而肺腺癌是最常見的NSCLC類型。大多數(shù)肺腺癌是沿著AAH發(fā)展成原位腺癌,再演變到微浸潤腺癌,接著逐步發(fā)展成具有貼壁樣生長模式的浸潤性腺癌[22]。所以肺腺癌動物模型通常伴隨著AAH、肺腺瘤、增生等病變,大多由化合物或基因突變誘導產生,見表2。
表2 肺腺瘤、AAH、肺腺癌肺結節(jié)動物模型總結
B(a)p: benzo(a)pyrene; NNK: 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone; LPS: lipopolysaccharides; As: Arsenic; CS: cigarette smoke; BHT: butylated hydroxytoluene; DEN: diethylnitrosamine; MNNG:-methyl-'-nitro--nitrosoguanidine; AAH: atypical adenomatous hyperplasia.
2.1化合物誘導肺結節(jié)動物模型空氣污染是亞洲地區(qū)主要發(fā)病原因,室內污染包括烹飪煙霧、石棉、砷、氡和多環(huán)芳烴等,都是公認的致癌物[23]。因此,肺結節(jié)模型的誘導物主要以致癌物,如苯并芘[benzo(a)pyrene, B(a)p]、4-(甲基亞硝胺)-1-(3-吡啶基)-1-丁醇[4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone, NNK]、氨基甲酸乙酯等為主。
2.1.1B(a)p誘導肺結節(jié)動物模型B(a)p是一種由5個苯環(huán)構成的多環(huán)芳烴,從煤煙、焦油、瀝青、香煙煙霧中都可以查出,有強烈的致癌作用,可以誘發(fā)肺癌[24],其在大氣中的含量已經列入環(huán)境監(jiān)測的常規(guī)項目。
在一項研究膳食藥物對B(a)p誘導肺癌的抗癌作用研究中[25],通過B(a)p的脂質過氧化反應和炎癥反應等抑制肺泡基底上皮細胞的抗癌能力,凋亡細胞特征性減少,產生肺結節(jié)。組織病理學顯示癌變病灶在肺泡上皮細胞廣泛增殖中存在大量的深染核。該模型被多次使用,但肺部結節(jié)具體病變類型尚不明確。Yan等[26]單次腹腔注射B(a)p,通過磷脂酰肌醇3-激酶(phosphoinositide 3-kinase, PI3K)/蛋白激酶B(protein Kinase B, Akt)信號傳導促進DNA損傷,2肺外觀可見明顯肺結節(jié),但未對形成的結節(jié)進行病理診斷且模型不穩(wěn)定。
2.1.2NNK誘導肺結節(jié)動物模型NNK,4-(N-甲基亞硝胺基)-1-(3-吡啶基)-1-丁酮,是卷煙致癌的主要標志物。在嚙齒動物中,NNK誘發(fā)肺腺癌的劑量和一個吸煙者一生吸入NNK總量相當,通過促進有絲分裂相關mRNA表達的增殖性病變,影響細胞周期與細胞分裂[27]。在使用NNK誘導肺腺癌模型時,動物選擇多為來自Jackson實驗室的A/J小鼠。
Rao等[28]的研究表明NNK推動腺瘤向腺癌的進展,可能與下調的活化,促進腫瘤細胞的轉化有關。有研究表明,在腹腔注射NNK誘導A/J小鼠產生肺腺癌的動物模型中,雌鼠對NNK更敏感,與雌激素的推動作用存在聯(lián)系[29]。對NNK誘導出現(xiàn)肺癌動物進行基因分析,均發(fā)生了基因突變[30]。
2.1.3氨基甲酸乙酯誘導肺結節(jié)動物模型氨基甲酸乙酯是實驗化學致癌反應中廣泛使用的致癌物。通過注射給藥,在短時間內可產生腫瘤[31-32]。然而,杜振華等[33]使用氨基甲酸乙酯誘導ICR雌性小鼠,通過抑制M1型巨噬細胞和M2型巨噬細胞的轉變阻抑其高吞噬活性,阻止肺泡巨噬細胞對肺部損傷的修復,進而打破局部免疫穩(wěn)態(tài),產生局部病變。在造模后未觀察到明顯結節(jié),但肺組織炎癥浸潤和損傷面積增加,組織病理學觀察有癌變的發(fā)生。因此,在氨基甲酸乙酯誘導小鼠產生結節(jié)的實驗中,實驗動物不具一致性,肺結節(jié)發(fā)生率不穩(wěn)定。
2.1.4多種化合物聯(lián)合誘導肺結節(jié)動物模型Hudlikar等[34]使用B(a)p聯(lián)合NNK多次對雄性A/J小鼠進行腹腔注射,通過絲裂原活化蛋白激酶p38和Akt的磷酸化抑制細胞凋亡并促進細胞增殖誘導肺腺癌發(fā)生。在一項探究炎癥驅動的肺癌小鼠發(fā)病機制的研究中[35],使用B(a)p聯(lián)合脂多糖(lipopolysaccharides, LPS)通過激活核因子κB(nuclear factor-κB, NF-κB)和NOD樣受體蛋白3(NLRP3)信號通路誘導肺部炎癥反應成功誘導肺結節(jié)小鼠動物模型,其病理類型為肺腺瘤、鱗狀細胞癌、肺腺癌,且LPS可以增強B(a)p誘導的肺腫瘤發(fā)生。
砷和B(a)p都是公認的人類致癌物,會導致肺癌和其他類型的腫瘤。由于飲用水以及油煙污染,砷和B(a)p共同接觸可能在人類中很常見。王志山等[36]使用砷和B(a)p共同誘導肺部腫瘤。砷和B(a)p共同作用下調腫瘤抑制性細胞因子信號(SOCS3)的表達,從而增強Akt和細胞外調節(jié)蛋白激酶1/2(Erk1/2)的活化以促進腫瘤發(fā)生和腫瘤細胞轉化。該模型更還原重工業(yè)環(huán)境污染嚴重地區(qū)患者的發(fā)病過程,但是對其他臟器影響不可忽視。
Melkamu等[37]研究表明LPS可促進NNK誘導肺腺瘤、AAH以及腺癌發(fā)生,加快肺癌進展,與PI3K/Akt、NF-κB和信號轉導及轉錄激活蛋白3(STAT3)三個信號通路的激活密切相關,促進細胞增殖、存活、侵襲和血管生成,從而增強腫瘤發(fā)生。該報告成功建立了炎癥驅動腫瘤動物模型,由于煙草煙霧中除致癌物外還含有其他促炎化合物,現(xiàn)有的僅基于致癌物的肺癌動物模型可能無法完全反映吸煙者的情況,因此該模型的進一步發(fā)展可以更好地反映吸煙者的暴露情況,進而開發(fā)更有效的針對肺癌的化學預防和化療藥物。Kameyama等[38]研究表明,間隔香煙暴露聯(lián)合NNK與持續(xù)香煙暴露聯(lián)合NNK及NNK單獨使用比較,肺癌發(fā)生率顯著增加,發(fā)病機制與M2極化巨噬細胞存在聯(lián)系,本模型適用于慢性阻塞性肺疾病合并肺癌的基礎研究。
2.1.5其他化合物誘導肺結節(jié)動物模型丘建燊等[39]直接向肺內注入血鋇混合物,通過CT圖像分析鋇濃度質量與結節(jié)內部實性成分面積百分率之間的關系,該模型適合模擬不同比例實性成分的肺磨玻璃結節(jié),不適合作為活體動物模型研究藥物作用及機制研究。何鵬等[40]為檢測樺木塵水提取液和有機提取液的致癌性,分別使用樺木塵水提取液或有機提取液嘗試誘導小鼠肺癌產生。腹腔注射樺木塵水提取液且飲食中伴二丁基羥基甲苯(butylated hydroxytoluene, BHT)的植物油誘導時腫瘤發(fā)生率最高。鏡下所見肺腫瘤均為良性腺瘤,然而該模型在機制研究中應用較少,且誘導產生肺結節(jié)數(shù)量少。石英能夠誘導大鼠發(fā)生增生、腺瘤和腺癌[41],由于石英誘導的毒性或炎癥反應,肺泡巨噬細胞對石英清除作用增強了巨噬細胞和中性粒細胞產生細胞因子、趨化因子、活性氧、活性氮以及羥基自由基,進而導致上皮細胞損傷和增殖,肺外觀可見白色結節(jié),有明顯炎癥損傷,但長期石英暴露會影響大鼠肺和腎臟的完整性。Man等[42]向雄性Wistar大鼠注射二乙基亞硝胺(diethylnitrosamine, DEN),誘導大鼠MMP-9表達增加和人基質金屬蛋白酶抑制因子2水平上調,進而產生肺腺癌,肺外觀可見結節(jié)。但DEN誘導大鼠肺腺癌模型存在明顯肝毒性。肖時滿等[43]為雌性KM小鼠皮下注射甲基硝基亞硝基胍(N-methyl-N'-nitro-N-nitrosoguanidine, MNNG),建立了一種早期肺腺癌小鼠模型,肺腺癌發(fā)生率達到100%,腫瘤大小主要在0.5 mm以內,該模型穩(wěn)定且肺部結節(jié)發(fā)生率高。
2.2基因突變小鼠肺結節(jié)動物模型約3/4的GGN術后病理組織經基因檢測為、或基因突變[44]。激活基因表達或肺腺癌細胞中持續(xù)的EGF信號傳導促進肺腺癌的發(fā)展,誘導肺結節(jié)產生[45]。
2.2.1突變小鼠肺結節(jié)動物模型與肺癌發(fā)生有關的研究廣泛的基因之一是[46]。突變存在于(10%~40%)的人肺腺癌中[47],幾乎所有突變都發(fā)生在密碼子12和13結合位點上[48]。許多肺癌發(fā)病機制或藥物治療機制研究中常常使用突變小鼠,通過鼻內滴注AdenoCre腺病毒將表達并使隨后的腫瘤形成靶向肺部,且腺病毒和CaPO形成的共沉淀物可以提高肺上皮感染的效率[49]。成年小鼠在感染AdenoCre腺病毒[50]后,2周后突變蛋白開始表達,6周后可觀察肺部具有鵝卵石樣小結節(jié)。KI/creERT小鼠腹腔注射他莫昔芬,2周開始出現(xiàn)小腺瘤,在14周內逐漸發(fā)展至腺癌[51]。在此模型中,干細胞基因激活后產生具有克拉拉細胞和肺泡Ⅱ型細胞特征的細胞類型,或由干細胞直接發(fā)育為克拉拉細胞或肺泡Ⅱ型細胞。這些細胞類型的增生可引起細支氣管上皮增生和腺瘤。
2.2.2突變小鼠肺結節(jié)動物模型是繼之后肺腺癌中第二常發(fā)生的突變基因[52-53]。Ehrhardt[54]利用包含表面活性蛋白C(surfactant protein C,)啟動子調控序列的基因建立了靶向過表達到呼吸道上皮的轉基因小鼠模型,該模型啟動子的激活僅限于呼吸道上皮,EGF過表達,導致上皮細胞增生。Borlak等[53]使用同樣的轉基因小鼠建立AAH模型,探究其發(fā)病機制與腫瘤抑制因子以及單核細胞和巨噬細胞的遷移相關。Valentina等[55]用多西環(huán)素誘導雙轉基因小鼠,2周內,小鼠發(fā)生局灶性AAH,誘導后4周迅速發(fā)展為廣泛的彌漫性非粘液腺癌,內部呈鱗狀樣,第6周出現(xiàn)細支氣管肺泡腺瘤,第8周進展為更實性的腺瘤和腺癌(直徑>0.5 mm),所有雙轉基因小鼠的肺中均有>30%的高增殖病變區(qū)域?;谕蛔兘⒌膬煞N模型中,轉基因小鼠自發(fā)產生AAH、腺癌時間較長。
最常見的動物模型是肉芽腫性結節(jié),但是該模型具有自限性,與有癌變趨勢的肺結節(jié)患者發(fā)病機制相差較大。除肉芽腫性結節(jié)之外,誘導肺腺瘤、AAH、腺癌的動物模型也是建立肺結節(jié)動物模型的一個較好選擇,可選用B(a)p、NNK等誘導物進行誘導。肺腺瘤、AAH、腺癌的動物模型最終可能會發(fā)生突變,因此基因突變小鼠有可能成為建立肺腺癌早期病變性質肺結節(jié)的最佳選擇。在模型評價方面,大多數(shù)實驗觀察肺外觀,對結節(jié)數(shù)量、大小對比。其次是病理組織學觀察,部分使用了“小鼠腫瘤國際分類”標準[56]對病變組織分類計數(shù),有利于模型評價標準化,規(guī)范化。研究者可根據研究方向選擇不同的動物模型建立方法,比如探究炎癥驅動的肺結節(jié)可選擇肉芽腫性肺結節(jié)或B(a)p/NNK聯(lián)合LPS誘導;探究肺結節(jié)合并COPD相關機制可選擇NNK聯(lián)合香煙煙霧暴露等??傊?,建立有效且穩(wěn)定的肺結節(jié)動物模型可節(jié)省成本、縮短周期等,為日后開展肺結節(jié)相關基礎研究提供更多可靠依據。
[1] Zhang ZX, Lv L, Shi AH, et al. Implementation of sodium alginate-Fe3O4 to localize undiagnosed small pulmonary nodules for surgical management in a preclinical rabbit model[J]. Sci Rep, 2022, 12(1):9979.
[2] Yu Lee-Mateus A, Reisenauer J, Garcia-Saucedo JC, et al. Robotic-assisted bronchoscopy versus CT-guided transthoracic biopsy for diagnosis of pulmonary nodules[J]. Respirology, 2023, 28(1):66-73.
[3]王璐,洪群英. 肺結節(jié)診治中國專家共識(2018年版)解讀[J]. 中國實用內科雜志, 2019, 39(5):440-442.
Wang L, Hong QY. Interpretation of Chinese expert consensus on the diagnosis and treatment of pulmonary nodules (2018 version)[J]. Chin J Pract Intern Med, 2019, 39(5):440-442.
[4]李媛,謝惠康,武春燕. WHO胸部腫瘤分類(第5版)中肺腫瘤部分解讀[J]. 中國癌癥雜志, 2021, 31(7):574-580.
Li Y, Xie HK, Wu CY. Interpretation of lung tumours in the WHO classification of thoracic tumours (5th edition)[J]. China Oncol, 2021, 31(7):574-580.
[5] Chopra A, Avadhani V, Tiwari A, et al. Granulomatous lung disease: clinical aspects[J]. Expert Rev Respir Med, 2020, 14(10):1045-1063.
[6] Inaoka PT, Shono M, Kamada M, et al. Host-microbe interactions in the pathogenesis and clinical course of sarcoidosis[J]. J Biomed Sci, 2019, 26(1):45.
[7] Chen ES, Song Z, Willett MH, et al. Serum amyloid A regulates granulomatous inflammation in sarcoidosis through Toll-like receptor-2[J]. Am J Respir Crit Care Med, 2010, 181(4):360-373.
[8] Gon?ales RA, Bastos HN, Duarte-Oliveira C, et al. Pentraxin 3 inhibits complement-driven macrophage activation to restrain granuloma formation in sarcoidosis[J]. Am J Respir Crit Care Med, 2022, 206(9):1140-1152.
[9] Kraaijvanger R, Veltkamp M. The role of cutibacterium acnes in sarcoidosis: from antigen to treatable trait?[J]. Microorganisms, 2022 ,10(8):1649.
[10] Nishiwaki T, Yoneyama H, Eishi Y,et al. Indigenous pulmonary Propionibacterium acnes primes the host in the development of sarcoid-like pulmonary granulomatosis in mice[J]. Am J Pathol, 2004, 165(2):631-639.
[11] Kishi J, Nishioka Y, Kuwahara T, et al. Blockade of Th1 chemokine receptors ameliorates pulmonary granulomatosis in mice[J]. Eur Respir J, 2011, 8(2):415-424.
[12] Werner JL, Escolero SG, Hewlett JT, et al. Induction of pulmonary granuloma formation by propionibacterium acnes is regulated by MyD88 and Nox2[J]. Am J Respir Cell Mol Biol, 2017, 56(1):121-130.
[13] Eishi Y. Etiologic aspect of sarcoidosis as an allergic endogenous infection caused by Propionibacterium acnes[J]. Biomed Res Int, 2013, 2013:935289.
[14] Tsiligianni I, Antoniou KM, Kyriakou D, et al. Th1/Th2 cytokine pattern in bronchoalveolar lavage fluid and induced sputum in pulmonary sarcoidosis[J]. BMC Pulm Med, 2005, 24(5):8.
[15] Huizar I, Malur A, Midgette YA, et al.Novel murine model of chronic granulomatous lung inflammation elicited by carbon nanotubes[J]. Am J Respir Cell Mol Biol, 2011, 45(4):858-866.
[16] Mohan A, Malur A, McPeek M, et al. Transcriptional survey of alveolar macrophages in a murine model of chronic granulomatous inflammation reveals common themes with human sarcoidosis[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 314(4):L617-L625.
[17] Lu X, Zhu Y, Bai R, et al. Long-term pulmonary exposure to multi-walled carbon nanotubes promotes breast cancer metastatic cascades[J]. Nat Nanotechnol, 2019, 14(7):719-727.
[18] Shaw PX. Rethinking oxidized low-density lipoprotein, its role in atherogenesis and the immune responses associated with it[J]. Arch Immunol Ther Exp (Warsz), 2004, 52:225-239.
[19] Samokhin AO, Bühling F, Theissig F, et al. ApoE-deficient mice on cholate-containing high-fat diet reveal a pathology similar to lung sarcoidosis[J]. Am J Pathol, 2010, 176(3):1148-1156.
[20] Samokhin AO, Gauthier JY, Percival MD, et al. Lack of cathepsin activities alter or prevent the development of lung granulomas in a mouse model of sarcoidosis[J]. Respir Res, 2011, 12(1):13.
[21] Cremer S, Michalik KM, Fischer A, et al. Hematopoietic deficiency of the long noncoding RNA MALAT1 promotes atherosclerosis and plaque inflammation[J]. Circulation, 2019, 139(10):1320-1334.
[22] Zhang RJ, Lei Y. Advances in the study of clinical pathological and molecular characteristics of earlylung adenocarcinoma[J]. Mod. Oncol, 2021, 29(23):4246-4250.
[23] McEachan RRC, Rashid R, Santorelli G, et al. Evaluating the life-course health impact of a city-wide system approach to improve air quality in Bradford, UK: a quasi-experimental study with implementation and process evaluation[J]. Environ Health, 2022, 21(1):122.
[24] Abd El-Fattah EE, Abdelhamid AM. Benzo[a]pyrene immunogenetics and immune archetype reprogramming of lung[J]. Toxicology, 2021, 463:152994.
[25] Gong C, Qi L, Huo Y, et al. Anticancer effect of Limonin against benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice and the inhibition of A549 cell proliferation through apoptotic pathway[J]. J Biochem Mol Toxicol, 2019, 33(12):e22374.
[26] Yan Y, Wang Y, Tan Q,et al. Efficacy of deguelin and silibinin on benzo(a)pyrene-induced lung tumorigenesis in A/J mice[J]. Neoplasia, 2005, 7(12):1053-1057.
[27] Yokohira M, Hashimoto N, Yamakawa K, et al. Lung proliferative lesion-promoting effects of left pulmonary ligation in A/J female mice[J]. Pathol Int, 2020, 70(6):340-347.
[28] Rao CV, Patlolla JM, Qian L, et al. Chemopreventive effects of the p53-modulating agents CP-31398 and Prima-1 in tobacco carcinogen-induced lung tumorigenesis in A/J mice[J]. Neoplasia, 2013, 15(9):1018-1027.
[29] Ninomiya F, Yokohira M, Kishi S, et al. Gender-dependent effects of gonadectomy on lung carcinogenesis by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in female and male A/J mice[J]. Oncol Rep, 2013, 30(6):2632-2638.
[30] Anandakumar P, Kamaraj S, Jagan S, et al. Capsaicin inhibits benzo(a)pyrene-induced lung carcinogenesis in anmouse model[J]. Inflamm Res, 2012, 61(11):1169-1175.
[31] Rudyanto RD, Bastarrika G, de Biurrun G, et al. Individual nodule tracking in micro-CT images of a longitudinal lung cancer mouse model[J]. Med Image Anal, 2013, 17(8):1095-1105.
[32] Paceli RB, Cal RN, dos Santos CH, et al. The influence of physical activity in the progression of experimental lung cancer in mice[J]. Pathol Res Pract, 2012, 208(7):377-381.
[33] 杜振華. 苦瓜苷G調節(jié)巨噬細胞阻止肺損傷和肺癌前病變作用[D]. 鄭州:河南大學, 2019:19-20.
Du ZH. Momordicoside G regulates macrophage to prevent lung injury and lung pre-carcinoma lesions[D].Zhengzhou: Henan University, 2019:19-20.
[34] Hudlikar RR, Venkadakrishnan VB, Kumar R, et al. Polymeric black tea polyphenols (PBPs) inhibit benzo(a)pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung carcinogenesis potentially through down-regulation of p38 and Akt phosphorylation in A/J mice[J]. Mol Carcinog, 2017, 56(2):625-640.
[35] Huang L, Duan S, Shao H, et al. NLRP3 deletion inhibits inflammation-driven mouse lung tumorigenesis induced by benzo(a)pyrene and lipopolysaccharide[J]. Respir Res, 2019, 20(1):20.
[36] Wang ZS, Yang P, Xie J, et al. Arsenic and benzo[a]pyrene co-exposure acts synergistically in inducing cancer stem cell-like property and tumorigenesis by epigenetically down-regulating SOCS3 expression[J]. Environ Int, 2020, 137:105560.
[37] Melkamu T, Qian X, Upadhyaya P, et al. Lipopolysaccharide enhances mouse lung tumorigenesis: a model for inflammation-driven lung cancer[J]. Vet Pathol, 2013, 50(5):895-902.
[38] Kameyama N, Chubachi S, Hegab AE, et al. Intermittent exposure to cigarette smoke increases lung tumors and the severity of emphysema more than continuous exposure[J]. Am J Respir Cell Mol Biol, 2018, 59(2):179-188.
[39] 丘建燊,鄭航,張芨,等. 肺磨玻璃結節(jié)建模方法[J]. 臨床肺科雜志, 2019, 24(11):2068-2072.
Qiu JS, Zheng H, Zhang J, et al. Modeling method of ground glass nodules in lung[J]. J Clin Pulm Med, 2019, 24(11):2068-2072.
[40] 何鵬,吳德生,董奇男. 應用小鼠肺腫瘤短期誘發(fā)實驗檢測樺木塵提取液的致癌性[J]. 中華勞動衛(wèi)生職業(yè)病雜志, 2002,(2):39-41.
He P, Wu DS, Dong QN. The model of mouse lung tumor short-term induction test for assaying the carcinogencity induced by extracts of birch wood dust[J].Chin J Ind Hyg Occup Dis, 2002,(2):39-41.
[41] Nakano-Narusawa Y, Yokohira M, Yamakawa K, et al. Single intratracheal quartz instillation induced chronic inflammation and tumourigenesis in rat lungs[J]. Sci Rep, 2020, 10(1):6647.
[42] Man S, Li J, Fan W, et al. Inhibition of pulmonary adenoma in diethylnitrosamine-induced rats by Rhizoma paridis saponins[J]. J Steroid Biochem Mol Biol, 2015, 154:62-67.
[43] 肖時滿,張玉,強金偉. 小鼠早期肺腺癌模型的建立[J]. 中國實驗動物學報, 2015, 23(3):227-232.
Xiao SM, Zhang Y, Qiang JW. Establishment of a mouse model of early lung adenocarcinoma[J]. Acta Lab Anim Sci Sin, 2015, 23(3):227-232.
[44] Kobayashi Y, Mitsudomi T, Sakaoy, et al. Genetic features of pulmonary adenocarcinoma presenting with ground glass nodules: the differences between nodules with and without growth[J]. Ann Oncol, 2015, 26(1):156-161.
[45] Lin C, Song H, Huang C,et al. Alveolar type II cells possess the capability of initiating lung tumor development[J]. PLoS One, 2012, 7(12):e53817.
[46] Ahrendt S, Decker?PA, Alawi?EA, et al. Cigarette smoking is strongly associated with mutation of the K-ras gene in patients with primary adenocarcinoma of the lung[J]. Cancer, 2001, 92:1525-1530
[47] Brose MS, Volpe P, Feldman M, et al. BRAF and RAS mutations in human lung cancer and melanoma[J]. Cancer Res, 2002, 62:6997-7000.
[48] Riely GJ, Kris MG, Rosenbaum D, et al. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma[J]. Clin Cancer Res, 2008, 14:5731-5734.
[49] Fasbender A, Lee JH, Walters RW, et al. Incorporation of adenovirus in calcium phosphate precipitates enhances gene transfer to airway epitheliaand[J]. J Clin Invest, 1998, 102(1):184-193.
[50] Jackson EL, Willis N, Mercer K, et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras[J]. Genes Dev, 2001, 15(24):3243-3248.
[51] Xu X, Rock JR, Lu Y, Futtner C, et al. Evidence for type II cells as cells of origin of K-Ras-induced distal lung adenocarcinoma[J]. Proc Natl Acad Sci U S A, 2012, 109(13):4910-4915.
[52] Li H, Sun Z, Xiao R, et al. Stepwise evolutionary genomics of early-stage lung adenocarcinoma manifesting as pure, heterogeneous and part-solid ground-glass nodules[J]. Br J Cancer, 2022, 127(4):747-756.
[53] Borlak J, L?nger F, Chatterji B. Serum proteome mapping of EGF transgenic mice reveal mechanistic biomarkers of lung cancer precursor lesions with clinical significance for human adenocarcinomas[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(10):3122-3144.
[54] Ehrhardt A, Bartels T, Geick A, et al. Development of pulmonary bronchiolo-alveolar adenocarcinomas in transgenic mice overexpressing murine c-myc and epidermal growth factor in alveolar type II pneumocytes[J]. Br J Cancer, 2001, 84(6):813-818.
[55] Valentina E. Schneeberger, Yuan Ren,et al. Inhibition of Shp2 suppresses mutant EGFR-induced lung tumors in transgenic mouse model of lung adenocarcinoma[J]. Oncotarget, 2015, 6(8):6191-6202.
[56] Nikitin AY, Alcaraz A, Anver MR, et al. Classification of proliferative pulmonary lesions of the mouse: recommendations of the mouse models of human cancers consortium[J]. Cancer Res, 2004, 64(7):2307-2316.
Progress in animal models of pulmonary nodules
ZHAO Yakun1,2, SHAO Dong1, ZHENG Yujia1, ZHANG Keyu1, TIAN Yange1,3, LI Jiansheng1,2△
(1,,450046,;2,450046,;3,450046,)
A pulmonary nodule (PN) is characterized by a round or irregular lesion in the lung with a diameter ≤3 cm. PN is characterized by the following features upon imaging: heightened density, clear or unclear boundaries, without atelectasis, hilar lymph node enlargement, and pleural effusion. However, the pathogenesis of PN remains unclear, and the current treatment measures have failed to meet the clinical demands. Therefore, animal models of PN are of great significance for investigating its pathogenesis and discovering or optimizing effective drugs and methods for its prevention and treatment. This paper summarizes the widely used animal models of PNs. Previous research has shown that the most common animal models were used for granulomas, lung adenomas, atypical adenomatous hyperplasia (AAH), and adenocarcinomas. The experimental animals utilized were A/J mice, C57BL/6 mice, and mice with predominantly EGFR and Kras mutations. Moreover, the chief inducers included carcinogenic compounds, such as benzo(a)pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Furthermore, the preparation methods and model characteristics of PNs were systematically and comprehensively reviewed to provide a strong basis and a valuable reference for the rational selection of animal models for basic research and drug developent.
pulmonary nodules; animal model; granulomatous nodules; atypical adenomatous hyperplasia; adenocarcinoma
R563; R363
A
10.3969/j.issn.1000-4718.2023.09.018
1000-4718(2023)09-1683-08
2023-01-04
2023-04-17
河南省高等學校重點科研項目(No. 21A360007);河南省中醫(yī)藥科學研究專項課題(No. 2021JDZY029)
Tel: 13703717893; E-mail: li_js8@163.com
(責任編輯:李淑媛,羅森)