劉師佐, 楊歡, 湯蓉, 王延蛟
鐵死亡中的溶酶體降解系統(tǒng):質(zhì)量調(diào)控與能量代謝*
劉師佐1, 楊歡2, 湯蓉1, 王延蛟3△
(1新疆醫(yī)科大學基礎(chǔ)醫(yī)學院,新疆 烏魯木齊 830017;2新疆醫(yī)科大學第二臨床醫(yī)學院,新疆 烏魯木齊 830017;3新疆醫(yī)科大學基礎(chǔ)醫(yī)學院生物化學與分子生物學教研室,新疆地方病分子生物學重點實驗室,新疆 烏魯木齊 830017)
鐵死亡;自噬;溶酶體
鐵死亡(ferroptosis)是近年來新發(fā)現(xiàn)的一種細胞死亡方式,其特征是胞內(nèi)游離鐵和脂質(zhì)過氧化物的積累[1]。巨自噬(macroautophagy;下文簡稱自噬,autophagy)是隔離膜將胞質(zhì)內(nèi)底物包裹,并在溶酶體內(nèi)降解為小分子以維持細胞發(fā)育和環(huán)境穩(wěn)態(tài)的過程。自噬的質(zhì)量調(diào)控和能量代謝對鐵死亡的發(fā)生有重要意義。鐵死亡中的質(zhì)量調(diào)控由泛素系統(tǒng)和自噬-溶酶體系統(tǒng)構(gòu)成,主要參與鐵死亡相關(guān)蛋白的降解。一方面,自噬-溶酶體系統(tǒng)參與的質(zhì)量調(diào)控影響鐵的儲存、輸入和輸出,也參與了游離脂質(zhì)的產(chǎn)生和抗氧化物質(zhì)的降解,有研究認為鐵死亡是一種自噬依賴性細胞死亡(autophagy-dependent cell death, ADCD)[2]。另一方面,自噬或巨胞飲(macropinocytosis)等介導的能量代謝是氧化還原相關(guān)蛋白合成、線粒體代謝和脂質(zhì)生成的基礎(chǔ),與鐵死亡的發(fā)生密切相關(guān)[3]。能量代謝和質(zhì)量控制均是細胞的重要功能,它們對鐵死亡有何影響?二者之間存在何種關(guān)系?以溶酶體降解系統(tǒng)為基礎(chǔ)的質(zhì)量調(diào)控和能量代謝通常是相互統(tǒng)一的[4],但在鐵死亡中卻相反[2, 5-6]。在質(zhì)量調(diào)控中,自噬、伴侶介導的自噬或非自噬途徑通過降解儲鐵蛋白、脂滴、抗氧化物質(zhì)或特定的細胞器來增加芬頓反應的底物,干擾能量代謝,從而促進鐵死亡[6]。在能量代謝中,自噬或巨胞飲等通過增加鐵死亡期間的氨基酸代謝、抗氧化蛋白的合成等來緩解細胞死亡[7]。因此,溶酶體及其調(diào)控信號在特定的條件下發(fā)揮雙重作用,其既能通過對功能蛋白的選擇性降解促進鐵死亡,又能通過能量代謝抑制鐵死亡。本文中,我們基于鐵死亡中的溶酶體系統(tǒng)(包括自噬、伴侶介導的自噬、自噬非依賴性溶酶體降解和巨胞飲,其中主要以自噬為主),闡述了鐵死亡中質(zhì)量調(diào)控與能量代謝之間的關(guān)系,并基于目前鐵死亡的臨床應用提出待解決的問題。
溶酶體在鐵死亡中參與質(zhì)量調(diào)控的主要途徑有:(1)選擇性自噬,在生理或病理條件下,自噬受體與底物特異性結(jié)合并被自噬體吞噬,最終被溶酶體降解;(2)伴侶介導的自噬,伴侶熱休克同源蛋白70(heat shock cognate protein 70, HSC70)與底物結(jié)合并將其遞送到溶酶體最終被分解[8];(3)自噬非依賴性溶酶體降解,指不依賴于自噬或伴侶介導的自噬機制,由其他分子介導底物進入溶酶體被降解的過程[9]。質(zhì)量調(diào)控自噬是促進鐵死亡進行的主要因素[10],與以下三點有關(guān)。
1.1參與鐵的調(diào)控鐵是鐵死亡發(fā)生的基礎(chǔ)。在衰老細胞中,自噬受損導致細胞內(nèi)鐵含量高達正常水平的30倍[11]。自噬參與鐵的儲存、輸入和輸出[12-13]。核受體輔激活蛋白4(nuclear receptor coactivator 4, NCOA4)是調(diào)控鐵蛋白自噬的主要分子,它與儲鐵蛋白結(jié)合并將其募集于自噬溶酶體中降解(鐵蛋白自噬),導致Fe2+的釋放,促進鐵死亡[14]。NCOA4含有多個泛素化位點,TRIM7 (tripartite motif containing 7)通過K48直接結(jié)合NCOA4并將其泛素化降解,抑制鐵蛋白降解,敲除能夠抑制鐵死亡[15]。在缺氧條件下,miR-6862-5p與NCOA4 mRNA結(jié)合抑制其翻譯,維持線粒體鐵蛋白穩(wěn)定并促進缺氧應激條件下的線粒體代謝[16]。在鐵死亡過程中,線粒體可以作為游離Fe2+的緩沖區(qū)以降低Fe2+對細胞的毒性,因此自噬僅對鐵蛋白的降解不會顯著促進鐵死亡。Thiamet G通過促進-GlcNAc糖基化不僅進一步加強鐵蛋白自噬,還促進線粒體裂解和線粒體自噬以增加游離Fe2+的來源(圖1A)[17]。目前自噬與鐵的輸入之間的關(guān)系存在爭議。有研究表明,自噬的激活還能夠上調(diào)轉(zhuǎn)鐵蛋白受體1(transferrin receptor 1, TFR1)表達,增加細胞對鐵的吸收[18]。但也有研究表明,自噬受體p62與TFR1結(jié)合介導其降解,降低細胞對鐵死亡的敏感性[19]。此外,p62與鐵輸出蛋白SLC40A1/ferroportin-1結(jié)合,介導其被選擇性降解[20]。
1.2促進不飽和脂肪酸積累脂滴是細胞內(nèi)儲存脂質(zhì)的細胞器,脂滴分解產(chǎn)生的脂質(zhì)參與多種代謝途徑,不飽和脂肪酸積累是鐵死亡發(fā)生的前提,其與活性氧(reactive oxygen species, ROS)反應生成脂質(zhì)過氧化物[21]。黃體酮受體膜成分1(progesterone receptor membrane component 1, PGRMC1)是一種血紅素結(jié)合蛋白,其過表達能改變脂代謝,促進腫瘤細胞增殖。在紫杉醇耐藥的頭頸癌中,PGRMC1的過表達通過Sirt1-AMP活化蛋白激酶(AMP-activatited protein kinase, AMPK)軸誘導RAB7A依賴性脂肪自噬[22],使用erastin能夠有效抑制腫瘤的生長[23](圖1B)。神經(jīng)膠質(zhì)成熟因子β(glia maturation factor-β, GMFB-β)在糖尿病視網(wǎng)膜病變中上調(diào),介導ATP酶ATP6V1A易位至溶酶體表面并使其堿化,功能障礙的溶酶體使ACSL4 (acyl-CoA synthetase long-chain family member 4)積累,后者促進不飽和脂肪酸的產(chǎn)生,誘導鐵死亡的進行[9]。
1.3抑制谷胱甘肽過氧化物酶4(glutathione peroxidase 4, GPX4)GPX4利用還原型谷胱甘肽(reduced glutathione, GSH)將毒性脂質(zhì)過氧化物轉(zhuǎn)化為無毒脂質(zhì)醇,是細胞抵抗鐵死亡的關(guān)鍵酶[24]。Wu等[25]發(fā)現(xiàn),erastin通過上調(diào)溶酶體相關(guān)膜蛋白2a和伴侶HSC70促進伴侶介導的自噬以降解GPX4,促進過氧化物的產(chǎn)生導致鐵死亡。Xue等[26]發(fā)現(xiàn)外源Cu2+與GPX4的Cys107和Cys148直接結(jié)合以促進GPX4泛素化和GPX4聚集體的形成,自噬受體Tax1結(jié)合蛋白1隨后促進GPX4降解和鐵死亡。Liu等[27]發(fā)現(xiàn),作為自噬誘導信號的哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)被雷帕霉素抑制后能介導自噬依賴性GPX4降解,而過表達GPX4能促進mTOR的活化以抑制自噬,緩解鐵死亡的發(fā)生。同樣作為自噬誘導信號,AMPK介導beclin-1與溶質(zhì)載體家族7成員11(solute carrier family 7 member 11, SLC7A11)結(jié)合抑制系統(tǒng)Xc-,后者為GPX4的合成提供關(guān)鍵的半胱氨酸,導致抗氧化物質(zhì)合成不足,最終促進鐵死亡[28]。然而,也有研究表明在Fin56通過mTOR非依賴性途徑介導鐵死亡中GPX4的自噬降解,但mTOR抑制劑卻增強膀胱癌細胞對Fin56的敏感性[29](圖1C)。
長期以來,ADCD被認為是由于過度自噬導致細胞內(nèi)容物無差別的降解,其無法解釋鐵死亡中的質(zhì)量調(diào)控自噬。鐵死亡中的自噬為我們闡明了ADCD也存在精細的調(diào)控機制,這種靈敏的選擇性降解功能參與細胞器的調(diào)節(jié)和各種蛋白的表達,并通過促進脂質(zhì)的產(chǎn)生、抑制抗氧化物質(zhì)的形成而導致鐵死亡。然而,關(guān)于ADCD在鐵死亡中的調(diào)節(jié)機制尚不明確。是什么決定了自噬的性質(zhì)?哪些分子特異性參與了該過程?細胞器的損傷或功能紊亂(如脂滴[22]、線粒體[30]、內(nèi)質(zhì)網(wǎng)[31]或過氧化物酶體[32])可能是導致鐵死亡的原因之一,選擇性自噬對細胞器的降解起到何種作用?
半胱氨酸饑餓誘導鐵死亡的細胞中ATP利用率顯著降低,表明鐵死亡與能量代謝密切相關(guān)[33]。BAY-876和多柔比星組成的納米顆粒通過抑制葡萄糖轉(zhuǎn)運蛋白1的功能以限制葡萄糖攝取,同時多柔比星降低ATP在胞內(nèi)水平,誘導腫瘤細胞鐵死亡[34]。線粒體中的谷氨酰胺代謝產(chǎn)生的α-酮戊二酸參與三羧酸循環(huán),與電子傳遞鏈共同促進鐵死亡[35]。人鐵質(zhì)反射素2(sideroflexin 2, SFXN2)是一種參與線粒體鐵代謝的線粒體外膜蛋白,在多發(fā)性骨髓瘤中,SFXN2與血紅素加氧酶1結(jié)合抑制饑餓誘導的自噬/線粒體自噬來減輕鐵死亡[36]。
Li等[37]發(fā)現(xiàn),在多種鐵死亡誘導模型中,葡萄糖饑餓通過激活AMPK抑制鐵死亡,表明這種機制可能具有普遍性。AMPK被肝激酶B1(liver kinase B1,LKB1)磷酸化,以抑制乙酰輔酶A羧化酶(acetyl-CoA carboxylase, ACC)的磷酸化。ACC是脂肪酸生物合成的限速酶,AMPK的磷酸化降低脂肪酸合成和脂質(zhì)過氧化[38]。在敲除單羧酸轉(zhuǎn)運蛋白4(monocarboxylate transporter 4,)的膀胱癌細胞中,p-AMPK顯著下調(diào),ACC表達量增高,并且能量代謝自噬被抑制導致鐵死亡的發(fā)生(圖1D)[39]。同時,在特定生物學條件下,p-AMPKα2激活能量代謝自噬以維持氧化還原平衡、線粒體功能和脂代謝等,緩解小鼠心肌細胞的鐵死亡[5]。
mTOR是調(diào)控自噬的另一個營養(yǎng)感受器,也是溶酶體發(fā)揮功能的重要調(diào)節(jié)器。在鐵死亡中,mTOR的不同狀態(tài)能夠決定細胞的存活。mTOR被激活后促進蛋白質(zhì)的合成代謝,是細胞中最耗能的過程之一;當細胞內(nèi)氨基酸、核苷酸等小分子不足,mTOR被抑制促進分解代謝,如自噬或巨胞飲作用[40]。在胱氨酸饑餓條件下,mTOR被抑制,綜合應激反應(integrated stress response)被激活,介導下游的各種生物過程促進胱氨酸的合成代謝[41]。在多數(shù)情況下,細胞主要通過營養(yǎng)轉(zhuǎn)運蛋白從細胞外攝取半胱氨酸,如胱氨酸/谷氨酸轉(zhuǎn)運蛋白SLC7A11,攝取的胱氨酸被轉(zhuǎn)化為半胱氨酸,后者是GSH的重要底物。半胱氨酸的缺乏導致GSH的合成減少,細胞無法有效抑制脂質(zhì)ROS的產(chǎn)生,最終導致鐵死亡。Conlon等[42]通過高通量藥物篩選發(fā)現(xiàn)mTOR抑制劑能有效緩解鐵死亡,表明氨基酸等小分子的合成在鐵死亡期間尤為重要。Byun等[43]隨后發(fā)現(xiàn),在索拉非尼耐藥的肝癌細胞中,線粒體功能障礙會激活PI3K-RAC1-PAK1來促進巨胞飲作用,增加癌細胞在胱氨酸剝奪條件下對外周白蛋白的攝取。這種含豐富半胱氨酸的蛋白被癌細胞攝取后,mTOR信號被抑制以增強溶酶體對白蛋白的分解能力,經(jīng)組織蛋白酶B(cathepsin B, CTSB)分解后由胱氨酸轉(zhuǎn)運體(cystinosin, CTNS)輸出至胞質(zhì),促進GSH的合成(圖1E)[44]。mTOR的激活在特定條件下也能抵抗鐵死亡。GPX4是一種硒蛋白,合成效率低且耗能極大。當胱氨酸充足時,細胞激活Rag-mTORC1-4EBP軸促進GPX4合成,抑制脂質(zhì)過氧化,這也符合當ATP利用率低促進鐵死亡的理論[45]。總之,在底物匱乏時,mTOR受抑制以介導半胱氨酸的生成,而在底物充足、能量豐富的情況下,mTOR被激活以促進GPX4的轉(zhuǎn)錄翻譯,mTOR不同狀態(tài)可能是細胞整合當時環(huán)境對物質(zhì)的需求而做出不同選擇的結(jié)果。因此,確定當下環(huán)境中細胞對底物(半胱氨酸)或產(chǎn)物(GPX4/GSH)的需求,靶向mTOR來調(diào)控鐵死亡是臨床治療的新思路。
Figure 1. Quality control and energetic metabolism of autophagy regulatory pathways for ferroptosis. A: nuclear receptor coactivator 4 (NCOA4) is regulated by ubiquitination and O-GlcNAcylation to influence free Fe2+ production, and p62 binding to solute carrier family 40 member 1 (SLC40A1/ferroportin-1) promotes Fe2+ accumulation; B: glia maturation factor-β (GMFB-β) promotes RAB7A-dependent lipophagy for lipogenesis, and progesterone receptor membrane component 1 (PGRMC1) promotes accumulation of acyl-CoA synthetase long-chain family member 4 (ACSL4); C: heat shock cognate protein 70 (HSC70), Cu2+ or Tax1-binding protein 1 (TAX1BP1) binding to glutathione peroxidase 4 (GPX4) promotes GPX4 degradation, and activation of AMP-activatited protein kinase (AMPK) or inhibition of mammalian target of rapamycin (mTOR) also promotes the degradation of GPX4; D: AMPK activates energy metabolism autophagy while suppressing acetyl-CoA carboxylase (ACC) expression; E: in the absence of substrate for GPX4 synthesis, mTOR is inhibited to increase the uptake of extracellular albumin, which is catabolized by lysosomes to produce cysteine, the raw material for GPX4 synthesis; when substrate is sufficient, mTOR is activated to promote transcriptional translation of GPX4. TRIM7: tripartite motif containing 7; Ub: ubiquitin; PUFA: polyunsaturated fatty acid; CTSB: cathepsin B; CTNS: cystinosin; ROS: reactive oxygen species. Some cartoon components were from www.figdraw.com for model drawing.
根據(jù)細胞的生理需求,自噬主要分為質(zhì)量調(diào)控自噬和能量代謝自噬。前者需多種分子機器的相互作用,為選擇性自噬;而后者無差別地回收降解底物,通常認為其為非選擇性自噬。絕大多數(shù)情況下,兩種類型的自噬是統(tǒng)一的過程,如在激活能量代謝自噬的同時,自噬受體會與損傷的細胞器結(jié)合(如去極化的線粒體),促進細胞代謝的同時維持質(zhì)量調(diào)控[4]。然而在鐵死亡中,二者功能并不統(tǒng)一。在敲除的肺癌中,自噬促進線粒體呼吸和ATP的產(chǎn)生,而抑制自噬并使用曲美替尼處理導致細胞鐵死亡[46];抑制保護性自噬可增加膠質(zhì)母細胞瘤對替莫唑胺的敏感性[47],而多數(shù)研究認為選擇性自噬促進鐵死亡[2, 14, 17, 26],但其促進機制尚不清楚。AMPK和mTOR是自噬的主要激活信號,部分研究卻顯示自噬能夠獨立于mTOR信號介導鐵死亡[47],但使用mTOR抑制劑能夠阻斷鐵死亡的進行[42]。ATG9A是一種多跨膜蛋白,在營養(yǎng)匱乏時參與自噬體膜的成熟。Liu等[48]指出,鐵死亡誘導TMEM164 (transmembrane protein 164)表達,通過調(diào)控ATG5-ATG12-ATG16L1復合物促進自噬體的形成,而不是ATG9A。鐵死亡與饑餓條件下誘導的自噬可能并非同一套機制,因此在不同的生物學條件下,自噬在鐵死亡中同樣存在兩種形式:以分解代謝為主,為細胞提供能量或氨基酸的保護性自噬;以質(zhì)量調(diào)控為主,自噬選擇性降解鐵死亡抑制分子的致死性自噬。
此前有研究表明,保護性自噬和致死性自噬同時存在于細胞中[49],二者的平衡狀態(tài)決定細胞的生存結(jié)果。因此,溶酶體作為細胞的“回收站”,可能參與保護性和致死性自噬過程中相關(guān)生物分子的降解。在能量應激期間,巨胞飲和自噬共同抑制鐵死亡,二者的主要區(qū)別在于前者通過攝取細胞外白蛋白至溶酶體,分解產(chǎn)生半胱氨酸以提供GSH的原料,后者主要控制細胞內(nèi)能量代謝、脂代謝等抑制鐵死亡;而二者有一個共同的降解系統(tǒng)——溶酶體。Armenta等[44]的研究提示,通過靶向與自噬/巨胞飲相關(guān)的溶酶體中60余種酸性水解酶,能平衡保護性與致死性自噬來調(diào)節(jié)鐵死亡,對相關(guān)疾病的治療可能具有重要意義。
本文基于細胞中的溶酶體降解系統(tǒng),以自噬為主闡述其在鐵死亡中的作用。自噬在鐵死亡中有兩種作用方式——質(zhì)量調(diào)控和能量代謝,前者通過降解特定蛋白(鐵代謝相關(guān)蛋白)、細胞器(脂滴、線粒體或內(nèi)質(zhì)網(wǎng)等)促進鐵死亡,后者通過調(diào)控氨基酸代謝、脂質(zhì)代謝等抑制鐵死亡。因此,鑒別特定條件下自噬的性質(zhì),對臨床腫瘤治療有關(guān)鍵意義。
目前,自噬靶向治療在臨床中的應用存在兩道屏障:(1)腫瘤中自噬的性質(zhì)不能得到準確判斷,其中包括鑒別單一性自噬和雙重性自噬。單一性自噬,即自噬在組織中只具備促進細胞生存或死亡的能力,而雙重性自噬指的是自噬既能促進細胞生存,也能促進細胞死亡,最后細胞的生存狀態(tài)取決于二者的平衡。對于單一性自噬,目前已經(jīng)發(fā)現(xiàn)部分標志性分子(如β-thujaplicin[50]、GBA1[51]等)能夠誘導ADCD,但其敏感性和特異性仍有待考量,應用于臨床進行分子診斷仍不成熟。對于雙重性自噬,部分臨床藥物可誘導多種死亡模式促進癌細胞死亡。如在索拉菲尼處理的肝癌細胞中,自噬被激活以抑制細胞凋亡,介導細胞化療耐藥[52],但其又能誘導肝癌細胞自噬依賴性鐵死亡[31],那么自噬如何調(diào)控細胞的生存與死亡?抑制自噬對細胞敏感性有何影響?探索雙重性自噬介導細胞生與死的“臨界點”,或?qū)ふ也⒘炕煌再|(zhì)自噬的標志分子,以確定對細胞的存活狀態(tài)占主導作用的自噬,可能是解決該問題的策略之一。(2)適用于臨床的自噬靶向藥物仍未出現(xiàn)。由FDA批準的自噬抑制劑氯喹和羥氯喹需要高濃度才能夠抑制自噬,目前絕大多數(shù)僅適用于腫瘤的輔助治療[53]。適用于臨床自噬靶向藥物的研發(fā)有3個不可避免的問題需要解決:其一,確定特異性作用于自噬機制的分子。由于大量的自噬分子均可獨立于自噬發(fā)揮作用,因此選擇在人體中穩(wěn)定調(diào)控自噬的分子是目前最大的難題[54]。其二,解決化合物溶解度低、特異性差或效力弱等問題。其三,對于理想的化合物,應進一步探索其對凋亡、壞死、炎癥等其他信號通路的作用,減少其對自噬調(diào)節(jié)的作用。因此,探索鐵死亡中自噬的調(diào)控機制,尋找介導保護性自噬與致死性自噬的分子,明確二者的作用機制,尋找能夠應用于臨床的標志物,對人類疾病的預防與治療有潛在意義。
[1]康傳杰,張相彤,馬威,細胞鐵死亡發(fā)生與調(diào)控機制的研究進展[J]. 中國病理生理雜志, 2017, 33(3):567-571.
Kang CJ, Zhang XT, Ma W. Progress in occurrence and development of ferroptosis[J]. Chin J Pthophysiol, 2017, 33(3):567-571.
[2] Gao M, Monian P, Pan Q, et al. Ferroptosis is an autophagic cell death process[J]. Cell Res, 2016, 26(9):1021-1032.
[3] Stockwell BR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185(14):2401-2421.
[4] Deretic V, Kroemer G. Autophagy in metabolism and quality control: opposing, complementary or interlinked functions?[J]. Autophagy, 2022, 18(2):283-292.
[5] He H, Wang L, Qiao Y, et al. Epigallocatechin-3-gallate pretreatment alleviates doxorubicin-induced ferroptosis and cardiotoxicity by upregulating AMPKα2 and activating adaptive autophagy[J]. Redox Biol, 2021, 48:102185.
[6] Liu J, Kuang F, Kroemer G, et al. Autophagy-dependent ferroptosis: machinery and regulation[J]. Cell Chem Biol, 2020, 27(4):420-435.
[7] Yao X, Li W, Fang D, et al. Emerging roles of energy metabolism in ferroptosis regulation of tumor cells[J]. Adv Sci (Weinh), 2021, 8(22):e2100997.
[8] Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging[J]. Cell Res, 2014, 24(1):92-104.
[9] Liu C, Sun W, Zhu T, et al. Glia maturation factor-β induces ferroptosis by impairing chaperone-mediated autophagic degradation of ACSL4 in early diabetic retinopathy[J]. Redox Biol, 2022, 52:102292.
[10] Chen X, Yu C, Kang R, et al. Cellular degradation systems in ferroptosis[J]. Cell Death Differ, 2021, 28(4):1135-1148.
[11] Masaldan S, Clatworthy SAS, Gamell C, et al. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis[J]. Redox Biol, 2018, 14:100-115.
[12] Zhang S, Xin W, Anderson GJ, et al. Double-edge sword roles of iron in driving energy production versus instigating ferroptosis[J]. Cell Death Dis, 2022, 13(1):40.
[13] 聞照鳳,李延莉,鐵蛋白自噬在癌癥發(fā)生發(fā)展中作用的研究進展[J]. 中國病理生理雜志, 2022, 38(7):1340-1344.
Wen ZF, Li YL. Role of ferritinophagy in occurrence and development of cancers[J]. Chin J Pathophysiol, 2022, 38(7):1340-1344.
[14] Mancias JD, Wang X, Gygi SP, et al. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy[J]. Nature, 2014, 509(7498):105-109.
[15] Li K, Chen B, Xu A, et al. TRIM7 modulates NCOA4-mediated ferritinophagy and ferroptosis in glioblastoma cells[J]. Redox Biol, 2022, 56:102451.
[16] Fuhrmann DC, Mondorf A, Beifu? J, et al. Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis[J]. Redox Biol, 2020, 36:101670.
[17] Yu F, Zhang Q, Liu H, et al. Dynamic-GlcNAcylation coordinates ferritinophagy and mitophagy to activate ferroptosis[J]. Cell Discov, 2022, 8(1):40.
[18] Park E, Chung SW. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation[J]. Cell Death Dis, 2019, 10(11):822.
[19] Shan J, Jiang W, Chang J, et al. NUF2 drives cholangiocarcinoma progression and migration via inhibiting autophagic degradation of TFR1[J]. Int J Biol Sci, 2023, 19(5):1336-1351.
[20] Li J, Liu J, Xu Y, et al. Tumor heterogeneity in autophagy-dependent ferroptosis[J]. Autophagy, 2021, 17(11):3361-3374.
[21] Liang D, Minikes AM, Jiang X. Ferroptosis at the intersection of lipid metabolism and cellular signaling[J]. Mol Cell, 2022, 82(12):2215-2227.
[22] Bai Y, Meng L, Han L, et al. Lipid storage and lipophagy regulates ferroptosis[J]. Biochem Biophys Res Commun, 2019, 508(4):997-1003.
[23] You JH, Lee J, Roh JL. PGRMC1-dependent lipophagy promotes ferroptosis in paclitaxel-tolerant persister cancer cells[J]. J Exp Clin Cancer Res, 2021, 40(1):350.
[24] Forcina GC, Dixon SJ. GPX4 at the crossroads of lipid homeostasis and ferroptosis[J]. Proteomics, 2019, 19(18):e1800311.
[25] Wu Z, Geng Y, Lu X, et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis[J]. Proc Natl Acad Sci U S A, 2019, 116(8):2996-3005.
[26] Xue Q, Yan D, Chen X, et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis[J]. Autophagy, 2023, 19(7):1982-1996.
[27] Liu Y, WangY, Liu J, et al. Interplay between mTOR and GPX4 signaling modulates autophagy-dependent ferroptotic cancer cell death[J]. Cancer Gene Ther, 2021, 28(1/2):55-63.
[28] Song X, Zhu S, Chen P, et al. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc-activity[J]. Curr Biol, 2018, 28(15):2388-2399.e5.
[29] Sun Y, Berleth N, Wu W, et al. Fin56-induced ferroptosis is supported by autophagy-mediated GPX4 degradation and functions synergistically with mTOR inhibition to kill bladder cancer cells[J]. Cell Death Dis, 2021, 12(11):1028.
[30] Tadokoro T, Ikeda M, Ide T, et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity[J]. JCI Insight, 2020, 5(9):e132747.
[31] Liu Z, Ma C, Wang Q, et al. Targeting FAM134B-mediated reticulophagy activates sorafenib-induced ferroptosis in hepatocellular carcinoma[J]. Biochem Biophys Res Commun, 2022, 589:247-253.
[32] Garcia-Bermudez J, Baudrier L, Bayraktar EC, et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death[J]. Nature, 2019, 567(7746):118-122.
[33] Gao M, Monian P, Quadri N, et al. Glutaminolysis and transferrin regulate ferroptosis[J]. Mol Cell, 2015, 59(2):298-308.
[34] Jiang W, Luo X, Wei L, et al. The sustainability of energy conversion inhibition for tumor ferroptosis therapy and chemotherapy[J]. Small, 2021, 17(38):e2102695.
[35] Gao M, Yi J, Zhu J, et al. Role of mitochondria in ferroptosis[J]. Mol Cell, 2019, 73(2):354-363.e3.
[36] Chen Y, Qian J, Ding P, et al. Elevated SFXN2 limits mitochondrial autophagy and increases iron-mediated energy production to promote multiple myeloma cell proliferation[J]. Cell Death Dis, 2022, 13(9):822.
[37] Li C, Dong X, DuW, et al. LKB1-AMPK axis negatively regulates ferroptosis by inhibiting fatty acid synthesis[J]. Signal Transduct Target Ther, 2020, 5(1):187.
[38] Lee H, Zandkarimi F, Zhang Y, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol, 2020, 22(2):225-234.
[39] Dong S, Zheng L, Jiang T. Loss of lactate/proton monocarboxylate transporter 4 induces ferroptosis via the AMPK/ACC pathway and inhibition of autophagy on human bladder cancer 5637 cell line[J]. J Oncol, 2023, 2023:2830306.
[40] Dossou AS, Basu A. The emerging roles of mTORC1 in macromanaging autophagy[J]. Cancers (Basel), 2019, 11(10):1422.
[41] Yu X, Long YC. Crosstalk between cystine and glutathione is critical for the regulation of amino acid signaling pathways and ferroptosis[J]. Sci Rep, 2016, 6:30033.
[42] Conlon M, Poltorack CD, Forcina GC, et al. A compendium of kinetic modulatory profiles identifies ferroptosis regulators[J]. Nat Chem Biol, 2021, 17(6):665-674.
[43] Byun JK, Lee S, Kang GW, et al. Macropinocytosis is an alternative pathway of cysteine acquisition and mitigates sorafenib-induced ferroptosis in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2022, 41(1):98.
[44] Armenta DA, Laqtom NN, Alchemy G, et al. Ferroptosis inhibition by lysosome-dependent catabolism of extracellular protein[J]. Cell Chem Biol, 2022, 29(11):1588-1600.e7.
[45] Zhang Y, Swanda RV, Nie L, et al. mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation[J]. Nat Commun, 2021, 12(1):1589.
[46] Bhatt V, Lan T, Wang W, et al. Inhibition of autophagy and MEK promotes ferroptosis in Lkb1-deficient Kras-driven lung tumors[J]. Cell Death Dis, 2023, 14(1):61.
[47] Buccarelli M, Marconi M, Pacioni S, et al. Inhibition of autophagy increases susceptibility of glioblastoma stem cells to temozolomide by igniting ferroptosis[J]. Cell Death Dis, 2018, 9(8):841.
[48] Liu J, Liu Y, Wang Y, et al. TMEM164 is a new determinant of autophagy-dependent ferroptosis[J]. Autophagy, 2023, 19(3):945-956.
[49] Meyer N, Henkel L, Linder B, et al. Autophagy activation, lipotoxicity and lysosomal membrane permeabilization synergize to promote pimozide- and loperamide-induced glioma cell death[J]. Autophagy, 2021, 17(11):3424-3443.
[50] Zhang G, He J, Ye X, et al. β-Thujaplicin induces autophagic cell death, apoptosis, and cell cycle arrest through ROS-mediated Akt and p38/ERK MAPK signaling in human hepatocellular carcinoma[J]. Cell Death Dis, 2019, 10(4):255.
[51] Dasari SK, Bialik S, Levin-Zaidman S, et al. Signalome-wide RNAi screen identifies GBA1 as a positive mediator of autophagic cell death[J]. Cell Death Differ, 2017, 24(7):1288-1302.
[52] Lin Z, Niu Y, Wan A, et al. RNA m6A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy[J]. EMBO J, 2020, 39(12):e103181.
[53] He S, Li Q, Jiang X, et al. Design of small molecule autophagy modulators: a promising druggable strategy[J]. J Med Chem, 2018, 61(11):4656-4687.
[54] Galluzzi L, Green DR. Autophagy-independent functions of the autophagy machinery[J]. Cell, 2019, 177(7):1682-1699.
Lysosomal degradation systems in ferroptosis: quality control and energy metabolism
LIU Shizuo1, YANG Huan2, TANG Rong1, WANG Yanjiao3△
(1,,830017,;2,,830017,;3,,,,830017,)
Ferroptosis is a mode of cell death that is closely linked to autophagy. Autophagy, chaperone-mediated autophagy, and macropinocytosis are involved in the recycling of various intracellular biomolecules based on the lysosomal degradation system. In ferroptosis, autophagy-based catabolic processes selectively recognize ferroptosis-associated proteins and promote iron overload or lipid peroxidation. Moreover, autophagy or macropinocytosis inhibits ferroptosis by regulating the metabolic state of the cell or the degradation of extracellular proteins. Therefore, lysosomes play a "double-edged sword" role in ferroptosis. In this study, we describe the mechanisms of the lysosomal system in energy metabolism and the quality control of ferroptosis. We focus on autophagy and discuss the effects of different autophagy properties on ferroptosis. Then, the following review of the progress of ferroptosis research is provided.
ferroptosis; autophagy; lysosome
R329.21; R363.2
A
10.3969/j.issn.1000-4718.2023.09.019
1000-4718(2023)09-1691-06
2023-02-22
2023-06-11
新疆天山英才項目(No. 2021233);新疆醫(yī)科大學博士啟動基金(No. B202101)
Tel: 13659929362; E-mail: 13659929362@163.com
(責任編輯:盧萍,羅森)