• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electron excitation processes in low energy collisions of hydrogen–helium atoms

    2022-12-28 09:52:12KunWang王堃ChuanDong董川YiZhiQu屈一至LingLiu劉玲YongWu吳勇XuHaiHong洪許海andRobertBuenker
    Chinese Physics B 2022年12期
    關(guān)鍵詞:吳勇劉玲

    Kun Wang(王堃) Chuan Dong(董川) Yi-Zhi Qu(屈一至) Ling Liu(劉玲) Yong Wu(吳勇)Xu-Hai Hong(洪許海) and Robert J.Buenker

    1Institute of Environmental Science,Shanxi University,Taiyuan 030006,China

    2College of Optoelectronics,University of Chinese Academy of Sciences,Beijing 100049,China

    3National Key Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    4School of Physics and Electronic Technology,Liaoning Normal University,Dalian 116029,China

    5Fachbereich C-Mathematik und Naturwissenschaften,Bergische Universitat Wuppertal,D-42097 Wuppertal,Germany

    Keywords: electron excitation processes,low energy collision,quantum-mechanical molecular orbital closecoupling method,cross section

    1. Introduction

    In modern astrophysics, the determination of the chemical compositions of stars by high-resolution spectroscopy is one of the fundamental issues.[1,2]For the past few years, in order to have a deeper understanding of stellar physics and uncover the mysteries of the formation history of the galaxy,millions of star spectral data have been collected through ground devices and satellite surveys,[3]for example,RAVE,[4]GAYAESO[5]and Gaia satellite.[6]Moreover,when determining the absolute and relative abundance of the elements in the stellar atmosphere, which plays an important role in astronomical observation,[7]the non-local thermodynamic equilibrium(non-LTE)effect should be considered.

    The most important mechanism in the non-LTE modeling of stellar spectra is the atom–atom inelastic collision process.[8]This process determines the properties of gas and plasmonic media in many cases, especially when hydrogen and helium, the most abundant elements in the universe, are involved,[9]e.g., with Hubble Space Telescope (HST) Cosmic Origins Spectrograph(COS),it is observed that the spectra of helium-dominated white dwarfs and atmospheric hydrogen exhibit a distinctive broad feature.[10]Although H + He is one of the simplest atom–atom inelastic collision systems with only three electrons, it is complex enough to give rise to the main types of inelastic reactions, and the interactions are quite difficult to compute with the accuracy that is needed.Therefore,this collision process has attracted great interest for decades.[11–25]

    In the low-energy region,the main reaction of the H+He collision is the excitation process

    From the viewpoint of theory, challenges still remain in this process: owing to the strong couplings between different states and the electron correlation effects,the neglect of the influence of higher excited states(H(n ≥3))for the system may not be acceptable.[22]Moreover, there exist relatively large discrepancies between measured and calculated results.[11–23]

    In the present work, the excitation processes H(1s)+He(1s2)→H(2s/2p)+He(1s2)are investigated in the energy region of 20–2000 eV/u by using the quantum-mechanical molecular orbital close-coupling(QMOCC)method. Our calculated cross sections are in better agreement with the experimental data than the previous theoretical works,and the possible reasons are discussed. The relevant electronic structure parameters which are needed in the dynamical calculations,including adiabatic potentials, radial and rotational couplingmatrix elements, have been obtained by using theab initiomultireference single-and double-excitation configurationinteraction(MRD-CI)method.[26,27]

    The present paper is organized as follows. In Section 2,the theoretical methods are briefly outlined. Section 3 is divided into two parts: in the first part,we present the molecular potential and coupling data, while the second part is devoted to the analysis of the scattering calculation results and the discussion on the disagreement with previous experimental and theoretical works. While a brief summary is performed in Section 4. Atomic units are used throughout, unless explicitly indicated otherwise.

    2. Theory

    The excitation processes of H(1s)+He(1s2) collisions are described by the QMOCC method,which has been formulated in detail by Zygelmanet al.[28]and Kimuraet al.,[29]here we just outline a brief introduction.By using the log-derivative method of Johnson,[30]a coupled set of second-order differential equations are solved. Firstly, the total wave functions are expanded by adiabatic electric wave functions,and transitions between channels are driven by elements(radialARand rotationalAθ) of the vector potentialA(R), whereRis the internuclear distance vector. For numerical calculation convenience,a unitary transformation is made to a diabatic representation. By matching the plane-wave boundary conditions at a large nuclear distance,theKmatrix is obtained from the scattering amplitude after a partial-wave decomposition,[28]then the scattering matrixSis written as

    whereIrepresents the identity matrix. In this case, the cross section from the initial channelito the final channeljis given by

    wherekiis the initial momentum, andJrepresents the total angular momentum.

    In the present work, by introducing appropriate reaction coordinates, allowance for the translation effects has been made.[31,32]The radial and rotational coupling matrix elements between the statesψKandψLare transformed into[33]

    respectively, whereεKandεLrepresent the energies of statesψKandψL,z2andzxare the components of the quadrupole moment tensor. This modification is similar in form to that obtained by applying the electron translation factor (ETF)method,[34]since the ETF effects are often used to remove asymptotic couplings between atomic states and are expected to be significant for collision energyE>1 keV/u.[35]

    3. Results and discussion

    3.1. Adiabatic potentials and couplings

    The adiabatic potentials and coupling matrix elements for the HeH quasi-molecular system have been obtained by using theab-initioMRD-CI method.[26,27]A threshold of 5.0×10?8Hartree(1.36×10?6eV)is used to select the configurations of the HeH quasi-molecule for internuclear distances from 1.0 a.u. to 3.00 a.u. The potential energy curves of the lowest eight2Σ+states inA1(C2v) symmetry and four2Π states in B1symmetry have been carried out. The higher excited states,such as the H(4d/4f)+He(1s2)states,have relatively little effect on the main excitation process to H(2s/2p),so they are not included in this work. And the2?states have been disregarded since the initial state is a doublet spin2Σ+state and such effects are quite small. The correlationconsistent polarized valence quadruple-zeta(cc-pVQZ)Gaussian basis sets,[36,37]i.e., (6s,3p,2d,1f) and (7s,3p,2d) contracted to[4s,3p,2d,1f]and[4s,3p,2d]have been employed for hydrogen[36]and helium,[37]respectively. In order to describe the Rydberg states of hydrogen atom better,the(4s,3p,2d)diffuse functions of H are added. As shown in Table 1,the energies of HeH quasi-molecule in the asymptotic region are displayed and are compared with the National Institute of Standards and Technology(NIST)data,[38]the errors are less than 0.015 eV,which should be quite adequate for most of the scattering calculations.[39]

    As shown in Fig.1,the adiabatic potentials referred to Table 1 have been obtained as a function of internuclear distanceR= 0.10–10.00 a.u. The 12Σ+represents the initial state H(1s2S)+He(1s2). Notably,for each of the excited states of the molecule HeH, there exists a valley nearR ~1.4 a.u.,and the interactions of the initial state with these valleys are likely to lead to a transition from the initial state to the final state. However, in the range of internuclear distanceR<1.00 a.u., the potential energy curves for the initial state and the other excited states are getting closer asRdecreases,so that the avoided crossings with their radial and rotational couplings become more critical. Compared with Ref. [22],other than the most important four states they considered,i.e.,1–32Σ+and 12Π,we also have considered the 3l,4s and 4p Rydberg states of H and have evaluated the influence of these states on the system in the following dynamic calculations.

    Table 1. Asymptotic separated-atom energies for the states of HeH system. The bold 1 2Σ+ represents the initial state.

    Fig.1. Potential energy curves of HeH molecule refer to Table 1. The solid and dashed lines represent the Σ+ and Π states,respectively.

    Fig. 2. Coupling matrix elements for HeH molecule: (a) radial coupling matrix elements(b)rotational coupling matrix elements.

    The radial and rotational coupling matrix elements between all pairs of states have been calculated with the ETF effects,[33]here some important couplings are displayed in Figs. 2(a) and 2(b). In Fig. 2(a), the initial 12Σ+state(H(1s)+He) is strongly coupled with the exit 22Σ+state(H(2p)+He)at internuclear distancesR ~0.8 a.u., this coupling should be the primary gateway of electron excitation flux toward the exit channels. We can also observe that there are two relatively broader and weaker peaks between 22Σ+and 32Σ+(H(2s)+He)states around 0.9 a.u. and 2.5 a.u.,which implies that with the increase of energy, the scattering cross section may also have a double-peak structure in the considered energy region. Compared with Ref. [22], not only the four most important states(1–32Σ+and 12Π)are included in the present work,but also more Rydberg states with their couplings should be considered,e.g.,the strong coupling between 32Σ+and 42Σ+states aroundR ~0.9 a.u.,which may affect the results of the excitation process.

    Some important adiabatic rotational coupling matrix elements are presented in Fig.2(b),these couplings drive the transitions between states of the same spin but of different spatial symmetry. ForR>3.0 a.u.,the 22Σ+and 32Σ+states are rotationally strongly coupled with the 12Π state corresponding to the electron excitation to H(2p)+He exit state.

    3.2. Excitation cross sections

    The QMOCC method has been employed to investigate the inelastic collision process of H(1s)+He(1s2)→H(2s/2p)+He(1s2), and the excitation cross sections have been obtained for a wide energy range of 20–2000 eV/u.All the datasets presented in this paper, including the excitation cross sections, are compiled in the supplementary materials (SM) in PDF format. First, we have checked the convergence of our calculation results. Considering the potentials with radial and rotational coupling matrix elements of four (1–32Σ+, 12Π, i.e., H(1s/2l)), nine (1–62Σ+, 1–32Π, i.e., H(1s/2l/3l)) and twelve (1–82Σ+, 1–42Π, i.e.,H(1s/2l/3l/4s/4p)) states, the total cross sections of the excitation process to H(2s/2p) have been calculated with the QMOCC method. Good agreement has been found between the excitation cross sections calculated with nine and twelve states(they are almost identical, so the cross sections of nine states are not shown here),which indicates that our results with twelve states are convergent.

    As shown in Fig. 3, the excitation cross sections to H(2s/2p) states are compared with the available experimental[12,17,18]and other theoretical[13,14,17,21–23]results. AtE ~20 eV/u, the total excitation cross section is about 0.12×10?16cm2,with the energy increasing,this value shows an upward trend and reaches a maximum of about 0.85×10?16cm2atE ~600 eV/u. However, when the energy exceeds 600 eV/u, the cross section shows a very slow downward trend to 0.79×10?16cm2around 2 keV/u. Compared with all available experimental[12,17,18]data,our results are consistent with them in both trend and magnitude, especially in the overlapping energy range of 100–500 eV/u. It is a pity that the latest experimental results of Van Zylet al.[19]only provided the excitation cross sections to the H(2p)state,as shown in Fig. 4. If we use these data to estimate the total cross section, the difference between our calculation and the experiment results would be less than 15%over a wide energy range from 40 eV/u to 1 keV/u.

    Fig. 3. Comparison between the present total excitation cross sections to H(2l) state with experimental and other theoretical results. The theoretical results include the present calculation considering 12 states(solid line),4 states(short dashed line),the classical trajectory Monte Carlo(CTMC)results of Fr′emont et al.[23](short dash dotted line),quantum chemical results of Belyaev[22] (dashed line),semiclassical approximation results of Hildenbrand et al.[21] (dash dot dotted line), two-state quasi-molecular model results of Benoit et al.[17] (dash dotted line), and Born approximation results of Bell et al.[13,14] (short dotted line). The experimental results are from Grosser et al.[18] (solid circles),Benoit et al.[17] (solid triangles),and Birely et al.[12] (solid pentagram).

    Next, compared to all other theoretical[13,14,17,21–23]results, our results show the best overall agreement with the available experimental data. Fr′emontet al.[23]used the classical trajectory Monte Carlo (CTMC) method, while Born approximation method was applied by Bellet al.,[13,14]these two methods are usually suitable for the treatment of highenergy collision with incident energies over tens of keV/u.Benoitet al.[17]estimated the total cross section using the twostate quasi-molecular model method,the lack of consideration of essential channels may have an impact on the final result.Belyaev[22]has used the quantum chemical method, but as mentioned in his paper,only four most important channels(1–32Σ+, 12Π, i.e., H(1s/2l))are included, which influence the accuracy of the numerical results. This can be explained by our work:as shown in Fig.1,in the range ofR<1.00 a.u.,the potential energy curves of the four important states are very close to other highly excited states, while in Fig. 2, it can be found that these four states also have strong couplings with the highly excited states. Therefore, with the increasing incident energy, the impact of the highly excited states on the scattering cross section to H(2s/2p) states would be greater and greater. To verify this, we have also present our results with the four most important states, which agree well with the results of Belyaev,[22]as shown in Fig. 3. In the range ofE<40 eV/u, the results of four states, twelve states and Belyaev are in good agreement. However, as the energy increases, the difference between the results of the twelve and the four states becomes larger and larger. At about 1 keV/u,the cross section of the four states is about 90% larger than that of the twelve states. Finally, we compare the excitation cross sections with the works of Hildenbrandet al.[21]at the energy junction (around 2 keV/u), it can be seen from Fig. 3 that these two calculations are well connected.

    Fig. 4. Comparison between the present excitation cross sections to H(2p) state (a) and H(2s) state (b) with the experimental and other theoretical results. The theoretical results include the present calculation considering 12 states (solid line), quantum chemical results of Belyaev[22](dashed line), semiclassical approximation results of Hildenbrand et al.[21](dotted line), and molecular orbital results of Kimura et al.[20] (dash dotted line). The experimental results are from Grosser et al.[18] (solid circles), Birely et al.[12] (solid triangle), Van Zyl et al.[19] (solid square) and Sauers et al.[15] (solid pentagram).

    To validate our results further, the states-selected cross sections to H(2p)and H(2s)are presented and compared with other available theoretical[20–22]and experimental[12,15,18,19]data for the excitation process in Figs. 4(a) and 4(b), respectively. It can be seen that in the energy range considered, the dominant channel for the collision excitation process is the H(2p) states. As can be found in Fig. 4(a), our state-selective cross section of H(2p) agrees well with all experimental[12,18,19]data in terms of numerical values and trends. Especially compared with the latest experimental results of Van Zylet al.,[19]the difference is less than 15%in a fairly wide energy range from 40 eV/u to 1 keV/u.Moreover,other theoretical[20–22]results have been compared.Kimuraet al.[20]adopted pseudopotential to replace the effect of two electrons of the He atom, so their results are different from our in the overlapping energy region. We focus on comparing our results with Belyaev[22]as a similar energy range is considered. For the energyE>40 eV/u,with the increase of energy, the difference between his results and ours becomes more and more extensive. When the energy reaches toE ~1 keV/u, his result is about twice as large as ours. As mentioned above,this is because he has not considered the influences of highly excited states of H(n>2),which may affect their accuracy.

    Figure 4(b) shows the excitation state-selective cross section to H(2s) state, compared with the available experimental[12,15,18]results,our calculations agree well with most of the experimental[12,18]results in the overlapping energy region. It is notable that the excitation cross section to H(2s) state shows a peak structure at around 30 eV/u impact energy, and a valley structure when the collision energyE ~60 eV/u, which is consistent with the calculation results of Belyaev,[22]and more accurate experimental data are expect for such structures. In the energy range ofE>60 eV/u, our results show an upward trend with the increasing energy. The reason for the formation of these structures is because there exist two relatively broader and weaker peaks between 22Σ+and 32Σ+(H(2s)+He)states aroundR ~0.9 a.u.and 2.5 a.u.,respectively. However, different from our calculation results,the work of Belyaev[22]shows a second peak structure which is formed nearE ~100 eV/u. There are two reasons for the difference. 1) More excited states have been considered in our work, which would be expected to have effect on the results of excitation cross sections to H(2l) at higher energies.2) The ETF effects have been contained in our calculations,as they would make contributions in the energy range above 1 keV/u.[40]

    4. Conclusion

    In the present work, a good evaluation about the electron excitation processes of H(1s)+He(1s2)→H(2s/2p)+He(1s2)collision has been provided by the QMOCC method.Total and state-selective cross sections have been calculated and compared with the available theoretical and experimental works in the energy range of 20–2000 eV/u,with theab initiopotential energy curves and nonadiabatic radial and rotational coupling matrix elements obtained by the MRD-CI method.Overall,our present results agree well with available measurements for both total and state-selective cross sections in the respective overlapping energy regions. The dominant channel for the collision excitation process is the H(2p)states,the difference is less than 15% in a fairly wide energy range from 40 eV/u to 1 keV/u when compared with the latest experimental results of Van Zylet al.[19]

    The comparison of our results with other theoretical calculations further demonstrates the importance of considering a sufficient number of channels. It is proved that with the increase of the collision energy, the role of the highly excited state becomes more and more significant. The excitation cross section to H(2s)state shows a peak structure at around 30 eV/u impact energy, and a valley structure at about 60 eV/u, when the collision energyE> 60 eV/u, our results show an upward trend with the increasing energy. The formation of these structures is mainly due to the two broad couplings between 22Σ+and 32Σ+(H(2s)+He)states aroundR ~0.9 a.u. and 2.5 a.u., respectively. Our work brings a deeper understanding of atom–atom inelastic collision excitation processes and provides new data beneficial for astrophysical modeling.

    Data availability statement

    The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.j00113.00083.

    Acknowledgment

    This work has been supported by the National Natural Science Foundation of China (Grant Nos. 12204288,11934004,and 12274040).

    猜你喜歡
    吳勇劉玲
    椰子的身價
    Spectroscopy and scattering matrices with nitrogen atom:Rydberg states and optical oscillator strengths
    吳勇書法作品
    等你
    Characterization of a microsecond pulsed non-equilibrium atmospheric pressure Ar plasma using laser scattering and optical emission spectroscopy
    柯川、吳勇中國畫作品
    刺莓華
    我們愛老師
    描述人物的不同造型
    森林里的怪婆婆
    午夜激情欧美在线| 国产精品福利在线免费观看| 最近最新中文字幕大全电影3| 欧美成人一区二区免费高清观看| 91aial.com中文字幕在线观看| 免费看光身美女| 别揉我奶头 嗯啊视频| 亚洲精品国产av成人精品| 搡女人真爽免费视频火全软件| 伊人久久精品亚洲午夜| 国产 一区 欧美 日韩| 亚洲婷婷狠狠爱综合网| 久久精品国产自在天天线| 亚洲成色77777| 亚洲精品成人av观看孕妇| 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品成人久久久久久| 亚洲最大成人手机在线| 国内揄拍国产精品人妻在线| 黄色配什么色好看| 蜜桃久久精品国产亚洲av| 日韩成人av中文字幕在线观看| 街头女战士在线观看网站| 亚洲成人av在线免费| 直男gayav资源| 99热6这里只有精品| 国产成人a∨麻豆精品| 国产视频首页在线观看| 国产一区亚洲一区在线观看| 午夜福利在线在线| 免费无遮挡裸体视频| 午夜精品在线福利| 国产精品爽爽va在线观看网站| 少妇被粗大猛烈的视频| 国产免费一级a男人的天堂| 欧美激情国产日韩精品一区| 精品国内亚洲2022精品成人| 免费看日本二区| 乱系列少妇在线播放| 日日干狠狠操夜夜爽| 99热网站在线观看| 亚洲熟女精品中文字幕| 波野结衣二区三区在线| 18+在线观看网站| 99久国产av精品| 一级毛片我不卡| 99九九线精品视频在线观看视频| av又黄又爽大尺度在线免费看| 欧美bdsm另类| 国内少妇人妻偷人精品xxx网站| 国产成人午夜福利电影在线观看| 国产久久久一区二区三区| 三级国产精品片| 日本一二三区视频观看| 国产黄片视频在线免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久这里只有精品中国| 欧美最新免费一区二区三区| 亚洲久久久久久中文字幕| 国产黄色小视频在线观看| 777米奇影视久久| 最新中文字幕久久久久| 欧美最新免费一区二区三区| 赤兔流量卡办理| 内地一区二区视频在线| 国产片特级美女逼逼视频| 我要看日韩黄色一级片| 大话2 男鬼变身卡| 天堂av国产一区二区熟女人妻| 美女高潮的动态| 男人爽女人下面视频在线观看| 日韩三级伦理在线观看| 日韩中字成人| 黄色日韩在线| 中文字幕亚洲精品专区| 亚洲人与动物交配视频| 简卡轻食公司| 国产精品精品国产色婷婷| 在线免费观看的www视频| 精品久久久久久久久亚洲| 精品国产露脸久久av麻豆 | 久久久久久久久久人人人人人人| 亚洲经典国产精华液单| 亚洲最大成人中文| 精品熟女少妇av免费看| av在线蜜桃| 少妇被粗大猛烈的视频| 99久久精品热视频| 亚洲国产欧美人成| 激情五月婷婷亚洲| 91久久精品国产一区二区成人| 一区二区三区四区激情视频| 国产精品人妻久久久影院| 自拍偷自拍亚洲精品老妇| 国产熟女欧美一区二区| 亚洲,欧美,日韩| 亚洲人成网站高清观看| 国产69精品久久久久777片| 亚洲最大成人手机在线| 亚洲av免费高清在线观看| 99久久精品国产国产毛片| 日本爱情动作片www.在线观看| av在线天堂中文字幕| 国产精品爽爽va在线观看网站| 最近视频中文字幕2019在线8| 嫩草影院精品99| 国产精品一区二区三区四区久久| 又大又黄又爽视频免费| 亚洲自拍偷在线| 日日啪夜夜撸| 国产爱豆传媒在线观看| 国产精品一区二区在线观看99 | 欧美激情国产日韩精品一区| 尾随美女入室| 精品久久久久久久久久久久久| 久久精品久久精品一区二区三区| 国产白丝娇喘喷水9色精品| 欧美高清成人免费视频www| 真实男女啪啪啪动态图| 18禁动态无遮挡网站| 成人二区视频| 三级国产精品片| 免费在线观看成人毛片| 成人二区视频| 精品人妻一区二区三区麻豆| 少妇人妻精品综合一区二区| 天堂俺去俺来也www色官网 | 成人无遮挡网站| 亚洲精品乱码久久久久久按摩| av在线蜜桃| 中文天堂在线官网| 夜夜看夜夜爽夜夜摸| 天堂av国产一区二区熟女人妻| 色尼玛亚洲综合影院| 精品人妻熟女av久视频| 免费看美女性在线毛片视频| 3wmmmm亚洲av在线观看| 欧美三级亚洲精品| 尾随美女入室| 欧美变态另类bdsm刘玥| 啦啦啦韩国在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 真实男女啪啪啪动态图| 亚洲美女搞黄在线观看| 久久精品国产鲁丝片午夜精品| 国产精品久久久久久久久免| 三级国产精品片| 中文字幕制服av| 高清在线视频一区二区三区| 夜夜爽夜夜爽视频| 高清视频免费观看一区二区 | 2022亚洲国产成人精品| av.在线天堂| 日韩av不卡免费在线播放| 你懂的网址亚洲精品在线观看| 亚洲最大成人中文| 伊人久久精品亚洲午夜| 在线a可以看的网站| 日韩视频在线欧美| 97超碰精品成人国产| 国产伦一二天堂av在线观看| 国产探花在线观看一区二区| 国产 一区 欧美 日韩| 九九爱精品视频在线观看| 国产成人a区在线观看| 中文字幕av在线有码专区| 久久久久国产网址| 老司机影院毛片| 永久网站在线| 汤姆久久久久久久影院中文字幕 | 麻豆国产97在线/欧美| 久久综合国产亚洲精品| 两个人视频免费观看高清| 18禁裸乳无遮挡免费网站照片| 日本一二三区视频观看| 国产老妇伦熟女老妇高清| 春色校园在线视频观看| 好男人在线观看高清免费视频| 午夜爱爱视频在线播放| 日韩 亚洲 欧美在线| 少妇人妻精品综合一区二区| 亚洲精品中文字幕在线视频 | 神马国产精品三级电影在线观看| 少妇人妻一区二区三区视频| av播播在线观看一区| 91aial.com中文字幕在线观看| 精华霜和精华液先用哪个| 亚洲欧美日韩无卡精品| www.色视频.com| 九九久久精品国产亚洲av麻豆| 热99在线观看视频| 一级a做视频免费观看| 亚洲av免费在线观看| 亚洲av福利一区| 一夜夜www| 欧美xxxx性猛交bbbb| 免费人成在线观看视频色| 亚洲精华国产精华液的使用体验| 小蜜桃在线观看免费完整版高清| 不卡视频在线观看欧美| 人体艺术视频欧美日本| 欧美区成人在线视频| 精品不卡国产一区二区三区| 免费看光身美女| 人人妻人人澡人人爽人人夜夜 | 亚洲精品视频女| 麻豆久久精品国产亚洲av| 永久免费av网站大全| 色哟哟·www| 亚洲精品乱久久久久久| 日韩强制内射视频| 国产精品日韩av在线免费观看| 毛片女人毛片| 99热这里只有是精品在线观看| 又爽又黄无遮挡网站| 久久久a久久爽久久v久久| 97超碰精品成人国产| 亚洲经典国产精华液单| 国产极品天堂在线| 又粗又硬又长又爽又黄的视频| 国产av国产精品国产| av女优亚洲男人天堂| 97精品久久久久久久久久精品| 免费黄频网站在线观看国产| 国产成人精品福利久久| 日韩人妻高清精品专区| 国产 一区精品| 免费观看a级毛片全部| 97超视频在线观看视频| 激情 狠狠 欧美| 国模一区二区三区四区视频| 欧美丝袜亚洲另类| 欧美潮喷喷水| 日本熟妇午夜| 亚洲精品视频女| 亚洲国产精品专区欧美| 搡老乐熟女国产| 最近2019中文字幕mv第一页| 高清在线视频一区二区三区| 国产免费又黄又爽又色| 在线播放无遮挡| 少妇熟女aⅴ在线视频| 国产成人精品福利久久| 国产午夜精品论理片| 伊人久久精品亚洲午夜| 亚洲第一区二区三区不卡| 免费播放大片免费观看视频在线观看| 国模一区二区三区四区视频| 成人亚洲精品av一区二区| 久久这里有精品视频免费| 日本一本二区三区精品| a级一级毛片免费在线观看| 日韩成人伦理影院| 岛国毛片在线播放| 国产午夜福利久久久久久| 欧美日韩精品成人综合77777| www.色视频.com| 国产高清国产精品国产三级 | 嘟嘟电影网在线观看| 国产 一区 欧美 日韩| 十八禁网站网址无遮挡 | 亚洲在久久综合| 人妻夜夜爽99麻豆av| 一级a做视频免费观看| 成年人午夜在线观看视频 | 日本一本二区三区精品| 美女脱内裤让男人舔精品视频| 日韩一本色道免费dvd| eeuss影院久久| 一级毛片电影观看| 国产高清国产精品国产三级 | 国产一区有黄有色的免费视频 | 欧美三级亚洲精品| 成人毛片a级毛片在线播放| 神马国产精品三级电影在线观看| 日本色播在线视频| 在线免费观看的www视频| 国产精品爽爽va在线观看网站| 美女cb高潮喷水在线观看| 亚洲精品国产av蜜桃| 一个人看视频在线观看www免费| 日韩中字成人| 大片免费播放器 马上看| 亚洲国产精品国产精品| 国产伦精品一区二区三区四那| 成年版毛片免费区| 欧美精品一区二区大全| 国产成人91sexporn| 国产精品嫩草影院av在线观看| 99久久人妻综合| 内射极品少妇av片p| 国产黄色免费在线视频| 亚洲av免费在线观看| 亚洲婷婷狠狠爱综合网| 亚洲成人一二三区av| 欧美潮喷喷水| 久久久亚洲精品成人影院| 一级a做视频免费观看| 老司机影院成人| 中文字幕人妻熟人妻熟丝袜美| 不卡视频在线观看欧美| 久久精品人妻少妇| 免费不卡的大黄色大毛片视频在线观看 | 国产精品三级大全| 最后的刺客免费高清国语| 亚洲精品中文字幕在线视频 | 免费观看性生交大片5| 久久久久网色| 中文字幕免费在线视频6| 伊人久久精品亚洲午夜| 国产精品一区二区性色av| 男女下面进入的视频免费午夜| 亚洲成人中文字幕在线播放| 婷婷六月久久综合丁香| 欧美性猛交╳xxx乱大交人| 好男人在线观看高清免费视频| 黄色欧美视频在线观看| 色5月婷婷丁香| 一区二区三区高清视频在线| 色吧在线观看| 嫩草影院入口| 欧美高清性xxxxhd video| 国产伦理片在线播放av一区| 边亲边吃奶的免费视频| 九九久久精品国产亚洲av麻豆| 日本爱情动作片www.在线观看| 99热这里只有精品一区| 国产精品不卡视频一区二区| 寂寞人妻少妇视频99o| www.色视频.com| 卡戴珊不雅视频在线播放| 国产亚洲一区二区精品| 欧美变态另类bdsm刘玥| av.在线天堂| 我的女老师完整版在线观看| 日韩强制内射视频| 午夜老司机福利剧场| 欧美3d第一页| 观看免费一级毛片| 国产一级毛片七仙女欲春2| 精品国产三级普通话版| 天美传媒精品一区二区| 非洲黑人性xxxx精品又粗又长| 亚洲三级黄色毛片| 99视频精品全部免费 在线| 美女主播在线视频| 18禁在线播放成人免费| 国产老妇伦熟女老妇高清| 美女高潮的动态| 啦啦啦韩国在线观看视频| 亚洲av日韩在线播放| 久久久久久久久大av| 听说在线观看完整版免费高清| 精品欧美国产一区二区三| 91精品国产九色| 国产午夜精品一二区理论片| 免费观看a级毛片全部| 91久久精品国产一区二区成人| av线在线观看网站| 成人亚洲精品一区在线观看 | 国产精品福利在线免费观看| 免费看美女性在线毛片视频| 国产精品国产三级国产专区5o| 美女被艹到高潮喷水动态| 国产精品久久久久久久电影| 草草在线视频免费看| 久久97久久精品| 又爽又黄无遮挡网站| 午夜免费男女啪啪视频观看| 国产极品天堂在线| 久久精品综合一区二区三区| 男人和女人高潮做爰伦理| 蜜桃久久精品国产亚洲av| 国产一区二区三区综合在线观看 | 亚洲精品乱码久久久v下载方式| 在线观看人妻少妇| av在线亚洲专区| 国产乱人视频| 国产精品人妻久久久影院| 男人和女人高潮做爰伦理| 美女被艹到高潮喷水动态| 久久热精品热| 久久久久久久午夜电影| 啦啦啦啦在线视频资源| 国产探花极品一区二区| 黄片wwwwww| 好男人视频免费观看在线| 亚洲天堂国产精品一区在线| 永久网站在线| 2018国产大陆天天弄谢| 在线 av 中文字幕| 成人一区二区视频在线观看| 成人毛片60女人毛片免费| 一级片'在线观看视频| 国产老妇伦熟女老妇高清| 99热这里只有是精品50| 亚洲欧美一区二区三区黑人 | 国产在视频线精品| 日韩视频在线欧美| 欧美三级亚洲精品| 色综合亚洲欧美另类图片| 少妇裸体淫交视频免费看高清| 欧美成人精品欧美一级黄| 天天一区二区日本电影三级| 国产极品天堂在线| 欧美性猛交╳xxx乱大交人| 青春草国产在线视频| 丝袜喷水一区| 欧美区成人在线视频| 亚洲自偷自拍三级| 国产在视频线精品| 蜜桃久久精品国产亚洲av| 免费av不卡在线播放| 免费av毛片视频| 99热全是精品| 色5月婷婷丁香| 日韩中字成人| 国语对白做爰xxxⅹ性视频网站| 国产午夜精品一二区理论片| 免费看a级黄色片| 精品久久久精品久久久| 欧美日本视频| 又大又黄又爽视频免费| av卡一久久| 久久精品国产鲁丝片午夜精品| 大香蕉久久网| 男女下面进入的视频免费午夜| 日日摸夜夜添夜夜爱| 久久人人爽人人片av| 麻豆乱淫一区二区| 少妇的逼水好多| 2021天堂中文幕一二区在线观| 我要看日韩黄色一级片| 国产精品美女特级片免费视频播放器| 免费少妇av软件| 国产永久视频网站| 日韩强制内射视频| 啦啦啦啦在线视频资源| 免费av不卡在线播放| 国国产精品蜜臀av免费| 18禁动态无遮挡网站| 精品酒店卫生间| 日韩伦理黄色片| 国产精品熟女久久久久浪| 亚洲欧美成人精品一区二区| 最新中文字幕久久久久| 国内精品宾馆在线| 在线播放无遮挡| 热99在线观看视频| 男人爽女人下面视频在线观看| 成人无遮挡网站| 99热这里只有是精品在线观看| 又黄又爽又刺激的免费视频.| 欧美激情国产日韩精品一区| 22中文网久久字幕| 日韩三级伦理在线观看| 日日摸夜夜添夜夜爱| 亚洲精品中文字幕在线视频 | 99久久人妻综合| 91狼人影院| 亚洲国产精品sss在线观看| 精品一区二区三区视频在线| 亚洲在久久综合| 一边亲一边摸免费视频| 午夜福利成人在线免费观看| 在线a可以看的网站| 精品午夜福利在线看| 在线免费观看不下载黄p国产| 熟妇人妻久久中文字幕3abv| 亚洲av成人精品一二三区| 亚洲av免费高清在线观看| 久久久欧美国产精品| 黄片wwwwww| 国产精品嫩草影院av在线观看| 欧美高清成人免费视频www| 婷婷色综合大香蕉| 亚洲国产最新在线播放| 啦啦啦韩国在线观看视频| 国产午夜精品久久久久久一区二区三区| 欧美zozozo另类| 日本一本二区三区精品| 国内揄拍国产精品人妻在线| 少妇熟女欧美另类| 一级毛片黄色毛片免费观看视频| 听说在线观看完整版免费高清| 午夜久久久久精精品| 亚洲自拍偷在线| 亚洲av免费高清在线观看| 国产伦理片在线播放av一区| 亚洲av.av天堂| 国产69精品久久久久777片| 亚洲欧美精品自产自拍| 亚洲国产精品成人综合色| 午夜免费观看性视频| 国产伦精品一区二区三区视频9| 国产精品嫩草影院av在线观看| 成人高潮视频无遮挡免费网站| 久久人人爽人人爽人人片va| 精品久久久久久成人av| 日韩欧美 国产精品| 一区二区三区四区激情视频| 久久精品熟女亚洲av麻豆精品 | 婷婷六月久久综合丁香| 少妇熟女欧美另类| 熟女电影av网| 校园人妻丝袜中文字幕| 免费观看精品视频网站| 亚洲av成人精品一二三区| 三级毛片av免费| 国产精品久久久久久久电影| 91在线精品国自产拍蜜月| 日韩一区二区视频免费看| 久久99热这里只有精品18| 非洲黑人性xxxx精品又粗又长| 成人亚洲精品一区在线观看 | av国产久精品久网站免费入址| 欧美高清成人免费视频www| 免费电影在线观看免费观看| 亚洲av不卡在线观看| 国内少妇人妻偷人精品xxx网站| 男插女下体视频免费在线播放| 十八禁网站网址无遮挡 | 亚洲av二区三区四区| 久久97久久精品| 精品久久久久久久人妻蜜臀av| 久久久久久久久大av| 三级国产精品片| 天堂中文最新版在线下载 | 两个人的视频大全免费| 亚洲aⅴ乱码一区二区在线播放| 啦啦啦韩国在线观看视频| 26uuu在线亚洲综合色| 三级毛片av免费| 一级毛片黄色毛片免费观看视频| 搡老妇女老女人老熟妇| 尾随美女入室| 国产国拍精品亚洲av在线观看| 亚洲丝袜综合中文字幕| 色综合站精品国产| 天堂网av新在线| 亚洲欧美成人综合另类久久久| 午夜激情福利司机影院| 欧美三级亚洲精品| 女人十人毛片免费观看3o分钟| 99久久精品一区二区三区| 久久久久久久久大av| 久久久久久久大尺度免费视频| 亚洲精品日韩av片在线观看| 久久人人爽人人片av| 国产女主播在线喷水免费视频网站 | 一二三四中文在线观看免费高清| 亚洲,欧美,日韩| 激情五月婷婷亚洲| 大又大粗又爽又黄少妇毛片口| 99久久中文字幕三级久久日本| 精品久久久久久成人av| 日韩欧美精品v在线| 色视频www国产| 中文天堂在线官网| 日本欧美国产在线视频| 老司机影院毛片| 校园人妻丝袜中文字幕| av专区在线播放| 2018国产大陆天天弄谢| 女的被弄到高潮叫床怎么办| 国产黄频视频在线观看| 99热全是精品| 亚洲激情五月婷婷啪啪| 亚洲国产精品成人久久小说| 亚洲精品亚洲一区二区| 亚洲国产最新在线播放| 老司机影院毛片| 丝袜美腿在线中文| 欧美激情国产日韩精品一区| 免费看美女性在线毛片视频| 精品久久久久久久人妻蜜臀av| 国产av不卡久久| 国产成人a区在线观看| 国产精品人妻久久久影院| 又黄又爽又刺激的免费视频.| 亚洲国产欧美在线一区| 午夜久久久久精精品| 热99在线观看视频| 熟妇人妻不卡中文字幕| 日本色播在线视频| 在线免费观看不下载黄p国产| 欧美日韩一区二区视频在线观看视频在线 | 91精品国产九色| 只有这里有精品99| 99热全是精品| 91午夜精品亚洲一区二区三区| 成年人午夜在线观看视频 | 91av网一区二区| 干丝袜人妻中文字幕| 两个人的视频大全免费| 国产黄色小视频在线观看| 精品久久久久久久人妻蜜臀av| 天堂√8在线中文| 日韩电影二区| 国国产精品蜜臀av免费| 国产成人午夜福利电影在线观看| 欧美性感艳星| 国产精品99久久久久久久久| 嫩草影院新地址| 久久久久久久久久成人| 日日干狠狠操夜夜爽| 少妇高潮的动态图| 毛片一级片免费看久久久久| 白带黄色成豆腐渣| 一个人观看的视频www高清免费观看| 欧美不卡视频在线免费观看| 久久99热这里只频精品6学生| 99久久九九国产精品国产免费| 91精品伊人久久大香线蕉| 九九在线视频观看精品|