• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electron excitation processes in low energy collisions of hydrogen–helium atoms

    2022-12-28 09:52:12KunWang王堃ChuanDong董川YiZhiQu屈一至LingLiu劉玲YongWu吳勇XuHaiHong洪許海andRobertBuenker
    Chinese Physics B 2022年12期
    關(guān)鍵詞:吳勇劉玲

    Kun Wang(王堃) Chuan Dong(董川) Yi-Zhi Qu(屈一至) Ling Liu(劉玲) Yong Wu(吳勇)Xu-Hai Hong(洪許海) and Robert J.Buenker

    1Institute of Environmental Science,Shanxi University,Taiyuan 030006,China

    2College of Optoelectronics,University of Chinese Academy of Sciences,Beijing 100049,China

    3National Key Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    4School of Physics and Electronic Technology,Liaoning Normal University,Dalian 116029,China

    5Fachbereich C-Mathematik und Naturwissenschaften,Bergische Universitat Wuppertal,D-42097 Wuppertal,Germany

    Keywords: electron excitation processes,low energy collision,quantum-mechanical molecular orbital closecoupling method,cross section

    1. Introduction

    In modern astrophysics, the determination of the chemical compositions of stars by high-resolution spectroscopy is one of the fundamental issues.[1,2]For the past few years, in order to have a deeper understanding of stellar physics and uncover the mysteries of the formation history of the galaxy,millions of star spectral data have been collected through ground devices and satellite surveys,[3]for example,RAVE,[4]GAYAESO[5]and Gaia satellite.[6]Moreover,when determining the absolute and relative abundance of the elements in the stellar atmosphere, which plays an important role in astronomical observation,[7]the non-local thermodynamic equilibrium(non-LTE)effect should be considered.

    The most important mechanism in the non-LTE modeling of stellar spectra is the atom–atom inelastic collision process.[8]This process determines the properties of gas and plasmonic media in many cases, especially when hydrogen and helium, the most abundant elements in the universe, are involved,[9]e.g., with Hubble Space Telescope (HST) Cosmic Origins Spectrograph(COS),it is observed that the spectra of helium-dominated white dwarfs and atmospheric hydrogen exhibit a distinctive broad feature.[10]Although H + He is one of the simplest atom–atom inelastic collision systems with only three electrons, it is complex enough to give rise to the main types of inelastic reactions, and the interactions are quite difficult to compute with the accuracy that is needed.Therefore,this collision process has attracted great interest for decades.[11–25]

    In the low-energy region,the main reaction of the H+He collision is the excitation process

    From the viewpoint of theory, challenges still remain in this process: owing to the strong couplings between different states and the electron correlation effects,the neglect of the influence of higher excited states(H(n ≥3))for the system may not be acceptable.[22]Moreover, there exist relatively large discrepancies between measured and calculated results.[11–23]

    In the present work, the excitation processes H(1s)+He(1s2)→H(2s/2p)+He(1s2)are investigated in the energy region of 20–2000 eV/u by using the quantum-mechanical molecular orbital close-coupling(QMOCC)method. Our calculated cross sections are in better agreement with the experimental data than the previous theoretical works,and the possible reasons are discussed. The relevant electronic structure parameters which are needed in the dynamical calculations,including adiabatic potentials, radial and rotational couplingmatrix elements, have been obtained by using theab initiomultireference single-and double-excitation configurationinteraction(MRD-CI)method.[26,27]

    The present paper is organized as follows. In Section 2,the theoretical methods are briefly outlined. Section 3 is divided into two parts: in the first part,we present the molecular potential and coupling data, while the second part is devoted to the analysis of the scattering calculation results and the discussion on the disagreement with previous experimental and theoretical works. While a brief summary is performed in Section 4. Atomic units are used throughout, unless explicitly indicated otherwise.

    2. Theory

    The excitation processes of H(1s)+He(1s2) collisions are described by the QMOCC method,which has been formulated in detail by Zygelmanet al.[28]and Kimuraet al.,[29]here we just outline a brief introduction.By using the log-derivative method of Johnson,[30]a coupled set of second-order differential equations are solved. Firstly, the total wave functions are expanded by adiabatic electric wave functions,and transitions between channels are driven by elements(radialARand rotationalAθ) of the vector potentialA(R), whereRis the internuclear distance vector. For numerical calculation convenience,a unitary transformation is made to a diabatic representation. By matching the plane-wave boundary conditions at a large nuclear distance,theKmatrix is obtained from the scattering amplitude after a partial-wave decomposition,[28]then the scattering matrixSis written as

    whereIrepresents the identity matrix. In this case, the cross section from the initial channelito the final channeljis given by

    wherekiis the initial momentum, andJrepresents the total angular momentum.

    In the present work, by introducing appropriate reaction coordinates, allowance for the translation effects has been made.[31,32]The radial and rotational coupling matrix elements between the statesψKandψLare transformed into[33]

    respectively, whereεKandεLrepresent the energies of statesψKandψL,z2andzxare the components of the quadrupole moment tensor. This modification is similar in form to that obtained by applying the electron translation factor (ETF)method,[34]since the ETF effects are often used to remove asymptotic couplings between atomic states and are expected to be significant for collision energyE>1 keV/u.[35]

    3. Results and discussion

    3.1. Adiabatic potentials and couplings

    The adiabatic potentials and coupling matrix elements for the HeH quasi-molecular system have been obtained by using theab-initioMRD-CI method.[26,27]A threshold of 5.0×10?8Hartree(1.36×10?6eV)is used to select the configurations of the HeH quasi-molecule for internuclear distances from 1.0 a.u. to 3.00 a.u. The potential energy curves of the lowest eight2Σ+states inA1(C2v) symmetry and four2Π states in B1symmetry have been carried out. The higher excited states,such as the H(4d/4f)+He(1s2)states,have relatively little effect on the main excitation process to H(2s/2p),so they are not included in this work. And the2?states have been disregarded since the initial state is a doublet spin2Σ+state and such effects are quite small. The correlationconsistent polarized valence quadruple-zeta(cc-pVQZ)Gaussian basis sets,[36,37]i.e., (6s,3p,2d,1f) and (7s,3p,2d) contracted to[4s,3p,2d,1f]and[4s,3p,2d]have been employed for hydrogen[36]and helium,[37]respectively. In order to describe the Rydberg states of hydrogen atom better,the(4s,3p,2d)diffuse functions of H are added. As shown in Table 1,the energies of HeH quasi-molecule in the asymptotic region are displayed and are compared with the National Institute of Standards and Technology(NIST)data,[38]the errors are less than 0.015 eV,which should be quite adequate for most of the scattering calculations.[39]

    As shown in Fig.1,the adiabatic potentials referred to Table 1 have been obtained as a function of internuclear distanceR= 0.10–10.00 a.u. The 12Σ+represents the initial state H(1s2S)+He(1s2). Notably,for each of the excited states of the molecule HeH, there exists a valley nearR ~1.4 a.u.,and the interactions of the initial state with these valleys are likely to lead to a transition from the initial state to the final state. However, in the range of internuclear distanceR<1.00 a.u., the potential energy curves for the initial state and the other excited states are getting closer asRdecreases,so that the avoided crossings with their radial and rotational couplings become more critical. Compared with Ref. [22],other than the most important four states they considered,i.e.,1–32Σ+and 12Π,we also have considered the 3l,4s and 4p Rydberg states of H and have evaluated the influence of these states on the system in the following dynamic calculations.

    Table 1. Asymptotic separated-atom energies for the states of HeH system. The bold 1 2Σ+ represents the initial state.

    Fig.1. Potential energy curves of HeH molecule refer to Table 1. The solid and dashed lines represent the Σ+ and Π states,respectively.

    Fig. 2. Coupling matrix elements for HeH molecule: (a) radial coupling matrix elements(b)rotational coupling matrix elements.

    The radial and rotational coupling matrix elements between all pairs of states have been calculated with the ETF effects,[33]here some important couplings are displayed in Figs. 2(a) and 2(b). In Fig. 2(a), the initial 12Σ+state(H(1s)+He) is strongly coupled with the exit 22Σ+state(H(2p)+He)at internuclear distancesR ~0.8 a.u., this coupling should be the primary gateway of electron excitation flux toward the exit channels. We can also observe that there are two relatively broader and weaker peaks between 22Σ+and 32Σ+(H(2s)+He)states around 0.9 a.u. and 2.5 a.u.,which implies that with the increase of energy, the scattering cross section may also have a double-peak structure in the considered energy region. Compared with Ref. [22], not only the four most important states(1–32Σ+and 12Π)are included in the present work,but also more Rydberg states with their couplings should be considered,e.g.,the strong coupling between 32Σ+and 42Σ+states aroundR ~0.9 a.u.,which may affect the results of the excitation process.

    Some important adiabatic rotational coupling matrix elements are presented in Fig.2(b),these couplings drive the transitions between states of the same spin but of different spatial symmetry. ForR>3.0 a.u.,the 22Σ+and 32Σ+states are rotationally strongly coupled with the 12Π state corresponding to the electron excitation to H(2p)+He exit state.

    3.2. Excitation cross sections

    The QMOCC method has been employed to investigate the inelastic collision process of H(1s)+He(1s2)→H(2s/2p)+He(1s2), and the excitation cross sections have been obtained for a wide energy range of 20–2000 eV/u.All the datasets presented in this paper, including the excitation cross sections, are compiled in the supplementary materials (SM) in PDF format. First, we have checked the convergence of our calculation results. Considering the potentials with radial and rotational coupling matrix elements of four (1–32Σ+, 12Π, i.e., H(1s/2l)), nine (1–62Σ+, 1–32Π, i.e., H(1s/2l/3l)) and twelve (1–82Σ+, 1–42Π, i.e.,H(1s/2l/3l/4s/4p)) states, the total cross sections of the excitation process to H(2s/2p) have been calculated with the QMOCC method. Good agreement has been found between the excitation cross sections calculated with nine and twelve states(they are almost identical, so the cross sections of nine states are not shown here),which indicates that our results with twelve states are convergent.

    As shown in Fig. 3, the excitation cross sections to H(2s/2p) states are compared with the available experimental[12,17,18]and other theoretical[13,14,17,21–23]results. AtE ~20 eV/u, the total excitation cross section is about 0.12×10?16cm2,with the energy increasing,this value shows an upward trend and reaches a maximum of about 0.85×10?16cm2atE ~600 eV/u. However, when the energy exceeds 600 eV/u, the cross section shows a very slow downward trend to 0.79×10?16cm2around 2 keV/u. Compared with all available experimental[12,17,18]data,our results are consistent with them in both trend and magnitude, especially in the overlapping energy range of 100–500 eV/u. It is a pity that the latest experimental results of Van Zylet al.[19]only provided the excitation cross sections to the H(2p)state,as shown in Fig. 4. If we use these data to estimate the total cross section, the difference between our calculation and the experiment results would be less than 15%over a wide energy range from 40 eV/u to 1 keV/u.

    Fig. 3. Comparison between the present total excitation cross sections to H(2l) state with experimental and other theoretical results. The theoretical results include the present calculation considering 12 states(solid line),4 states(short dashed line),the classical trajectory Monte Carlo(CTMC)results of Fr′emont et al.[23](short dash dotted line),quantum chemical results of Belyaev[22] (dashed line),semiclassical approximation results of Hildenbrand et al.[21] (dash dot dotted line), two-state quasi-molecular model results of Benoit et al.[17] (dash dotted line), and Born approximation results of Bell et al.[13,14] (short dotted line). The experimental results are from Grosser et al.[18] (solid circles),Benoit et al.[17] (solid triangles),and Birely et al.[12] (solid pentagram).

    Next, compared to all other theoretical[13,14,17,21–23]results, our results show the best overall agreement with the available experimental data. Fr′emontet al.[23]used the classical trajectory Monte Carlo (CTMC) method, while Born approximation method was applied by Bellet al.,[13,14]these two methods are usually suitable for the treatment of highenergy collision with incident energies over tens of keV/u.Benoitet al.[17]estimated the total cross section using the twostate quasi-molecular model method,the lack of consideration of essential channels may have an impact on the final result.Belyaev[22]has used the quantum chemical method, but as mentioned in his paper,only four most important channels(1–32Σ+, 12Π, i.e., H(1s/2l))are included, which influence the accuracy of the numerical results. This can be explained by our work:as shown in Fig.1,in the range ofR<1.00 a.u.,the potential energy curves of the four important states are very close to other highly excited states, while in Fig. 2, it can be found that these four states also have strong couplings with the highly excited states. Therefore, with the increasing incident energy, the impact of the highly excited states on the scattering cross section to H(2s/2p) states would be greater and greater. To verify this, we have also present our results with the four most important states, which agree well with the results of Belyaev,[22]as shown in Fig. 3. In the range ofE<40 eV/u, the results of four states, twelve states and Belyaev are in good agreement. However, as the energy increases, the difference between the results of the twelve and the four states becomes larger and larger. At about 1 keV/u,the cross section of the four states is about 90% larger than that of the twelve states. Finally, we compare the excitation cross sections with the works of Hildenbrandet al.[21]at the energy junction (around 2 keV/u), it can be seen from Fig. 3 that these two calculations are well connected.

    Fig. 4. Comparison between the present excitation cross sections to H(2p) state (a) and H(2s) state (b) with the experimental and other theoretical results. The theoretical results include the present calculation considering 12 states (solid line), quantum chemical results of Belyaev[22](dashed line), semiclassical approximation results of Hildenbrand et al.[21](dotted line), and molecular orbital results of Kimura et al.[20] (dash dotted line). The experimental results are from Grosser et al.[18] (solid circles), Birely et al.[12] (solid triangle), Van Zyl et al.[19] (solid square) and Sauers et al.[15] (solid pentagram).

    To validate our results further, the states-selected cross sections to H(2p)and H(2s)are presented and compared with other available theoretical[20–22]and experimental[12,15,18,19]data for the excitation process in Figs. 4(a) and 4(b), respectively. It can be seen that in the energy range considered, the dominant channel for the collision excitation process is the H(2p) states. As can be found in Fig. 4(a), our state-selective cross section of H(2p) agrees well with all experimental[12,18,19]data in terms of numerical values and trends. Especially compared with the latest experimental results of Van Zylet al.,[19]the difference is less than 15%in a fairly wide energy range from 40 eV/u to 1 keV/u.Moreover,other theoretical[20–22]results have been compared.Kimuraet al.[20]adopted pseudopotential to replace the effect of two electrons of the He atom, so their results are different from our in the overlapping energy region. We focus on comparing our results with Belyaev[22]as a similar energy range is considered. For the energyE>40 eV/u,with the increase of energy, the difference between his results and ours becomes more and more extensive. When the energy reaches toE ~1 keV/u, his result is about twice as large as ours. As mentioned above,this is because he has not considered the influences of highly excited states of H(n>2),which may affect their accuracy.

    Figure 4(b) shows the excitation state-selective cross section to H(2s) state, compared with the available experimental[12,15,18]results,our calculations agree well with most of the experimental[12,18]results in the overlapping energy region. It is notable that the excitation cross section to H(2s) state shows a peak structure at around 30 eV/u impact energy, and a valley structure when the collision energyE ~60 eV/u, which is consistent with the calculation results of Belyaev,[22]and more accurate experimental data are expect for such structures. In the energy range ofE>60 eV/u, our results show an upward trend with the increasing energy. The reason for the formation of these structures is because there exist two relatively broader and weaker peaks between 22Σ+and 32Σ+(H(2s)+He)states aroundR ~0.9 a.u.and 2.5 a.u.,respectively. However, different from our calculation results,the work of Belyaev[22]shows a second peak structure which is formed nearE ~100 eV/u. There are two reasons for the difference. 1) More excited states have been considered in our work, which would be expected to have effect on the results of excitation cross sections to H(2l) at higher energies.2) The ETF effects have been contained in our calculations,as they would make contributions in the energy range above 1 keV/u.[40]

    4. Conclusion

    In the present work, a good evaluation about the electron excitation processes of H(1s)+He(1s2)→H(2s/2p)+He(1s2)collision has been provided by the QMOCC method.Total and state-selective cross sections have been calculated and compared with the available theoretical and experimental works in the energy range of 20–2000 eV/u,with theab initiopotential energy curves and nonadiabatic radial and rotational coupling matrix elements obtained by the MRD-CI method.Overall,our present results agree well with available measurements for both total and state-selective cross sections in the respective overlapping energy regions. The dominant channel for the collision excitation process is the H(2p)states,the difference is less than 15% in a fairly wide energy range from 40 eV/u to 1 keV/u when compared with the latest experimental results of Van Zylet al.[19]

    The comparison of our results with other theoretical calculations further demonstrates the importance of considering a sufficient number of channels. It is proved that with the increase of the collision energy, the role of the highly excited state becomes more and more significant. The excitation cross section to H(2s)state shows a peak structure at around 30 eV/u impact energy, and a valley structure at about 60 eV/u, when the collision energyE> 60 eV/u, our results show an upward trend with the increasing energy. The formation of these structures is mainly due to the two broad couplings between 22Σ+and 32Σ+(H(2s)+He)states aroundR ~0.9 a.u. and 2.5 a.u., respectively. Our work brings a deeper understanding of atom–atom inelastic collision excitation processes and provides new data beneficial for astrophysical modeling.

    Data availability statement

    The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.j00113.00083.

    Acknowledgment

    This work has been supported by the National Natural Science Foundation of China (Grant Nos. 12204288,11934004,and 12274040).

    猜你喜歡
    吳勇劉玲
    椰子的身價
    Spectroscopy and scattering matrices with nitrogen atom:Rydberg states and optical oscillator strengths
    吳勇書法作品
    等你
    Characterization of a microsecond pulsed non-equilibrium atmospheric pressure Ar plasma using laser scattering and optical emission spectroscopy
    柯川、吳勇中國畫作品
    刺莓華
    我們愛老師
    描述人物的不同造型
    森林里的怪婆婆
    中文字幕久久专区| 欧美黑人巨大hd| 久久这里只有精品中国| 男女啪啪激烈高潮av片| 亚洲在线观看片| 亚洲欧美精品综合久久99| 亚洲狠狠婷婷综合久久图片| 亚洲综合色惰| 少妇熟女aⅴ在线视频| 在线看三级毛片| 天堂动漫精品| 色哟哟哟哟哟哟| 国内久久婷婷六月综合欲色啪| 色在线成人网| 永久网站在线| 国产高潮美女av| 日本-黄色视频高清免费观看| 亚洲欧美日韩东京热| av在线亚洲专区| 成人一区二区视频在线观看| 国产久久久一区二区三区| 99在线视频只有这里精品首页| 美女高潮喷水抽搐中文字幕| 色尼玛亚洲综合影院| 99热这里只有是精品在线观看| 午夜老司机福利剧场| av视频在线观看入口| 黄色女人牲交| 老熟妇仑乱视频hdxx| 日韩精品中文字幕看吧| 小蜜桃在线观看免费完整版高清| 成人性生交大片免费视频hd| 国内毛片毛片毛片毛片毛片| 久久久成人免费电影| 大型黄色视频在线免费观看| 成人av一区二区三区在线看| 日本黄大片高清| 亚洲经典国产精华液单| 99久久精品一区二区三区| 亚洲在线自拍视频| 亚洲欧美日韩高清在线视频| 99热6这里只有精品| 岛国在线免费视频观看| 狂野欧美激情性xxxx在线观看| 久久精品久久久久久噜噜老黄 | 久久亚洲真实| 久久久久久久午夜电影| 亚洲国产欧洲综合997久久,| 国产高清激情床上av| 91久久精品电影网| 亚洲国产高清在线一区二区三| av福利片在线观看| 伊人久久精品亚洲午夜| 99久久精品一区二区三区| 国产探花在线观看一区二区| 国产又黄又爽又无遮挡在线| 直男gayav资源| 人妻久久中文字幕网| 一级av片app| 亚洲欧美精品综合久久99| 久久人妻av系列| 乱系列少妇在线播放| 久久九九热精品免费| 搡老妇女老女人老熟妇| 国产黄色小视频在线观看| 亚洲精品成人久久久久久| 国产午夜福利久久久久久| 国产欧美日韩精品一区二区| 亚洲精品456在线播放app | 国产免费男女视频| 中文资源天堂在线| 窝窝影院91人妻| 国产色婷婷99| 亚洲人成网站高清观看| 欧美一级a爱片免费观看看| 久久久国产成人精品二区| 好男人在线观看高清免费视频| 免费人成视频x8x8入口观看| 在线观看美女被高潮喷水网站| 亚洲自偷自拍三级| 国产精品人妻久久久影院| АⅤ资源中文在线天堂| 亚洲av日韩精品久久久久久密| 亚洲国产欧美人成| 国产一区二区激情短视频| 亚洲性夜色夜夜综合| 国产精品爽爽va在线观看网站| 综合色av麻豆| 亚洲性夜色夜夜综合| 久久这里只有精品中国| eeuss影院久久| 91久久精品电影网| 麻豆久久精品国产亚洲av| 老熟妇乱子伦视频在线观看| 中文字幕av在线有码专区| 免费一级毛片在线播放高清视频| 亚洲avbb在线观看| 久久草成人影院| 久久午夜亚洲精品久久| 欧美性猛交黑人性爽| 亚洲av.av天堂| 国产伦精品一区二区三区视频9| 婷婷六月久久综合丁香| 久久久久久伊人网av| 久久精品国产亚洲av香蕉五月| 日韩精品有码人妻一区| 国产伦精品一区二区三区视频9| 国产精品人妻久久久影院| 一区福利在线观看| 亚洲成人中文字幕在线播放| 亚洲真实伦在线观看| 国内少妇人妻偷人精品xxx网站| 日本-黄色视频高清免费观看| 精品一区二区三区人妻视频| 永久网站在线| 国产午夜福利久久久久久| 麻豆久久精品国产亚洲av| 动漫黄色视频在线观看| 欧美区成人在线视频| 在线观看舔阴道视频| 日日夜夜操网爽| 中文字幕av在线有码专区| 精品久久久久久久人妻蜜臀av| 亚洲图色成人| 在现免费观看毛片| 免费人成视频x8x8入口观看| 夜夜爽天天搞| 成年人黄色毛片网站| 久久精品国产亚洲网站| 麻豆精品久久久久久蜜桃| 麻豆av噜噜一区二区三区| 蜜桃亚洲精品一区二区三区| 日韩欧美国产在线观看| 久久精品国产亚洲av天美| 91精品国产九色| 欧美高清性xxxxhd video| 亚洲美女搞黄在线观看 | 观看美女的网站| 偷拍熟女少妇极品色| 在线观看美女被高潮喷水网站| 俄罗斯特黄特色一大片| 欧美性猛交╳xxx乱大交人| 国产精品女同一区二区软件 | 成人综合一区亚洲| 久久久精品大字幕| 中文字幕久久专区| 国产欧美日韩精品一区二区| 欧美潮喷喷水| 国产精品电影一区二区三区| 婷婷精品国产亚洲av| 伦理电影大哥的女人| 日本黄大片高清| 一进一出抽搐gif免费好疼| 99久久久亚洲精品蜜臀av| 国产乱人视频| av天堂在线播放| 久久草成人影院| 欧美色欧美亚洲另类二区| aaaaa片日本免费| 美女高潮的动态| 成年免费大片在线观看| 久久精品国产99精品国产亚洲性色| 中出人妻视频一区二区| 日韩欧美在线二视频| 乱码一卡2卡4卡精品| 天堂网av新在线| 国产精品野战在线观看| 午夜视频国产福利| 欧美日本视频| 成人永久免费在线观看视频| 国产精品国产高清国产av| 日本成人三级电影网站| 日韩中文字幕欧美一区二区| 国产极品精品免费视频能看的| 色哟哟哟哟哟哟| 22中文网久久字幕| 婷婷精品国产亚洲av在线| 国产av在哪里看| 少妇人妻一区二区三区视频| 少妇被粗大猛烈的视频| 亚洲美女视频黄频| 一进一出好大好爽视频| 十八禁网站免费在线| 国产精品三级大全| 免费看美女性在线毛片视频| 岛国在线免费视频观看| 亚洲欧美日韩高清专用| 狂野欧美白嫩少妇大欣赏| 午夜福利成人在线免费观看| 18+在线观看网站| 国产一级毛片七仙女欲春2| 日本免费一区二区三区高清不卡| 亚洲精品在线观看二区| 波多野结衣高清无吗| 国产三级在线视频| 久久精品夜夜夜夜夜久久蜜豆| 免费不卡的大黄色大毛片视频在线观看 | 精品午夜福利视频在线观看一区| 夜夜夜夜夜久久久久| av黄色大香蕉| 国产激情偷乱视频一区二区| 国产伦一二天堂av在线观看| 国产黄片美女视频| 精品人妻偷拍中文字幕| 2021天堂中文幕一二区在线观| 国内揄拍国产精品人妻在线| 深夜精品福利| 亚洲av第一区精品v没综合| 午夜免费激情av| 在线看三级毛片| 九色国产91popny在线| 国产伦精品一区二区三区四那| 国产精品乱码一区二三区的特点| 免费av不卡在线播放| 久久精品人妻少妇| 美女免费视频网站| 波多野结衣高清作品| 欧美激情在线99| 久99久视频精品免费| 欧美日韩亚洲国产一区二区在线观看| 国产伦在线观看视频一区| 成人特级黄色片久久久久久久| 1000部很黄的大片| 91av网一区二区| 哪里可以看免费的av片| av视频在线观看入口| 久久国内精品自在自线图片| 欧洲精品卡2卡3卡4卡5卡区| 午夜久久久久精精品| 看黄色毛片网站| 一级黄色大片毛片| 人人妻人人澡欧美一区二区| 99久久久亚洲精品蜜臀av| 国产三级在线视频| 91麻豆精品激情在线观看国产| 精品乱码久久久久久99久播| 国产欧美日韩精品亚洲av| 国产伦人伦偷精品视频| 亚洲精华国产精华精| bbb黄色大片| 日本一本二区三区精品| 一个人看的www免费观看视频| 欧美又色又爽又黄视频| 免费高清视频大片| 少妇猛男粗大的猛烈进出视频 | 亚洲熟妇中文字幕五十中出| 九九久久精品国产亚洲av麻豆| 两个人视频免费观看高清| 禁无遮挡网站| 成人av在线播放网站| 日本在线视频免费播放| 不卡视频在线观看欧美| 一进一出抽搐gif免费好疼| 国产免费av片在线观看野外av| 在线观看美女被高潮喷水网站| 国产真实乱freesex| 一本精品99久久精品77| 午夜日韩欧美国产| 黄色一级大片看看| 一个人看的www免费观看视频| 国产一区二区三区av在线 | 精品免费久久久久久久清纯| 午夜精品在线福利| 老司机午夜福利在线观看视频| 啦啦啦观看免费观看视频高清| 亚洲欧美日韩东京热| 不卡一级毛片| 国产精品福利在线免费观看| 亚洲av.av天堂| 乱人视频在线观看| 午夜免费激情av| 国产精品伦人一区二区| 成人一区二区视频在线观看| 白带黄色成豆腐渣| av天堂在线播放| 哪里可以看免费的av片| 性插视频无遮挡在线免费观看| 美女 人体艺术 gogo| 国产在线精品亚洲第一网站| 99久久九九国产精品国产免费| 日本免费一区二区三区高清不卡| 一区福利在线观看| 狂野欧美激情性xxxx在线观看| 国模一区二区三区四区视频| 韩国av在线不卡| 成人美女网站在线观看视频| 日本-黄色视频高清免费观看| 男女下面进入的视频免费午夜| 偷拍熟女少妇极品色| 在线看三级毛片| 免费一级毛片在线播放高清视频| 亚洲经典国产精华液单| 国产一区二区在线观看日韩| 乱人视频在线观看| 一进一出抽搐动态| 人妻丰满熟妇av一区二区三区| 免费av不卡在线播放| 亚洲美女视频黄频| 一个人观看的视频www高清免费观看| 国产v大片淫在线免费观看| 免费av观看视频| 99久久久亚洲精品蜜臀av| 国产主播在线观看一区二区| 乱人视频在线观看| 亚洲人与动物交配视频| 国产色爽女视频免费观看| 亚洲无线观看免费| 国产乱人视频| 久久精品影院6| 春色校园在线视频观看| 国产精品伦人一区二区| 91在线观看av| 免费观看在线日韩| 黄色女人牲交| 精品免费久久久久久久清纯| 国产精品伦人一区二区| 国产午夜精品论理片| 又粗又爽又猛毛片免费看| 久久中文看片网| 亚洲av一区综合| 中文字幕精品亚洲无线码一区| 波多野结衣巨乳人妻| 欧美不卡视频在线免费观看| 国产极品精品免费视频能看的| 国产免费av片在线观看野外av| 天美传媒精品一区二区| 午夜激情欧美在线| 中文字幕久久专区| 亚洲真实伦在线观看| 18禁在线播放成人免费| 午夜激情欧美在线| 欧美最黄视频在线播放免费| 成人av一区二区三区在线看| 天堂√8在线中文| 亚洲欧美日韩高清专用| 可以在线观看毛片的网站| 日本黄色视频三级网站网址| 国产精品免费一区二区三区在线| 亚洲五月天丁香| 午夜精品一区二区三区免费看| 欧美三级亚洲精品| 国产精品久久久久久精品电影| 成人无遮挡网站| 国产av一区在线观看免费| 婷婷亚洲欧美| 无遮挡黄片免费观看| 听说在线观看完整版免费高清| bbb黄色大片| 日日啪夜夜撸| 精品午夜福利在线看| 国产成人影院久久av| 直男gayav资源| 国产乱人伦免费视频| 久久精品国产自在天天线| 搡老妇女老女人老熟妇| 国产69精品久久久久777片| 午夜视频国产福利| 亚洲专区中文字幕在线| 亚洲熟妇熟女久久| 1024手机看黄色片| 成人美女网站在线观看视频| 亚洲人成网站在线播放欧美日韩| 热99在线观看视频| 亚洲国产精品成人综合色| 欧美另类亚洲清纯唯美| 又黄又爽又免费观看的视频| 美女免费视频网站| 嫁个100分男人电影在线观看| 国产综合懂色| 99国产极品粉嫩在线观看| 日日干狠狠操夜夜爽| 内地一区二区视频在线| 麻豆久久精品国产亚洲av| 99九九线精品视频在线观看视频| 国产久久久一区二区三区| 中文亚洲av片在线观看爽| 亚洲国产欧洲综合997久久,| 99久久精品国产国产毛片| 黄色欧美视频在线观看| 午夜影院日韩av| 欧美成人a在线观看| 99久久成人亚洲精品观看| 精品一区二区三区人妻视频| 我要看日韩黄色一级片| 精品日产1卡2卡| 熟女电影av网| 国产精品免费一区二区三区在线| 桃红色精品国产亚洲av| 又黄又爽又刺激的免费视频.| 国产三级中文精品| 亚洲无线在线观看| 成人二区视频| 日本成人三级电影网站| av在线天堂中文字幕| 老司机福利观看| 在线天堂最新版资源| 亚洲av成人av| 能在线免费观看的黄片| 韩国av一区二区三区四区| 少妇被粗大猛烈的视频| 99久久精品国产国产毛片| 天堂网av新在线| 成人av一区二区三区在线看| 免费观看人在逋| 九九爱精品视频在线观看| 免费观看在线日韩| 久久久久久久久久黄片| 无人区码免费观看不卡| 变态另类成人亚洲欧美熟女| a级毛片a级免费在线| 国产大屁股一区二区在线视频| 国产av在哪里看| 毛片女人毛片| 国产精品一区二区三区四区免费观看 | 真人做人爱边吃奶动态| 亚洲精品成人久久久久久| 日韩欧美精品免费久久| 可以在线观看毛片的网站| 亚洲精品日韩av片在线观看| 毛片一级片免费看久久久久 | 成人精品一区二区免费| 午夜福利欧美成人| 高清毛片免费观看视频网站| 在线国产一区二区在线| 国产真实伦视频高清在线观看 | 国产av麻豆久久久久久久| 亚洲国产精品sss在线观看| 春色校园在线视频观看| 国产精品电影一区二区三区| 午夜福利在线在线| 亚洲av一区综合| 人妻久久中文字幕网| 在线观看66精品国产| 国产精品一区二区三区四区久久| 成人二区视频| 女同久久另类99精品国产91| 俄罗斯特黄特色一大片| 老女人水多毛片| 一a级毛片在线观看| 欧美色欧美亚洲另类二区| 麻豆久久精品国产亚洲av| 男女视频在线观看网站免费| 小蜜桃在线观看免费完整版高清| 免费电影在线观看免费观看| 99热这里只有精品一区| 此物有八面人人有两片| 男人和女人高潮做爰伦理| 国语自产精品视频在线第100页| 偷拍熟女少妇极品色| 99热精品在线国产| 他把我摸到了高潮在线观看| 国产视频内射| av.在线天堂| 久久6这里有精品| 窝窝影院91人妻| 最新中文字幕久久久久| 少妇人妻精品综合一区二区 | 99热只有精品国产| 女人被狂操c到高潮| 色哟哟哟哟哟哟| 久久久久国内视频| 久久久久国产精品人妻aⅴ院| 日韩强制内射视频| 啦啦啦观看免费观看视频高清| 久久这里只有精品中国| 色视频www国产| 国产三级中文精品| 真人一进一出gif抽搐免费| 久久精品夜夜夜夜夜久久蜜豆| 99九九线精品视频在线观看视频| 午夜精品一区二区三区免费看| 国产一区二区在线观看日韩| 亚洲人成伊人成综合网2020| 悠悠久久av| 99久久无色码亚洲精品果冻| 国产精品人妻久久久久久| 精品乱码久久久久久99久播| 麻豆av噜噜一区二区三区| 悠悠久久av| 午夜爱爱视频在线播放| .国产精品久久| 亚洲av第一区精品v没综合| 91狼人影院| 亚洲内射少妇av| 久久久久久久久久久丰满 | 永久网站在线| 在线观看美女被高潮喷水网站| 国产高清三级在线| 色在线成人网| 男人和女人高潮做爰伦理| 亚洲国产精品合色在线| 长腿黑丝高跟| 蜜桃久久精品国产亚洲av| 日本免费一区二区三区高清不卡| 性插视频无遮挡在线免费观看| 18+在线观看网站| 美女黄网站色视频| 91精品国产九色| 国内精品美女久久久久久| 啪啪无遮挡十八禁网站| 色5月婷婷丁香| 精品乱码久久久久久99久播| 中文字幕精品亚洲无线码一区| 三级男女做爰猛烈吃奶摸视频| 日本免费a在线| 国产成人a区在线观看| 国产伦精品一区二区三区视频9| 免费看av在线观看网站| 欧美一区二区精品小视频在线| 桃红色精品国产亚洲av| 国内精品一区二区在线观看| 狂野欧美激情性xxxx在线观看| 日日摸夜夜添夜夜添小说| 国产精品av视频在线免费观看| 国产精品伦人一区二区| 国产高潮美女av| 嫁个100分男人电影在线观看| 又黄又爽又免费观看的视频| 最近视频中文字幕2019在线8| 国内精品久久久久精免费| 久久亚洲精品不卡| 精品无人区乱码1区二区| 亚洲一区二区三区色噜噜| 欧美激情在线99| 色5月婷婷丁香| 国产黄a三级三级三级人| 中文在线观看免费www的网站| 精华霜和精华液先用哪个| 简卡轻食公司| 熟女电影av网| 欧美成人a在线观看| 搡老熟女国产l中国老女人| 国产精品,欧美在线| 亚洲人成伊人成综合网2020| 精品不卡国产一区二区三区| 久久久久久久精品吃奶| 天天一区二区日本电影三级| 亚洲狠狠婷婷综合久久图片| 日日摸夜夜添夜夜添小说| 丰满人妻一区二区三区视频av| 亚洲人成网站在线播| 亚洲真实伦在线观看| 51国产日韩欧美| 免费在线观看影片大全网站| 日韩欧美精品免费久久| 黄色一级大片看看| 国产黄色小视频在线观看| 国产色婷婷99| 国产精品,欧美在线| 国产在视频线在精品| 欧美日韩精品成人综合77777| 日本撒尿小便嘘嘘汇集6| 欧美一区二区精品小视频在线| 性色avwww在线观看| 成年版毛片免费区| 日本免费a在线| 国产av麻豆久久久久久久| 美女高潮喷水抽搐中文字幕| 九色国产91popny在线| 日日撸夜夜添| 乱码一卡2卡4卡精品| 久久久成人免费电影| 国产av一区在线观看免费| 午夜a级毛片| 特大巨黑吊av在线直播| 亚洲乱码一区二区免费版| 很黄的视频免费| 欧美又色又爽又黄视频| 精品人妻熟女av久视频| 亚洲 国产 在线| 精品人妻熟女av久视频| 精品一区二区三区人妻视频| 桃红色精品国产亚洲av| 熟女电影av网| 男插女下体视频免费在线播放| 99视频精品全部免费 在线| videossex国产| 精品福利观看| 99久久无色码亚洲精品果冻| 久久久久国产精品人妻aⅴ院| 日本爱情动作片www.在线观看 | 一卡2卡三卡四卡精品乱码亚洲| avwww免费| 久久久久久久久久久丰满 | 精品久久久久久久末码| 一个人看的www免费观看视频| 99国产精品一区二区蜜桃av| 国产高清不卡午夜福利| 久久久色成人| 日韩精品青青久久久久久| 久久99热6这里只有精品| 国产 一区精品| 精品99又大又爽又粗少妇毛片 | 特大巨黑吊av在线直播| 搡老岳熟女国产| 欧美日韩亚洲国产一区二区在线观看| 97人妻精品一区二区三区麻豆| 欧美极品一区二区三区四区| 精品国产三级普通话版| 高清在线国产一区| 免费不卡的大黄色大毛片视频在线观看 | 啦啦啦韩国在线观看视频| 他把我摸到了高潮在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产精品一及| 国内精品久久久久精免费| 亚洲内射少妇av| 精品久久久久久久人妻蜜臀av| 国产精品三级大全| 日韩在线高清观看一区二区三区 | 亚洲人与动物交配视频| 日本与韩国留学比较| 国产精品久久电影中文字幕| 国产精品一区二区三区四区久久| 91在线观看av|