• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization of a microsecond pulsed non-equilibrium atmospheric pressure Ar plasma using laser scattering and optical emission spectroscopy

    2020-06-28 06:15:00FengdongJIA賈鳳東YongWU吳勇QiMIN敏琦MaogenSU蘇茂根KeigoTAKEDAKenjiISHIKAWAHirokiKONDOMakotoSEKINEMasaruHORIandZhipingZHONG鐘志萍
    Plasma Science and Technology 2020年6期
    關(guān)鍵詞:吳勇

    Fengdong JIA (賈鳳東), Yong WU (吳勇), Qi MIN (敏琦),Maogen SU (蘇茂根), Keigo TAKEDA, Kenji ISHIKAWA, Hiroki KONDO,Makoto SEKINE, Masaru HORI and Zhiping ZHONG (鐘志萍),6,7

    1 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

    2 Institute of Applied Physics and Computational Mathematics,Beijing 100088,People’s Republic of China

    3 Key Laboratory of Atomic and Molecular Physics & Functional Material of Gansu Province, College of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,People’s Republic of China

    4 Department of Electrical and Electronic Engineering, Faculty of Science and Technology, Meijo University, Nagoya 468-8502, Japan

    5 Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan

    6 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, People’s Republic of China

    Abstract A non-equilibrium atmospheric pressure argon (Ar) plasma excited by microsecond pulse is studied experimentally by laser scattering and optical emission spectroscopy (OES), and theoretically by collisional-radiative(CR)model.More specifically,the electron temperature and electron density of plasma are obtained directly by the laser Thomson scattering, the gas temperature is measured by laser Raman scattering,the optical emissions of excited Ar states of plasma are measured by OES. The laser scattering results show that the electron temperature is about 1 eV which is similar to that excited by 60 Hz AC power,but the gas temperature is as low as 300 K compared to about 700 K excited by 60 Hz AC power.It is shown that the microsecond pulsed power supply,rather than nanosecond ones,is short enough to reduce the gas temperature of atmospheric pressure plasma to near room temperature.The electron temperature and electron density are also obtained by CR model based on OES,and find that the intensities of the optical emission intensity lines of 727.41,811.73,841.08,842.83,852.44 and 912.86 nm of Ar can be used to characterize the behavior of electron density and electron temperature,it is very useful to quickly estimate the activity of the atmospheric pressure Ar plasma in many applications.

    Keywords: plasma diagnosis, laser Thomson scattering, atmospheric pressure plasma(Some figures may appear in colour only in the online journal)

    Table 1.Summary of emission lines for Ar atom.

    where the rate coefficientsCijandCjiconcerning electron impact excitations from level i to level j with >i j, or from level j to level i with <i j, can be calculated using the expression in [17, 23]. For the reverse process of electron impact excitation, the rate coefficientsDijandDjiof electron impact de-excitation can be obtained from the principle of detailed balance.Aijis the radiative decay rate coefficient from level i to j.DBijandCBijare the stimulated emission rate coefficient and stimulated absorption rate coefficient from level i to j, respectively. The expressions for the rate coefficients referring to different atomic processes under consideration are obtained from an empirical formula[23]on the basis of the reasonable assumption that the distribution function for the atoms and electrons is of Maxwellian form in all cases. In order to calculate the energy level population,132 energy levels of the Ar atom from NIST database were used in the calculation.

    In order to reproduce the experimental spectra and find the relationships between the experimental conditions and plasma parameters, a series of simulated spectra given as functions of electron temperature and electron density can be obtained by CR model and equation (3). In the simulation process, an absolute calibration has been made in order to relate the intensity of the lines to the corresponding relative excited state population. The calibration formulaIexp=cχ jmentioned inχj=n j/n0is the normalized populations of level j andn0is[17] is applied in our work, whereIexpis the intensity of the observed emission line, c is the calibration constant,the total number of argon atoms in the plasma. As calibration conditions, the electron densityne=4.48 × 1012cm-3and electron temperatureTe=1.08 eV,measured with the LTS probe at a discharge voltage of 7 kV,were used to calculateχjby equation (4). With these values we have calculated calibration constant c, and introduced the calibrated intensities in the model as input parameters.

    Finally, for accuracy, we define the deviation formula to evaluate the agreement degree[24,25]between experimental and calibrated theoretical spectra as

    whereIexpis the experimental spectral intensity,Icalis the simulation intensity, and N is the number of lines. Simulated spectra intensities are computed between electron temperature Te= 0.5 and 2.0 eV at 0.01 eV increments, and between electron density ne=1.0×1012and 1.7×1013cm-3at 0.1×1012cm-3increments(the determination of such range depends on neand Teobtained by the LTS method for all applied voltages). A minimum value among the deviations means a best estimated value of the electron temperature and electron density that is usually less than 5%.

    3. Experiment

    The experimental set-up is shown in figure 1. The discharge parts of the plasma contain two metal electrodes, which are two parallel blades with a length of 3 mm. The gap between the two blade electrodes is adjusted about 1 mm. Both the electrodes are coated by an insulating layer to avoid arc discharge, which means that the plasma can be classified as dielectric barrier discharges.The Ar gas flows into the plasma region by a gas tube with an inner diameter of 4 mm which is a little bigger than the length of blade electrodes.The gas tube is perpendicular to the long edge of the blade electrode and is put near the discharge region which is not shown in the figure 1. The Ar gas flow rate is high enough to push all the air away in the discharge region, and also as low as to avoid generating any plasma jet.

    Figure 1.Setup of the experimental diagnosis system.The electrodes structure and an image of plasma are also shown.

    The simple non-equilibrium atmospheric pressure Ar plasma is driven by a microsecond pulsed high voltage,which is generated by seeding a tunable signal with voltage from 0 to 5 V to an AC/DC amplifier. More specifically, a digital delay generator (Stanford Research Systems DG535) is used to generate a 30 Hz TTL signal,and the TTL signal is used to trigger a multi-functional signal generator (WF1314). The multi-functional signal generator is used to generate a tunable signal with voltage from 0 to 5 V and pulse width of 40 μs.Then the signal is amplified about several thousand times by an AC/DC amplifier (HVA4321). The voltage amplitude is tunable from 5 to 10 kV with a pulse duration of 40 μs, and the pulse width is limited by the raising time of HVA4321.Finally, high voltage pulses are applied to the two metal electrodes,and one of electrodes is grounded through a 50 kΩ resistor which limits the current. Figure 2 shows a typical high voltage pulse measured by a high voltage probe (Tektronix P6015A). The 30 Hz TTL signal generated by DG535 is also used to synchronize the image-intensified chargedcoupled device of triple grating spectrometer (TGS) and the laser pulse as shown in figure 1. In summary, the discharge voltage is about several kV, the current of discharge is about 100 μA limited by the 50 kΩ resistor, the time duration of plasma is about 40 μs.The discharge area is limited between the two blade electrodes. The plasma volume is approximately a cuboid with a length of 3 mm and a cross-sectional area of 1×0.5 mm2.

    Figure 2.A typical discharge voltage with 8 kV, the pulse width is about 40 μs. All the measurements are taken at the peak of voltage.

    The LTS set-up has been previously described [26].Briefly, the incident laser was provided by a frequency doubled Nd:YAG laser, and the laser beam with about 5 mJ/pulse was focused on the plasma by the doublet lens to a beam waist diameter of 200 μm.The laser scattering light by plasma was collected to a TGS [26–30]. The Rayleigh scattering is attenuated about six orders of magnitude by TGS,and then LTS and laser Raman scattering can be measured respectively by changing the polarization of the incident laser.More specifically, the laser scattering signal is mainly contributed by laser Raman scattering signal when the polarization of the incident laser is parallel to the direction of collecting scattered light, and the laser scattering signal includes both laser Raman scattering and LTS when the polarization of the incident laser is perpendicular to the direction of collecting scattered light [26–30]. The laser scattering is measured at the maximum point of high voltage pulse. For each laser scattering measurement, we accumulate 15 000 laser pulses to achieve a satisfactory signal-to-noise ratio. For OES measurements, emission from the plasma was collected by a lens with 25 dB attenuator of 532±5 nm and then transported to a portable spectrometer (Ocean USB4000). The spectral resolution of USB4000 is about 0.5 nm. The measured spectral intensities of a calibration lamp(SL-1 and SL-3,Stellarnet Inc.)are used for calibrating the spectrometer and its detector.The results are basically the same as the test results when the spectrometer is delivered from the factory. The spectrometer has set its own compensation in data analysis processes which can be used directly.

    4. Results and discussion

    4.1. Measurements of the laser scattering

    A pure Ar atmospheric pressure discharge is prepared by pushing air away from the discharge region using an Ar gas flows.Noted that,the Ar gas flow rate should be high enough to push all the air away in the discharge region, and also as low as to avoid generating any plasma jet. We measured the Raman scattering of air with different Ar gas flow rates to make sure the air is push away,also the air Raman scattering is used to test the gas temperature of microsecond pulsed nonequilibrium atmospheric pressure plasma.Figure 3 shows the air Raman scattering with different Ar gas flow rates of 0 sccm, 10 sccm, 20 sccm, 50 sccm, 100 sccm, respectively.The intensity of air Raman scattering is reduced to 10-7by an Ar gas flow rate of 50 sccm, which means almost pure Ar plasma, and the intensity of air Raman spectrum is still enough to analyze the gas temperature in the plasma. The plasma discharge was still located between two parallel blade electrodes with gas flow rate up to 100 sccm, without producing a jet in the direction of the Ar gas flow.Therefore,in the following experiments,the Ar gas flow rate was fixed at 50 sccm.

    Figure 3.The Raman scattering of air with different Ar gas flow rates of 0 sccm, 10 sccm, 20 sccm, 50 sccm, 100 sccm, respectively.

    Figure 4.The experimental Raman scattering of air discharge(black)and corresponding fitted with gas temperature of 325 K (red).

    Figure 4 shows the experimental laser Raman scattering of air discharge, and corresponding gas temperature Tgis fitted by 325 K. We also measured the remained air Raman scattering during discharge with different Ar gas flow rates,and then analyzed the gas temperature of plasma. These results show that the gas temperature in the plasma decreases with the increase of Ar flow, and gradually approaches to room temperature 300 K when it is almost pure Ar plasma.The results are shown in figure 5.The error is 5 K due to the fitting error.

    Compare to other atmospheric pressure plasmas, such as

    Figure 5.The gas temperature in plasma with different Ar flow rates.

    Figure 6.The experimental laser Thomson scattering spectrum and the corresponding theoretical fitting result.

    Figure 7.The dependence of electron density and temperature on discharge voltage.

    Figure 8.(a)The optical emission of plasma with discharge voltages of 6,8 and 10 kV,(b)the experimental intensities of Ar lines 727.41,811.73, 841.08, 842.83, 852.44 and 912.86 nm with different discharge voltages.

    Tg≈700–1550 K excited by DC discharges[29],Tg≈2500 K excited by 2.45 GHz microwave [30], Tg≈700 K excited by 60 Hz AC power [26], Tg≈300 K excited by nanosecond pulse [31], Tgexcited by microsecond pulsed power supply is much lower. It is shown that the microsecond pulsed power supply, rather than nanosecond ones [31], is short enough to reduce the gas temperature to near room temperature. As we know that the collisional rate should be about 10 times larger than the radiative rate if the plasma tends to local thermal equilibrium,and also the collision times should be much longer than the times characterizing the existence of plasma [32].The lifetime of metastable states in molecular nitrogen is about hundreds of microseconds [33], and the electron density is about 1014cm-3in air discharge [26], therefore these conditions are far from enough to heat the molecular and atomic temperature in the microsecond pulsed plasma.

    The electron temperature and density are measured by LTS after obtained a pure Ar plasma and the optical emissions from the plasma are measured simultaneously by a portable spectrometer. Figure 6 shows a typical experimental LTS spectrum and the corresponding theoretical fitting result. The experimental conditions are also shown in figure 6, with Ar gas flow rate of 50 sccm,6 kV high voltage with pulse width of 40 μs. The electron temperature is about 0.84 eV and the electron density is about 3.17×1012cm-3by calibrated with the laser Raman scattering of air without discharge [26].

    Then, the electron temperature and density were measured with different high voltages with same pulse width of 40 μs.Figure 7 shows the relationship of electron density and temperature on discharge voltage. The electron temperature shows a slight decreasing with the increasing of discharge voltage, and the electron density shows an obvious increase with the increasing of discharge voltage.With the increase of the discharge voltage, the discharge current will increase slightly,which will cause more energy to be injected into the plasma, thus increasing the electron density. Meanwhile, the increase of electron density will lead to the decrease of the electron free path in the plasma, which will affect the acceleration distance of electrons in the electric field. When the product of average free path and electric field intensity decreases with the increase of excitation voltage,there will be a slight decrease in electron temperature, which is consistent with the phenomena observed in our experiments.

    4.2. Calculation based on OES measurements

    While measuring the laser scattering spectrum with different discharge high voltages, we also record the emission spectrum of the plasma by a portable spectrometer (Ocean USB4000). The spectral resolution of USB4000 is about 0.5 nm, which is enough to distinguish the main optical emission of excited Ar states in plasma. We identify the transitions in the measured spectrum by comparing them with NIST data, the results are shown in detail in table 1 and figure 8.It can be seen from figure 8 that the intensities of the experimental spectra change with the change of discharge voltage. The normalized experimental and theoretical intensities of Ar lines 727.41,811.73,841.08,842.83,852.44 and 912.86 nm with different discharge voltages are analyzed in figure 9, and a good agreement is obtained in most cases.Here, the normalization of the experimental and theoretical intensities is to divide the intensities of selected lines at different voltages by the intensity of 812.17 nm at 9 kV. Then,the electron temperature and density through theoretical simulation are obtained and presented in figure 10.It is worth mentioning that the experimental and simulated values of the electron density and temperature shown determined with the LTS and OES are the spatially and temporally averaged values. Table 2 shows the comparison of the results of theoretical simulation and the LTS measurements, which shows a similar behavior to that of experimental results.This work confirms that the intensities of the optical emission Ar lines 727.41, 811.73, 841.08, 842.83, 852.44 and 912.86 nm can be used to characterize the behavior of electron density and electron temperature of the atmospheric pressure Ar plasma.It should be noted that,the CR model gets the steadystate solution in the present theoretical calculation, but it is difficult to deal with the problem of spatial resolution, which means that it can be only used to explain the average value in space. Here, our results show that the CR model can explain the main characteristics of the plasma, and can help to judge the main parameters of the plasma quickly.

    Figure 9. The normalized experimental (dash lines) and theoretical intensities (solid lines) of Ar lines 727.41, 811.73, 841.08, 842.83,852.44 and 912.86 nm with different discharge voltages.

    Figure 10.The theoretical electron density and temperature at different discharge voltages.

    5. Conclusions

    In conclusion, we made a simple non-equilibrium atmospheric pressure Ar dielectric barrier discharge and excited itby a microsecond high voltage pulse. The behavior of such dielectric barrier discharge plasma is characterized by laser scattering and OES. More specifically, the electron temperature and electron density are obtained directly by the LTS,the gas temperature is measured by laser Raman scattering,the optical emissions of excited Ar states are measured by OES. The air Raman scattering shows that the gas temperature of plasma is as low as 300 K compared to about 700 K excited by 60 Hz AC power.It is shown that the microsecond pulsed power supply, rather than nanosecond ones, is short enough to reduce the gas temperature to near room temperature. The electron temperature is about 1 eV which is not sensitive to the discharge voltage, and the electron density increased from ~3×1012to~13×1012cm-3with discharge voltage from 6 to 10 kV. This indicates that the microsecond pulsed is not short enough to enhance the electron temperature. Compared the electron temperature and electron density obtained by the LTS and a CR model with OES measurements, it confirms that the intensities of the optical emission Ar lines of 727.41, 811.73, 841.08, 842.83,852.44 and 912.86 nm can be used to characterize the behavior of electron density and electron temperature, it is very useful to quickly estimate the activity of Ar plasma in many applications.

    Table 2. The comparison of Te and ne obtained by theoretical simulation with OES and the LTS measurements.

    Acknowledgments

    This work is supported by the National Key Research and Development Program of China (Nos. 2017YFA0402300,2017YFA0304900 and 2016YFA0300600), National Natural Science Foundation of China (Nos. 11604334, 11575099,11474347 and 11874051), the Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDB28000000 and XDB07030000), the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics(KF201807).

    猜你喜歡
    吳勇
    椰子的身價(jià)
    Electron excitation processes in low energy collisions of hydrogen–helium atoms
    Molecule opacity study on low-lying states of CS
    最颯女保鏢養(yǎng)成記
    Spectroscopy and scattering matrices with nitrogen atom:Rydberg states and optical oscillator strengths
    吳勇書法作品
    M1 transition energy and rate in the ground configuration of Ag-like ions with 62 ≤Z ≤94
    等你
    M olecule opacitiesof X2Σ+,A2Π,and B2Σ+statesof CS+*
    柯川、吳勇中國(guó)畫作品
    国产精品亚洲美女久久久| 丰满人妻熟妇乱又伦精品不卡| 精品久久久久久久毛片微露脸| 国内少妇人妻偷人精品xxx网站 | 国产欧美日韩一区二区三| 国产精品久久久久久亚洲av鲁大| av天堂在线播放| 久久精品aⅴ一区二区三区四区| 久久久久久久午夜电影| 香蕉国产在线看| 非洲黑人性xxxx精品又粗又长| 欧洲精品卡2卡3卡4卡5卡区| 又黄又粗又硬又大视频| 亚洲精品在线观看二区| 国产欧美日韩精品亚洲av| 99国产精品一区二区蜜桃av| 免费在线观看成人毛片| 亚洲国产中文字幕在线视频| 日本 av在线| 久热爱精品视频在线9| 757午夜福利合集在线观看| 91九色精品人成在线观看| 久久这里只有精品19| 桃色一区二区三区在线观看| 99在线视频只有这里精品首页| 草草在线视频免费看| 国产又爽黄色视频| 国产不卡一卡二| 婷婷六月久久综合丁香| 国产不卡一卡二| 国产野战对白在线观看| 久久香蕉国产精品| 欧美人与性动交α欧美精品济南到| 国产激情久久老熟女| 91九色精品人成在线观看| 99久久久亚洲精品蜜臀av| 久久天堂一区二区三区四区| 大型av网站在线播放| 在线看三级毛片| 麻豆一二三区av精品| 国产精品国产高清国产av| 久久精品人妻少妇| 91成年电影在线观看| 99国产综合亚洲精品| 变态另类丝袜制服| 香蕉av资源在线| 国产91精品成人一区二区三区| www.999成人在线观看| 亚洲无线在线观看| 一本大道久久a久久精品| 亚洲成人精品中文字幕电影| 久久午夜综合久久蜜桃| 桃色一区二区三区在线观看| 99久久综合精品五月天人人| 日本三级黄在线观看| 黄片播放在线免费| 91九色精品人成在线观看| 精品国产亚洲在线| 国产精品一区二区三区四区久久 | www.精华液| 欧美乱色亚洲激情| 好男人电影高清在线观看| 99在线人妻在线中文字幕| 禁无遮挡网站| 国产成人av激情在线播放| 欧美精品亚洲一区二区| 宅男免费午夜| 又大又爽又粗| 午夜免费鲁丝| 国产男靠女视频免费网站| 成在线人永久免费视频| 校园春色视频在线观看| 精品国产超薄肉色丝袜足j| 欧美黑人欧美精品刺激| 无人区码免费观看不卡| 天天一区二区日本电影三级| 国产精品久久久人人做人人爽| 在线观看午夜福利视频| 欧美最黄视频在线播放免费| 好男人电影高清在线观看| 亚洲人成77777在线视频| 亚洲性夜色夜夜综合| tocl精华| 香蕉久久夜色| 精品国产美女av久久久久小说| 中国美女看黄片| 观看免费一级毛片| 自线自在国产av| 亚洲人成77777在线视频| 十分钟在线观看高清视频www| 久久精品亚洲精品国产色婷小说| 婷婷六月久久综合丁香| 在线观看日韩欧美| 日日摸夜夜添夜夜添小说| 日韩精品青青久久久久久| 黑丝袜美女国产一区| 成年女人毛片免费观看观看9| 国产精品乱码一区二三区的特点| 亚洲激情在线av| 桃红色精品国产亚洲av| 国产精品野战在线观看| 色在线成人网| 老鸭窝网址在线观看| 天堂影院成人在线观看| 精品电影一区二区在线| 免费女性裸体啪啪无遮挡网站| 人妻久久中文字幕网| 午夜激情av网站| 香蕉av资源在线| 丝袜人妻中文字幕| 在线av久久热| 国产亚洲欧美98| 欧美一级毛片孕妇| 精品久久久久久久久久久久久 | 在线十欧美十亚洲十日本专区| 精品一区二区三区视频在线观看免费| 日韩成人在线观看一区二区三区| 日韩欧美一区二区三区在线观看| 国产精品免费一区二区三区在线| 97碰自拍视频| 亚洲一卡2卡3卡4卡5卡精品中文| 大型av网站在线播放| 90打野战视频偷拍视频| 美女国产高潮福利片在线看| 无限看片的www在线观看| 欧美 亚洲 国产 日韩一| 国产精品亚洲美女久久久| 午夜福利高清视频| 波多野结衣高清无吗| 国产一区二区三区视频了| 777久久人妻少妇嫩草av网站| 老司机在亚洲福利影院| 日韩欧美国产在线观看| 精品熟女少妇八av免费久了| www.www免费av| 欧美乱妇无乱码| 国产成人啪精品午夜网站| 国产精品亚洲美女久久久| 一级黄色大片毛片| 亚洲精品粉嫩美女一区| 国产97色在线日韩免费| 欧美日韩瑟瑟在线播放| 天堂动漫精品| 女警被强在线播放| 亚洲av片天天在线观看| 日韩精品免费视频一区二区三区| cao死你这个sao货| 欧美成人免费av一区二区三区| 成年版毛片免费区| 91麻豆精品激情在线观看国产| 欧美色视频一区免费| 男女那种视频在线观看| 久久久久久免费高清国产稀缺| 国产三级黄色录像| 亚洲成av人片免费观看| 男女那种视频在线观看| 妹子高潮喷水视频| av中文乱码字幕在线| 一夜夜www| av片东京热男人的天堂| 搡老熟女国产l中国老女人| 国产精品乱码一区二三区的特点| 欧美绝顶高潮抽搐喷水| 久久天躁狠狠躁夜夜2o2o| 午夜久久久在线观看| 精品无人区乱码1区二区| 一区二区三区精品91| 男人的好看免费观看在线视频 | 久久人妻福利社区极品人妻图片| 免费在线观看成人毛片| 操出白浆在线播放| 亚洲五月天丁香| 欧美日韩亚洲综合一区二区三区_| 岛国视频午夜一区免费看| 亚洲av美国av| 老汉色av国产亚洲站长工具| 国产欧美日韩一区二区精品| 免费在线观看亚洲国产| 国产亚洲精品久久久久久毛片| 国产真人三级小视频在线观看| 91av网站免费观看| 久久久国产成人精品二区| 波多野结衣巨乳人妻| 欧美成人午夜精品| 日韩欧美 国产精品| 亚洲五月色婷婷综合| 亚洲三区欧美一区| 国产精品影院久久| 精品国产美女av久久久久小说| 一区二区日韩欧美中文字幕| 国产精品影院久久| av欧美777| 国产av在哪里看| 香蕉av资源在线| 日本a在线网址| 国产主播在线观看一区二区| 色综合亚洲欧美另类图片| 亚洲人成77777在线视频| 欧美日韩一级在线毛片| 久久久久国产一级毛片高清牌| 亚洲欧美激情综合另类| 三级毛片av免费| 熟女少妇亚洲综合色aaa.| 精品国产乱子伦一区二区三区| 亚洲一区二区三区不卡视频| 变态另类成人亚洲欧美熟女| 国产成年人精品一区二区| 1024视频免费在线观看| 国产又黄又爽又无遮挡在线| 久久国产精品影院| 精品国产乱码久久久久久男人| xxxwww97欧美| 国产免费男女视频| 国产又色又爽无遮挡免费看| av超薄肉色丝袜交足视频| 亚洲精品av麻豆狂野| 亚洲精品国产区一区二| 亚洲性夜色夜夜综合| 国产视频内射| 欧美性长视频在线观看| 国产av一区二区精品久久| 极品教师在线免费播放| 欧美性猛交黑人性爽| 亚洲av成人一区二区三| 91大片在线观看| 中文字幕av电影在线播放| 精品午夜福利视频在线观看一区| 亚洲男人的天堂狠狠| 热99re8久久精品国产| 国产又黄又爽又无遮挡在线| 亚洲成人久久性| 久久中文看片网| 国产av又大| 看片在线看免费视频| 自线自在国产av| 91成年电影在线观看| bbb黄色大片| 黑人操中国人逼视频| 欧美日韩瑟瑟在线播放| 国产免费av片在线观看野外av| 亚洲九九香蕉| 亚洲avbb在线观看| 午夜福利18| 香蕉国产在线看| www日本在线高清视频| 男女做爰动态图高潮gif福利片| 国产成人影院久久av| 搡老熟女国产l中国老女人| 欧美日本亚洲视频在线播放| 1024视频免费在线观看| 欧美 亚洲 国产 日韩一| 亚洲片人在线观看| 欧美黑人巨大hd| 亚洲国产欧美网| 搡老岳熟女国产| 最近最新中文字幕大全免费视频| 99国产精品99久久久久| 亚洲精品一区av在线观看| 在线观看免费日韩欧美大片| 欧美日本视频| 午夜福利欧美成人| 久久精品91无色码中文字幕| 国产人伦9x9x在线观看| 成人特级黄色片久久久久久久| 亚洲熟妇中文字幕五十中出| 两人在一起打扑克的视频| 色播在线永久视频| 国产爱豆传媒在线观看 | 久久 成人 亚洲| ponron亚洲| 日韩大码丰满熟妇| 脱女人内裤的视频| 91成人精品电影| 国产伦人伦偷精品视频| svipshipincom国产片| 亚洲成人精品中文字幕电影| a级毛片在线看网站| 久久人妻av系列| 大型黄色视频在线免费观看| 欧美性猛交╳xxx乱大交人| 桃红色精品国产亚洲av| 色播在线永久视频| 久久九九热精品免费| 99久久国产精品久久久| 老司机深夜福利视频在线观看| 亚洲片人在线观看| 午夜免费激情av| 一区二区三区国产精品乱码| 精品不卡国产一区二区三区| www.999成人在线观看| e午夜精品久久久久久久| 色老头精品视频在线观看| 久久精品国产亚洲av香蕉五月| 大香蕉久久成人网| 国产熟女xx| 哪里可以看免费的av片| 十分钟在线观看高清视频www| 国产精品乱码一区二三区的特点| 男女床上黄色一级片免费看| 在线观看免费日韩欧美大片| 老鸭窝网址在线观看| 精品高清国产在线一区| 日本一本二区三区精品| 精品国产超薄肉色丝袜足j| 亚洲国产看品久久| 性色av乱码一区二区三区2| 国产精华一区二区三区| 久久久久精品国产欧美久久久| 欧美乱色亚洲激情| 午夜福利高清视频| 亚洲精品美女久久av网站| 亚洲国产精品成人综合色| 亚洲国产欧美网| 久久亚洲精品不卡| 制服诱惑二区| 一边摸一边做爽爽视频免费| 久久人妻福利社区极品人妻图片| 午夜久久久久精精品| 动漫黄色视频在线观看| 波多野结衣高清作品| 欧美中文综合在线视频| 国内少妇人妻偷人精品xxx网站 | 一本精品99久久精品77| 99re在线观看精品视频| 在线观看免费午夜福利视频| 岛国在线观看网站| 丝袜美腿诱惑在线| 国产精品 欧美亚洲| 黄色 视频免费看| 国产精品久久久久久亚洲av鲁大| 久久精品国产亚洲av香蕉五月| videosex国产| 一个人免费在线观看的高清视频| 人成视频在线观看免费观看| 久久久久久亚洲精品国产蜜桃av| 国内精品久久久久精免费| 亚洲三区欧美一区| 久久香蕉国产精品| 国产激情久久老熟女| 黄色 视频免费看| 久久中文字幕一级| 国产伦一二天堂av在线观看| 久久精品aⅴ一区二区三区四区| 国产欧美日韩一区二区精品| 免费在线观看视频国产中文字幕亚洲| 午夜福利一区二区在线看| 欧美日韩一级在线毛片| 久久久久免费精品人妻一区二区 | 欧美乱妇无乱码| 亚洲av成人一区二区三| 人人妻,人人澡人人爽秒播| www.自偷自拍.com| 麻豆成人午夜福利视频| a在线观看视频网站| 免费在线观看成人毛片| 99精品在免费线老司机午夜| 欧美日韩黄片免| 国内揄拍国产精品人妻在线 | 久久人妻福利社区极品人妻图片| 黄色片一级片一级黄色片| 在线观看www视频免费| 露出奶头的视频| 美女扒开内裤让男人捅视频| 伊人久久大香线蕉亚洲五| 亚洲五月天丁香| 啦啦啦韩国在线观看视频| 国产欧美日韩一区二区三| 国产极品粉嫩免费观看在线| 国产乱人伦免费视频| 男女床上黄色一级片免费看| 日韩大尺度精品在线看网址| 无遮挡黄片免费观看| 这个男人来自地球电影免费观看| 成人永久免费在线观看视频| 午夜福利18| 国内精品久久久久久久电影| 一二三四在线观看免费中文在| 88av欧美| 欧美成人免费av一区二区三区| 午夜影院日韩av| 99riav亚洲国产免费| 久久青草综合色| 国产又爽黄色视频| 亚洲人成电影免费在线| 日韩国内少妇激情av| 久久久久久久午夜电影| 久久久国产成人精品二区| 精品不卡国产一区二区三区| 露出奶头的视频| 日本三级黄在线观看| 一a级毛片在线观看| 久久九九热精品免费| 免费在线观看视频国产中文字幕亚洲| 亚洲精品色激情综合| 国产成人av教育| 亚洲av中文字字幕乱码综合 | 99精品久久久久人妻精品| 91在线观看av| 十八禁网站免费在线| 免费观看精品视频网站| 久久久国产精品麻豆| 搡老熟女国产l中国老女人| 国产亚洲精品久久久久5区| 搞女人的毛片| 免费搜索国产男女视频| 女人爽到高潮嗷嗷叫在线视频| 丝袜美腿诱惑在线| 亚洲精品av麻豆狂野| 日韩欧美一区视频在线观看| 欧美日韩一级在线毛片| 91字幕亚洲| 亚洲五月天丁香| 亚洲中文日韩欧美视频| 日韩欧美三级三区| 99精品在免费线老司机午夜| 午夜免费观看网址| 老司机福利观看| 亚洲精品中文字幕在线视频| 久久精品国产亚洲av高清一级| 亚洲中文日韩欧美视频| 欧美激情 高清一区二区三区| 一边摸一边抽搐一进一小说| 变态另类成人亚洲欧美熟女| videosex国产| xxx96com| 国产主播在线观看一区二区| 久久久久国内视频| 熟女电影av网| 免费在线观看黄色视频的| 国产爱豆传媒在线观看 | 啦啦啦韩国在线观看视频| 757午夜福利合集在线观看| 亚洲性夜色夜夜综合| 一级毛片精品| 免费av毛片视频| 亚洲人成网站高清观看| 男人舔女人下体高潮全视频| 亚洲天堂国产精品一区在线| 午夜福利欧美成人| 18禁黄网站禁片午夜丰满| 村上凉子中文字幕在线| 在线观看日韩欧美| 亚洲中文字幕一区二区三区有码在线看 | 十分钟在线观看高清视频www| 高清在线国产一区| 国产成+人综合+亚洲专区| 日韩成人在线观看一区二区三区| 男女下面进入的视频免费午夜 | 满18在线观看网站| 久久草成人影院| 欧美性长视频在线观看| 午夜福利欧美成人| 午夜精品在线福利| 亚洲中文日韩欧美视频| 亚洲av成人不卡在线观看播放网| 黄色视频不卡| 欧美日韩一级在线毛片| 色播在线永久视频| 色哟哟哟哟哟哟| 亚洲第一青青草原| 无人区码免费观看不卡| 国产1区2区3区精品| 此物有八面人人有两片| 成年人黄色毛片网站| 香蕉久久夜色| 精品久久久久久,| 久久伊人香网站| 97人妻精品一区二区三区麻豆 | 免费在线观看日本一区| 亚洲第一青青草原| 亚洲av电影不卡..在线观看| 国产男靠女视频免费网站| 亚洲av熟女| xxx96com| 亚洲男人的天堂狠狠| 国产免费男女视频| 日韩国内少妇激情av| 久久精品夜夜夜夜夜久久蜜豆 | 这个男人来自地球电影免费观看| 怎么达到女性高潮| 悠悠久久av| or卡值多少钱| 午夜福利成人在线免费观看| 国产精品1区2区在线观看.| 一二三四社区在线视频社区8| 99热6这里只有精品| 岛国在线观看网站| 国产蜜桃级精品一区二区三区| 国产av又大| 精品国产超薄肉色丝袜足j| 欧美成人一区二区免费高清观看 | 人成视频在线观看免费观看| 91在线观看av| 久久婷婷人人爽人人干人人爱| 熟女少妇亚洲综合色aaa.| 国产亚洲精品第一综合不卡| 国内精品久久久久久久电影| 老司机靠b影院| 国产亚洲欧美98| 女人高潮潮喷娇喘18禁视频| 久久这里只有精品19| 国产亚洲av高清不卡| 三级毛片av免费| 伊人久久大香线蕉亚洲五| 99在线视频只有这里精品首页| 亚洲 欧美 日韩 在线 免费| xxxwww97欧美| www.自偷自拍.com| av视频在线观看入口| 一级毛片女人18水好多| 天堂动漫精品| 免费在线观看视频国产中文字幕亚洲| 露出奶头的视频| 精品国内亚洲2022精品成人| 99热只有精品国产| 两人在一起打扑克的视频| 婷婷六月久久综合丁香| 美女扒开内裤让男人捅视频| 波多野结衣av一区二区av| 欧美色欧美亚洲另类二区| ponron亚洲| 亚洲精品国产一区二区精华液| 欧美av亚洲av综合av国产av| 国产日本99.免费观看| 男女午夜视频在线观看| 夜夜夜夜夜久久久久| 久久久久免费精品人妻一区二区 | 国产黄a三级三级三级人| 欧美乱码精品一区二区三区| 久久中文字幕一级| 一本综合久久免费| 91av网站免费观看| 亚洲国产日韩欧美精品在线观看 | 午夜福利在线观看吧| 超碰成人久久| 麻豆成人午夜福利视频| 99久久久亚洲精品蜜臀av| 男人操女人黄网站| 丝袜在线中文字幕| 欧美黄色淫秽网站| 久久久久久免费高清国产稀缺| 欧美日韩乱码在线| 国内久久婷婷六月综合欲色啪| 动漫黄色视频在线观看| 国产精品永久免费网站| 人人妻,人人澡人人爽秒播| 老鸭窝网址在线观看| 看黄色毛片网站| 草草在线视频免费看| 日韩一卡2卡3卡4卡2021年| 欧美 亚洲 国产 日韩一| 国产黄a三级三级三级人| 亚洲精品国产一区二区精华液| 伊人久久大香线蕉亚洲五| 99久久无色码亚洲精品果冻| 国产激情欧美一区二区| 一区二区三区激情视频| 亚洲精品国产精品久久久不卡| 国产亚洲欧美98| 国产精品乱码一区二三区的特点| 色综合站精品国产| 欧美+亚洲+日韩+国产| 老鸭窝网址在线观看| 在线观看免费视频日本深夜| 国产精品亚洲av一区麻豆| 亚洲精品色激情综合| 欧美最黄视频在线播放免费| 欧美黑人巨大hd| 欧美+亚洲+日韩+国产| 首页视频小说图片口味搜索| 老汉色av国产亚洲站长工具| 一级毛片高清免费大全| 十八禁人妻一区二区| 在线观看www视频免费| 色综合欧美亚洲国产小说| 久久精品国产亚洲av香蕉五月| 欧美日本视频| 满18在线观看网站| 此物有八面人人有两片| 一本久久中文字幕| 男男h啪啪无遮挡| 色综合站精品国产| 久久久久精品国产欧美久久久| 99国产极品粉嫩在线观看| 热99re8久久精品国产| 成人特级黄色片久久久久久久| 久久精品国产亚洲av高清一级| 久久 成人 亚洲| 天天添夜夜摸| 黄色a级毛片大全视频| 日韩精品免费视频一区二区三区| 一级作爱视频免费观看| 欧美亚洲日本最大视频资源| 母亲3免费完整高清在线观看| 无限看片的www在线观看| 变态另类丝袜制服| 黑人操中国人逼视频| 日本精品一区二区三区蜜桃| 日本在线视频免费播放| 亚洲国产精品999在线| 国产麻豆成人av免费视频| 国产亚洲精品久久久久久毛片| 黄频高清免费视频| 成人精品一区二区免费| 亚洲久久久国产精品| 成人三级做爰电影| 男女午夜视频在线观看| 真人一进一出gif抽搐免费| 老熟妇乱子伦视频在线观看| 制服丝袜大香蕉在线| 成人一区二区视频在线观看| 波多野结衣高清作品| 国产精品一区二区精品视频观看| 成人国语在线视频| 成人免费观看视频高清|