• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles study on the mechanical properties and thermodynamic properties of Mo–Ta alloys

    2020-06-28 06:17:42XinZHANG張欣HengLI李恒YuhongXU許宇鴻QijunLIU劉其軍YangyangLIU劉洋陽ZilinCUI崔子麟HaifengLIU劉海峰XianquWANG王先驅(qū)JieHUANG黃捷HaiLIU劉海JunCHENG程鈞MingLI李明ShaofeiGENG耿少飛ChangjianTANG唐昌建andGuangjiuLEI雷光玖
    Plasma Science and Technology 2020年6期
    關(guān)鍵詞:張欣

    Xin ZHANG(張欣),Heng LI(李恒),Yuhong XU(許宇鴻),Qijun LIU(劉其軍),Yangyang LIU (劉洋陽), Zilin CUI (崔子麟), Haifeng LIU (劉海峰),Xianqu WANG (王先驅(qū)), Jie HUANG (黃捷), Hai LIU (劉海),Jun CHENG (程鈞), Ming LI (李明), Shaofei GENG (耿少飛),Changjian TANG (唐昌建),4 and Guangjiu LEI (雷光玖)

    1 Institute of Fusion Science, School of Physical Science and Technology, Southwest Jiaotong University,Chengdu 610031, People’s Republic of China

    2 School of Physical Science and Technology,Southwest Jiaotong University,Key Laboratory of Advanced Technologies of Materials,Ministry of Education of China,Chengdu 610031,People’s Republic of China

    3 Southwestern Institute of Physics, Chengdu 610041, People’s Republic of China

    4 School of Physical Science and Technology,Sichuan University,Chengdu 610065,People’s Republic of China

    Abstract The mechanical properties, thermodynamic properties and electronic structure of Mo1?xTax(Mo–Ta) alloys (x=0, 0.0625, 0.125, 0.25, 0.3125, 0.5 and 1) were calculated by using firstprinciples.The electronic structure of Mo–Ta alloys was analysed by the projected density of states(PDOS).The low temperature heat capacity was estimated by Fermi energy and Debye temperature.It is shown that the formation enthalpy will decrease with the increase of Ta content, and the cohesive energy will increase with the increase of the Ta content.On the other hand,the addition of Ta atoms will reduce the strength and improve the ductility of Mo–Ta alloys,the Debye temperature will decrease and the low temperature heat capacity will be improved with the increase of the Ta content.All these results will be useful for the research of new plasma grid(PG)materials,which is mainly used in neutral beam injection (NBI) systems to produce negative hydrogen ions.

    Keywords: first principles calculations, Mo–Ta alloy, mechanical properties, thermodynamic(Some figures may appear in colour only in the online journal)

    1. Introduction

    Recently, body-centred cubic (BCC) transition elements and their alloys have increasingly been the subject of research,especially regarding their mechanical properties due to their good physical and chemical properties, such as extreme stiffness, high melting point and high thermal conductivity. Henceitshould benoted that,these metals and alloys are receiving considerable attention as potential plasma facing material of the divertor and the first wall in fusion power reactors[1–6].On the other hand, molybdenum (Mo) and tantalum (Ta) are typical BCC transition metals.In particular,Mo is an electrode material used to make plasma grid in NBI system [7], and another potential electrode material is tungsten. In addition, more and more attention has been paid to the feasibility of using alloy materials to make electrodes. Alloying can significantly improve the physical properties of metals. Ham et al pointed out that Mo–Ta alloys may work at high temperatures and have high strength [8]. Mo–Ta alloys are good candidate for gate electrode applications due to the good thermal and chemical stability [9, 10]. Turchi [11] and Van Torne et al [12] studied the structure and mechanical properties of Mo–Ta alloys.However, they paid little attention to the elastic modulus,hardness and thermodynamic properties of Mo–Ta alloys.Compared with traditional methods of experimental investigation, DFT calculation is a good method for studying the properties of materials, especially mechanical and thermodynamic properties. The computational data can make reasonable prediction of the properties of materials, so the calculated results may serve as guidance for further experiments.Research costs will be greatly reduced by first-principles study.

    Table 1.The k-point mesh,energy cut-off(eV)and calculated lattice constants of Mo1?xTax alloys(x=0,0.0625,0.125,0.25,0.3125,0.5 and 1).

    In this work, the structure, stability, elastic properties,Debye temperature and low temperature heat capacity of Mo1?xTax(Mo–Ta) alloys (x=0, 0.0625, 0.125, 0.25,0.3125, 0.5 and 1) have been studied via first-principles. We can have a good understanding of the basic physical properties of these alloys due to these calculated results. On the other hand, these results will provide a useful database for relevant Mo–Ta alloy studies.

    2. Computational methods and model

    A method based on the DFT [13, 14] was used to study the mechanical and thermodynamic properties of Mo–Ta alloys,which was done using Cambridge Serial Total Energy Package Code (CASTEP) [15]. The ultra-soft pseudo-potential plane-wave (UPPW) [16] was used to describe the interaction between valence electrons and core ions and general gradient approximation(GGA)PBE[17]was used for exchange correlation. The Monkhorst–Pack method [18] was used for k-points sampling,as M×M×M.The values of M and the plane wave cut-off energy are shown in table 1. All these structures were fully relaxed until the forces exerted on all atoms are less than 0.01 eV ??1[19].

    In the references, Van Torne et al pointed out that the Mo–Ta binary diagram shows a continuous BCC solid solution across the entire diagram [12]. All of the structural models are depictived by the 2×2×2 supercell, which is containing 16 atoms in a BBC structure. Various alloys with different Ta concentrations were obtained because a portion of the Mo atoms were substituted by Ta atoms; those are pure Mo, Mo0.9375Ta0.0625, Mo0.875Ta0.125, Mo0.75Ta0.25,Mo0.6875Ta0.3125, Mo0.5Ta0.5and pure Ta. All of these structural models are shown in figure 1.

    3. Results and discussion

    3.1. Structure optimisation

    First,the positions of Ta atoms in the supercell must be taken into account. Theoretically, Ta atoms can be placed in any position in the lattice when Mo atoms are replaced by Ta atoms to form Mo–Ta alloys such that the lattice structures of Mo–Ta alloys with the same Ta concentration are undetermined. Thus, we should confirm the energetically most favourable atomic arrangements of Mo–Ta alloys in a 2×2×2 supercell. All these structures in figure 1 are the lowest energy structures.As shown in figure 1,Mo–Ta alloys still retain the BCC structure, the Ta atom prefers to be in a position that ensures a high degree of symmetry throughout the lattice structure.

    The calculated lattice constants of Mo1?xTaxalloys

    (x=0, 0.0625, 0.125, 0.25, 0.3125, 0.5 and 1) are shown in table 1. The results of lattice constants had been overestimated because the GGA approach was used for geometry optimisation[22–25].Even so,the calculated lattice constants were in good agreement with the experiment data. Figure 2 shows the change trend of equilibrium lattice constants of Mo–Ta alloys with the increase of Ta content.

    Figure 1. The energetically most favourable atomic arrangements of the BCC Mo1?xTax (x=0, 0.0625, 0.125, 0.25, 0.3125, 0.5 and 1)alloys in a 2×2×2 supercell. The cyan and red atoms are Mo and Ta, respectively.

    Figure 2. The change trend of equilibrium lattice constants of Mo–Ta alloys.

    3.2. The energy and stability of the Mo–Ta alloys

    Formation enthalpy and cohesive energy are important parameters for evaluating the stability of alloys. The formation enthalpy and cohesive energy of Mo–Ta alloys are calculated according to the following equations:

    where x is the Ta concentration,Etot(M o1-xTax),Ebulk(M o)andEbulk( Ta)are the total energy of Mo1?xTaxalloys (2×2×2 supercell), bulk Mo and bulk Ta (2×2×2 supercell) in the BBC lattice, respectively.Eiso( Mo)andEiso(T a)are the energies of an isolated Mo and Ta atom,respectively. N is the number of atoms. According to this definition, negative values of the formation enthalpy (Ef) andcohesive energy (Ecoh) mean that the formation of Mo1?xTaxalloys releases energy so that it is more thermodynamically stable. Table 2 shows the calculated results, and the changes of formation enthalpy and cohesive energy with Ta concentration are shown in figure 3. The formation enthalpy that has continuously decreased with the increase of Ta concentration,which means that Mo–Ta alloys formed by bulk Mo and bulk Ta become more and more thermodynamically stable with the increase of Ta content.According to the formation enthalpy, the Mo0.5Ta0.5alloy is the most thermodynamically stable. The cohesive energy of Mo–Ta alloys continuously increases with the increase of Ta concentration, which means that it becomes more and more difficult to decompose the Mo–Ta alloy into individual Mo and/or Ta atoms with the increase of Ta concentration.

    3.3. The mechanical properties of Mo–Ta alloys

    The elastic constants of every Mo1?xTaxalloy and the mechanical property parameters of every Mo1?xTaxalloy were calculated in this work. The elastic constants Cijare essential parameters that determine the response of the crystal to external forces and are related to the initial fundamental mechanical properties. Table 3 shows the calculated elastic constants,which are plotted in figure 4(a)as a function of Ta content. And there are only three independent elastic constants, C11, C12, and C44, for a body-centred cubic system.We have known that all of the Mo1?xTaxalloys are thermodynamically stable because all of the values of the formation enthalpy of Mo1?xTaxalloys are negative. According to the‘Born stability criteria’, we can understand the mechanical stability of cubic crystals. The ‘Born stability criteria’ are as follow [29]

    All of the Mo1?xTaxalloys are mechanical stable because they all satisfy these conditions.The elastic constants C11and C44continuously decrease with the increase of the Ta content.However,the change in elastic constant C12with the increase of the Ta concentration is not significant.Elastic constant C11is one of the most important parameters and is related to the stiffness. We can see that the C11value is monotone decreasing from 478.28 to 262.38, which suggests that more Ta content reduces the stiffness of the Mo1?xTaxalloy.

    We can estimate the Cauchy pressure C12?C44[30],which can be used to describe the brittle/ductile properties of alloys.If the Cauchy pressure(C′)is positive,the metal bonds dominate the crystal, showing the ductility of the material[31].It is obvious that all Mo–Ta alloys have positive Cauchy pressure.

    Figure 3.The changes of formation enthalpy and cohesive with the increase of Ta content.

    The elastic moduli can be obtained using Voigt–Reuss–Hill approximation [32–34], which is a good method for evaluating the performance of materials from the calculated elastic constants. For cubic crystals, the bulk moduli (B),shear modulus(G),Young’s modulus(E)and Poisson’s ratio(σ) can be calculated from the following equations (6)–(11)[35] and are shown in table 4

    As we know,the elastic modulus represents the ability of bulk materials to resist external forces. From figure 4(b), it can be seen that the increase of Ta content will gradually reduce the elastic modulus. The larger the bulk modulus is, the greater the hardness is. Thus, pure Mo alloys have the greatest hardness. The simulation results show that the addition of Ta atoms will reduce the strength of Mo–Ta alloys.

    Figure 4.(a) Elastic constants Cij of Mo–Ta alloys, (b) elastic modulus of Mo–Ta alloys.

    Table 3. The calculated elastic constants Cij (GPa) of Mo1?xTax alloys.

    Table 4.Elastic modulus (GPa), B/G ratio and Poisson’s ratio (σ, GPa) of Mo1?xTax alloys.

    Figure 5. Poisson’s ratio and B/G ratio of Mo–Ta alloys.

    The B/G ratio present the ductility of metal materials due to Pugh’s theory [36]. If the B/G ratio is less than 1.75, the material shows brittleness. Instead, materials exhibit ductility.It is obvious that the B/G ratios of all Mo–Ta alloys are larger than 1.75. The new rule given by Frantsevich et al [37] indicates that alloys can be considered as ductile material when their Poisson’s ratio (σ) is larger than 0.26. From figure 5, we can see that the B/G ratio and Poisson’s ratio show the same trend with the increase of Ta content. The ductility order of Mo–Ta alloys is: Mo0.5Ta0.5>Mo0.875Ta0.125>Mo0.6875Ta0.3125>Mo0.75Ta0.25>Mo0.9375Ta0.0625. Because the ductility of pure Ta is better than that of pure Mo, the ductility of mo–ta alloy can be improved by more Ta content.

    3.4. The electronic structure

    The electronic structure of Mo–Ta alloys can be analysed by the projected density of states (PDOS). In this paper, the PDOS of Mo0.9375Ta0.0625, Mo0.875Ta0.125, Mo0.75Ta0.25,Mo0.6875Ta0.3125and Mo0.5Ta0.5are presented in figure 6.We can see a pseudo-gap at the Fermi level, which is a characteristic of typical transition metal alloys. The bonding valence electrons are mainly distributed in the energy range of?5–20 eV. Compared with the pure Ta metal, theTa-containingalloys reduce the energy level of Ta states.Compared with the PDOS of Mo far away from Ta,the degree of overlap of Mo states and Ta states is higher when Mo atoms gets closer to Ta atoms. This may be due to the difference in electronegativity between Mo(2.16)and Ta(1.50),which can cause a small charge transfer between Mo atoms and Ta atoms. And figure 6 also demonstrates the degree of overlap of Ta states and Mo states in the case of Mo0.5Ta0.5is the highest, showing the Mo–Ta bonding strength is the highest in Mo0.5Ta0.5.

    3.5. The thermodynamic properties of Mo–Ta alloys

    3.5.1.Debye temperature. Debye temperature is an essential parameter for materials, which corresponds to the highest frequency of lattice vibration and indirectly reflects the strength of the binding force between atoms. Debye temperature can be estimated using the following relationship [37]:

    where ρ, h, kB, NA, M and n are density, Planck constant,Boltzmann constant, Avogadro constant, the weight of a supercell and the number of atoms per formula, respectively.Vl, Vtand Vmrepresent the longitudinal sound velocity, lateral sound velocity and average sound velocity, respectively. From table 5, we can see that the Debye temperature of 466.5 K of pure Mo decreases to 228.8 K for pure Ta,which indicates that the binding force between atoms is strongest in pure Mo.

    3.5.2. Low temperature heat capacity. The low temperature heat capacity can be estimated by Fermi energy and Debye temperature, which are defined as follows:

    For the above formulae, EFis the Fermi energy,? is reduced Planck constant, m is the electron weight, and ρeis the electron density of Mo–Ta alloys.γ and β are the electron and phonon heat capacity coefficients, respectively. N is the number of valence electrons of Mo–Ta alloys,5 s1for Mo and 6 s2for Ta. R is the molar gas constant, Cvis the heat capacity, and T is the temperature.

    From formula (19), the heat capacity is divided into two parts: the electron and phonon heat capacity. Obviously, the larger the value of γ or β is,the larger the heat capacity is. As shown in table 5, the value of γ or β continuously increases with the increase of Ta content such that heat capacity also continuously increases, as shown in figure 7. From formulae(16) and (17), we can find that the magnitude of γ is mainly determined by the number of valence electrons.This is because only the valence electrons, which are near the Fermi level and have a high probability of being excited, will contribute to the heat capacity. Undoubtedly, More Ta atoms lead to more valence electrons.

    Table 5.The density ρ(g cm?3),longitudinal sound velocity Vl(m s?1),transverse sound velocity Vt(m s?1),average sound velocity(m s?1),Debye temperature (K), low temperature parameters of the electron heat capacity coefficient γ (J/(mol K2)) and phonon heat capacity coefficient β (J/(mol K4)) of Mo–Ta alloys.

    Figure 7. Low temperature heat capacity of Mo–Ta alloys.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China (No.11820101004), the National Key R&D Program of China (2017YFE0300100, 2017YFE0301100).

    猜你喜歡
    張欣
    《卯兔之年》
    《保護(hù)生態(tài)》
    《城》
    平面向量線性運算的轉(zhuǎn)化思想的應(yīng)用
    Novel structures and mechanical properties of Zr2N:Ab initio description under high pressures*
    隨筆四則
    作品(2020年4期)2020-05-11 06:21:45
    Dynamical stable-jump-stable-jump picture in a non-periodically driven quantum relativistic kicked rotor system?
    自作多情
    張欣現(xiàn)代重彩作品欣賞
    Estimating the clutch transmitting torque during HEV mode-switch based on the Kalman filter
    91字幕亚洲| 中文字幕人妻丝袜一区二区| 欧美午夜高清在线| 亚洲av美国av| 亚洲18禁久久av| 欧美性猛交╳xxx乱大交人| 午夜福利在线观看吧| 国模一区二区三区四区视频 | 欧美成人一区二区免费高清观看 | 搞女人的毛片| 欧美又色又爽又黄视频| 亚洲精品粉嫩美女一区| 一进一出抽搐动态| 亚洲成av人片在线播放无| 身体一侧抽搐| 久久中文看片网| 亚洲五月天丁香| 精品欧美一区二区三区在线| 成年版毛片免费区| 一区福利在线观看| 欧美zozozo另类| www国产在线视频色| 99久久99久久久精品蜜桃| 日韩免费av在线播放| 少妇被粗大的猛进出69影院| 久久天躁狠狠躁夜夜2o2o| 亚洲avbb在线观看| 国产精品国产高清国产av| 欧美av亚洲av综合av国产av| 日本免费a在线| 精品无人区乱码1区二区| 一级毛片精品| 色哟哟哟哟哟哟| 岛国视频午夜一区免费看| 一边摸一边抽搐一进一小说| 亚洲欧洲精品一区二区精品久久久| 亚洲色图av天堂| 国产一区在线观看成人免费| 麻豆av在线久日| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人免费电影在线观看| 免费电影在线观看免费观看| 欧美色视频一区免费| 男女那种视频在线观看| 999精品在线视频| 日本精品一区二区三区蜜桃| 欧美色视频一区免费| 50天的宝宝边吃奶边哭怎么回事| 午夜福利高清视频| 国产精品av久久久久免费| 老司机午夜十八禁免费视频| 看黄色毛片网站| 成人国产一区最新在线观看| 制服丝袜大香蕉在线| 狂野欧美白嫩少妇大欣赏| 国产99久久九九免费精品| 小说图片视频综合网站| 久久婷婷人人爽人人干人人爱| 亚洲国产欧美一区二区综合| 高清在线国产一区| 国产精品亚洲一级av第二区| 亚洲精品美女久久av网站| 1024手机看黄色片| 麻豆一二三区av精品| 不卡一级毛片| 91麻豆精品激情在线观看国产| 日韩高清综合在线| 亚洲 欧美一区二区三区| 一区二区三区高清视频在线| 色综合站精品国产| 成人三级做爰电影| 久久国产精品影院| 国产欧美日韩精品亚洲av| 好男人在线观看高清免费视频| 日韩精品中文字幕看吧| 91麻豆精品激情在线观看国产| 嫁个100分男人电影在线观看| www.熟女人妻精品国产| 欧美不卡视频在线免费观看 | 91老司机精品| 精品一区二区三区视频在线观看免费| 日韩欧美三级三区| 青草久久国产| 午夜久久久久精精品| 麻豆成人av在线观看| 国产欧美日韩一区二区三| 又大又爽又粗| 九色国产91popny在线| 精品国产超薄肉色丝袜足j| 亚洲18禁久久av| 精品熟女少妇八av免费久了| 黑人操中国人逼视频| 2021天堂中文幕一二区在线观| 免费看美女性在线毛片视频| 色综合欧美亚洲国产小说| 99国产精品99久久久久| 国产乱人伦免费视频| 国产精品av视频在线免费观看| a级毛片在线看网站| 黄色丝袜av网址大全| 全区人妻精品视频| 亚洲男人天堂网一区| 别揉我奶头~嗯~啊~动态视频| 日日爽夜夜爽网站| 国产三级在线视频| 中国美女看黄片| 久久久精品大字幕| 最好的美女福利视频网| 最近最新免费中文字幕在线| 精品国内亚洲2022精品成人| 嫩草影视91久久| 日韩欧美免费精品| 国产精品久久电影中文字幕| 人妻夜夜爽99麻豆av| 欧美一区二区国产精品久久精品 | 免费在线观看影片大全网站| 久久人妻福利社区极品人妻图片| 国产精品久久电影中文字幕| 亚洲中文字幕一区二区三区有码在线看 | 黑人巨大精品欧美一区二区mp4| 亚洲全国av大片| 五月伊人婷婷丁香| 不卡一级毛片| 亚洲美女视频黄频| 日韩av在线大香蕉| 国产97色在线日韩免费| 两个人看的免费小视频| 国产伦一二天堂av在线观看| 亚洲中文字幕日韩| 99re在线观看精品视频| 久久久水蜜桃国产精品网| 床上黄色一级片| 日本a在线网址| 好男人在线观看高清免费视频| 日韩欧美在线二视频| 欧美日韩国产亚洲二区| 久久久久久九九精品二区国产 | av国产免费在线观看| 国产主播在线观看一区二区| 黄色视频,在线免费观看| 国产精华一区二区三区| 精品日产1卡2卡| 日韩欧美在线乱码| 成人特级黄色片久久久久久久| 午夜免费成人在线视频| 99热只有精品国产| 舔av片在线| 亚洲精华国产精华精| 欧美色欧美亚洲另类二区| 91大片在线观看| 在线十欧美十亚洲十日本专区| 午夜视频精品福利| 美女午夜性视频免费| 亚洲中文av在线| 18禁裸乳无遮挡免费网站照片| 欧美色欧美亚洲另类二区| 啦啦啦韩国在线观看视频| 99热这里只有是精品50| 亚洲午夜理论影院| 人人妻人人看人人澡| 亚洲午夜理论影院| 久久婷婷成人综合色麻豆| 在线观看一区二区三区| 视频区欧美日本亚洲| 一级作爱视频免费观看| 国产又黄又爽又无遮挡在线| 免费无遮挡裸体视频| 在线观看一区二区三区| 久久久久久大精品| 两性夫妻黄色片| 黄色丝袜av网址大全| 日本熟妇午夜| 又粗又爽又猛毛片免费看| 啦啦啦免费观看视频1| 亚洲18禁久久av| 久久亚洲真实| 成人国语在线视频| 啦啦啦韩国在线观看视频| av福利片在线| 一边摸一边抽搐一进一小说| 特大巨黑吊av在线直播| 少妇熟女aⅴ在线视频| 十八禁人妻一区二区| 麻豆国产97在线/欧美 | 国产精品爽爽va在线观看网站| 51午夜福利影视在线观看| 欧美色视频一区免费| 国产精品 欧美亚洲| 麻豆一二三区av精品| 一二三四在线观看免费中文在| 麻豆久久精品国产亚洲av| 国产成人系列免费观看| 国产黄a三级三级三级人| 久久午夜亚洲精品久久| 国产aⅴ精品一区二区三区波| 久热爱精品视频在线9| 草草在线视频免费看| 麻豆av在线久日| 国产av一区在线观看免费| 成人高潮视频无遮挡免费网站| 在线视频色国产色| 搡老妇女老女人老熟妇| 狂野欧美激情性xxxx| 久久精品国产综合久久久| 99久久久亚洲精品蜜臀av| 99热只有精品国产| 色播亚洲综合网| 国产成人欧美在线观看| 成人永久免费在线观看视频| 婷婷精品国产亚洲av在线| 日韩欧美免费精品| 欧洲精品卡2卡3卡4卡5卡区| 亚洲专区国产一区二区| 99久久精品热视频| 久久午夜亚洲精品久久| 成人18禁高潮啪啪吃奶动态图| 白带黄色成豆腐渣| 亚洲片人在线观看| av视频在线观看入口| 精品久久久久久成人av| 黄色成人免费大全| 男女做爰动态图高潮gif福利片| 欧美成人性av电影在线观看| 又爽又黄无遮挡网站| 亚洲国产精品合色在线| 巨乳人妻的诱惑在线观看| 精品久久久久久久毛片微露脸| 亚洲人成电影免费在线| 99精品在免费线老司机午夜| 亚洲 欧美 日韩 在线 免费| 亚洲激情在线av| 18美女黄网站色大片免费观看| 午夜福利成人在线免费观看| 国产伦在线观看视频一区| 男人舔奶头视频| 亚洲人成77777在线视频| 亚洲成a人片在线一区二区| 亚洲午夜理论影院| 村上凉子中文字幕在线| 一个人免费在线观看电影 | 午夜激情福利司机影院| 搡老熟女国产l中国老女人| 亚洲中文字幕日韩| 亚洲av美国av| 又大又爽又粗| 亚洲天堂国产精品一区在线| 手机成人av网站| 亚洲真实伦在线观看| 中文字幕熟女人妻在线| 美女 人体艺术 gogo| 免费一级毛片在线播放高清视频| 精品不卡国产一区二区三区| 他把我摸到了高潮在线观看| 中亚洲国语对白在线视频| 国产成人啪精品午夜网站| 精品福利观看| 色综合亚洲欧美另类图片| 欧美zozozo另类| √禁漫天堂资源中文www| 一本综合久久免费| 亚洲人成网站在线播放欧美日韩| 国产av在哪里看| 俄罗斯特黄特色一大片| 在线看三级毛片| 老司机深夜福利视频在线观看| 亚洲国产精品sss在线观看| 欧美日韩乱码在线| 欧美3d第一页| 亚洲自偷自拍图片 自拍| 丰满的人妻完整版| 嫁个100分男人电影在线观看| 九色国产91popny在线| 精品国产超薄肉色丝袜足j| 天堂动漫精品| 毛片女人毛片| 看免费av毛片| 人人妻,人人澡人人爽秒播| 舔av片在线| 精品一区二区三区四区五区乱码| 国产激情偷乱视频一区二区| 999久久久精品免费观看国产| 日韩欧美一区二区三区在线观看| 欧美黑人巨大hd| 丰满人妻熟妇乱又伦精品不卡| 妹子高潮喷水视频| 99精品欧美一区二区三区四区| 精品无人区乱码1区二区| 看黄色毛片网站| 日韩欧美 国产精品| 亚洲精品粉嫩美女一区| 夜夜夜夜夜久久久久| 搞女人的毛片| 国产精品一及| 好男人在线观看高清免费视频| 色综合婷婷激情| 少妇人妻一区二区三区视频| 免费搜索国产男女视频| 高清在线国产一区| av福利片在线观看| 久久99热这里只有精品18| 成年人黄色毛片网站| 国产精品野战在线观看| 国产男靠女视频免费网站| 日本精品一区二区三区蜜桃| 欧美人与性动交α欧美精品济南到| 国产亚洲av高清不卡| 午夜福利欧美成人| 日日干狠狠操夜夜爽| 制服人妻中文乱码| 身体一侧抽搐| 中文字幕熟女人妻在线| 99久久国产精品久久久| 日日摸夜夜添夜夜添小说| 国内少妇人妻偷人精品xxx网站 | 久久精品人妻少妇| 国产精品九九99| 国产日本99.免费观看| 国产成人精品久久二区二区免费| 2021天堂中文幕一二区在线观| 国产精品日韩av在线免费观看| 日韩有码中文字幕| 成人一区二区视频在线观看| 少妇粗大呻吟视频| 欧美日韩亚洲综合一区二区三区_| 免费在线观看成人毛片| 国产精品乱码一区二三区的特点| 好男人电影高清在线观看| 国产精品爽爽va在线观看网站| 久久久精品国产亚洲av高清涩受| 韩国av一区二区三区四区| 免费看a级黄色片| 国产精品久久久久久人妻精品电影| 久久精品国产99精品国产亚洲性色| 成人高潮视频无遮挡免费网站| 色综合亚洲欧美另类图片| 亚洲人与动物交配视频| 亚洲自偷自拍图片 自拍| 香蕉av资源在线| 日本一区二区免费在线视频| 欧美绝顶高潮抽搐喷水| 免费电影在线观看免费观看| 在线观看免费午夜福利视频| 亚洲 欧美一区二区三区| 999精品在线视频| 99精品欧美一区二区三区四区| 男插女下体视频免费在线播放| 欧美久久黑人一区二区| 亚洲中文字幕日韩| 一进一出好大好爽视频| 免费看十八禁软件| 久久久久精品国产欧美久久久| 亚洲欧美精品综合一区二区三区| 一a级毛片在线观看| 久久久久久久精品吃奶| 校园春色视频在线观看| 婷婷亚洲欧美| 国产又色又爽无遮挡免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩国内少妇激情av| 91麻豆精品激情在线观看国产| 后天国语完整版免费观看| 国产99久久九九免费精品| 亚洲国产精品999在线| 一边摸一边抽搐一进一小说| 国产亚洲精品av在线| 岛国视频午夜一区免费看| 精品午夜福利视频在线观看一区| 18禁观看日本| 免费人成视频x8x8入口观看| 亚洲欧美日韩高清在线视频| 18禁黄网站禁片免费观看直播| 国产熟女午夜一区二区三区| 免费在线观看视频国产中文字幕亚洲| 色综合亚洲欧美另类图片| 精品一区二区三区四区五区乱码| 久热爱精品视频在线9| a级毛片a级免费在线| 国产人伦9x9x在线观看| 嫩草影视91久久| www.www免费av| 欧美乱色亚洲激情| 久久香蕉国产精品| 黄色丝袜av网址大全| 国产野战对白在线观看| 成人手机av| 亚洲国产精品合色在线| 久久久久久国产a免费观看| 伦理电影免费视频| 久久国产乱子伦精品免费另类| 久9热在线精品视频| 亚洲专区国产一区二区| 一夜夜www| 欧美性长视频在线观看| 亚洲五月天丁香| 国产亚洲av高清不卡| 在线观看免费日韩欧美大片| 欧美一区二区精品小视频在线| av福利片在线| av天堂在线播放| 女人被狂操c到高潮| 无遮挡黄片免费观看| 欧美一级毛片孕妇| 黄色女人牲交| 观看免费一级毛片| 99在线人妻在线中文字幕| 看片在线看免费视频| 精品久久久久久久毛片微露脸| 91九色精品人成在线观看| 日韩欧美免费精品| 欧美日韩精品网址| 成人手机av| 久久久久久人人人人人| 成年免费大片在线观看| 一a级毛片在线观看| 高清在线国产一区| АⅤ资源中文在线天堂| 亚洲av成人一区二区三| 久久精品国产亚洲av高清一级| 午夜激情av网站| 国产成人影院久久av| 久久久久久免费高清国产稀缺| 成人av在线播放网站| 此物有八面人人有两片| 国产精品亚洲av一区麻豆| 国产又色又爽无遮挡免费看| 最近最新中文字幕大全电影3| 免费高清视频大片| 欧美乱码精品一区二区三区| 亚洲国产精品成人综合色| 婷婷精品国产亚洲av| 国产成人影院久久av| 黄色 视频免费看| bbb黄色大片| 2021天堂中文幕一二区在线观| 婷婷丁香在线五月| 国产精品一及| 国产精品电影一区二区三区| 叶爱在线成人免费视频播放| 国语自产精品视频在线第100页| 嫁个100分男人电影在线观看| 免费在线观看影片大全网站| 夜夜夜夜夜久久久久| 国产一区二区在线观看日韩 | 搡老妇女老女人老熟妇| 又黄又粗又硬又大视频| 一边摸一边抽搐一进一小说| 欧美一区二区精品小视频在线| x7x7x7水蜜桃| 国产一区二区在线观看日韩 | 成人手机av| 91字幕亚洲| 免费看日本二区| 久久婷婷人人爽人人干人人爱| 淫妇啪啪啪对白视频| 国产亚洲欧美在线一区二区| 少妇熟女aⅴ在线视频| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久久久久久久久| 精品国产美女av久久久久小说| 免费在线观看日本一区| 精品国产乱码久久久久久男人| 国产精品国产高清国产av| 精品一区二区三区av网在线观看| 淫秽高清视频在线观看| 色老头精品视频在线观看| 桃红色精品国产亚洲av| 99国产极品粉嫩在线观看| 欧美丝袜亚洲另类 | a级毛片在线看网站| 不卡一级毛片| 欧美3d第一页| 国产私拍福利视频在线观看| 免费一级毛片在线播放高清视频| 国产高清有码在线观看视频 | 亚洲七黄色美女视频| 国产精品一区二区精品视频观看| 一级作爱视频免费观看| 美女免费视频网站| 久久人妻av系列| 欧美日韩中文字幕国产精品一区二区三区| 搞女人的毛片| 禁无遮挡网站| 国产男靠女视频免费网站| 蜜桃久久精品国产亚洲av| www.999成人在线观看| 国产熟女xx| 久久久久久久精品吃奶| 日韩中文字幕欧美一区二区| 三级毛片av免费| 国产真人三级小视频在线观看| 午夜久久久久精精品| 亚洲无线在线观看| 欧美激情久久久久久爽电影| 亚洲欧美日韩高清专用| 成人三级黄色视频| 欧美大码av| 中文字幕熟女人妻在线| 变态另类成人亚洲欧美熟女| bbb黄色大片| 男人舔女人下体高潮全视频| 欧美最黄视频在线播放免费| 亚洲七黄色美女视频| 小说图片视频综合网站| 99久久国产精品久久久| 国产精品av视频在线免费观看| 亚洲 欧美一区二区三区| 亚洲欧美一区二区三区黑人| 日本黄大片高清| 性欧美人与动物交配| 丰满人妻一区二区三区视频av | 97超级碰碰碰精品色视频在线观看| 国产高清激情床上av| 啦啦啦韩国在线观看视频| 一个人免费在线观看电影 | 天堂动漫精品| 好看av亚洲va欧美ⅴa在| 亚洲七黄色美女视频| 欧美不卡视频在线免费观看 | 国产精品国产高清国产av| 51午夜福利影视在线观看| 又黄又爽又免费观看的视频| 国产精品久久久久久人妻精品电影| 国产精品一区二区精品视频观看| 亚洲aⅴ乱码一区二区在线播放 | 久久亚洲真实| 一级黄色大片毛片| 毛片女人毛片| 久久久久久九九精品二区国产 | 757午夜福利合集在线观看| 在线观看美女被高潮喷水网站 | 久久 成人 亚洲| 亚洲中文av在线| 91在线观看av| 少妇裸体淫交视频免费看高清 | 国产高清激情床上av| 日韩欧美在线二视频| 少妇被粗大的猛进出69影院| 级片在线观看| 国产欧美日韩一区二区三| 天堂影院成人在线观看| 亚洲成人国产一区在线观看| 精品久久久久久成人av| 欧美在线黄色| 欧美丝袜亚洲另类 | 9191精品国产免费久久| 亚洲无线在线观看| 91在线观看av| 精品免费久久久久久久清纯| 亚洲精品一卡2卡三卡4卡5卡| 1024视频免费在线观看| 日韩中文字幕欧美一区二区| 后天国语完整版免费观看| 国产亚洲精品久久久久久毛片| 免费人成视频x8x8入口观看| 超碰成人久久| 男女之事视频高清在线观看| 好看av亚洲va欧美ⅴa在| 亚洲中文av在线| 国产1区2区3区精品| 久久久久久国产a免费观看| 男男h啪啪无遮挡| 国产午夜精品久久久久久| 亚洲午夜理论影院| 国产精品av久久久久免费| 成人高潮视频无遮挡免费网站| 亚洲国产欧美一区二区综合| 成人特级黄色片久久久久久久| 欧美色视频一区免费| 精品电影一区二区在线| 国产视频内射| 亚洲国产看品久久| 日本三级黄在线观看| 亚洲精品色激情综合| 国产探花在线观看一区二区| 琪琪午夜伦伦电影理论片6080| 久久久久免费精品人妻一区二区| 国产成人精品无人区| 亚洲专区国产一区二区| 黄片大片在线免费观看| 久久久久久免费高清国产稀缺| 99精品久久久久人妻精品| 神马国产精品三级电影在线观看 | 日本黄大片高清| 亚洲人成电影免费在线| 2021天堂中文幕一二区在线观| 校园春色视频在线观看| 国产欧美日韩一区二区三| 免费在线观看日本一区| 久久久久久大精品| 国产亚洲精品综合一区在线观看 | 少妇熟女aⅴ在线视频| 精品久久久久久久末码| 身体一侧抽搐| 亚洲人与动物交配视频| 色在线成人网| 日韩欧美在线二视频| 长腿黑丝高跟| 9191精品国产免费久久| 色播亚洲综合网| 在线观看www视频免费| xxxwww97欧美| 久久精品国产亚洲av香蕉五月| 男女那种视频在线观看| 露出奶头的视频| 成人国产综合亚洲| 久久性视频一级片| 神马国产精品三级电影在线观看 | 午夜福利在线在线| 老司机午夜福利在线观看视频| 草草在线视频免费看| 国产精品一区二区免费欧美| av有码第一页| 亚洲欧美日韩东京热| www.www免费av| 18禁观看日本|