• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Estimating the clutch transmitting torque during HEV mode-switch based on the Kalman filter

    2015-04-22 02:33:16WUXuebin鄔學(xué)斌ZHANGXin張欣CHENHongwei陳宏偉YANGMeng楊猛
    關(guān)鍵詞:張欣

    WU Xue-bin(鄔學(xué)斌), ZHANG Xin(張欣), CHEN Hong-wei(陳宏偉), YANG Meng(楊猛)

    (School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China)

    ?

    Estimating the clutch transmitting torque during HEV mode-switch based on the Kalman filter

    WU Xue-bin(鄔學(xué)斌), ZHANG Xin(張欣), CHEN Hong-wei(陳宏偉), YANG Meng(楊猛)

    (School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China)

    A power train dynamics model of a coaxial parallel hybrid electric vehicle (HEV) was built for different clutch operating states. With the state vector constituted by the motor rotation speed and the clutch transmitting torque at two successive time steps, a discrete state space model for estimating the clutch transmitting torque was built, and the Kalman filtering algorithm was used to estimate the clutch transmitting torque. The Matlab/Simulink was employed to simulate the clutch transmitting torque for two mode-switch processes. Estimation errors were analyzed through comparing the estimated and simulated values of the clutch torque. Impact of the noise covariance and the sample time on clutch torque estimation errors were explored. The results show that the developed estimation method can be used to estimate the clutch transmitting torque for HEV with good accuracy. The results are useful for torque direct control of automatic diaphragm clutches.

    hybrid electric vehicle; mode switch; automatic clutch; Kalman filter; torque estimation

    Dynamic coordinated control for drive-mode switch is a key challenge to develop a hybrid electric vehicle (HEV). Hybrid systems using planetary gear sets to couple rotational elements, such as Toyota hybrid system (THS) and GM dual-mode hybrid system, switch their drive-mode by coordinating motor and engine torques[1-2].

    In respect of hybrid systems using automatic clutches as drive-mode switch element, the switch control need coordinate torques of motor, engine and clutch. Motor torque and engine torque can be acquired from MCU and ECU respectively, while clutch transmitting torque is unavailable because there is no sensor to measure clutch transmitting torque. Therefore, it is impossible to control clutch transmitting torque directly. The generally followed approaches like the speed control of the driving and driven shaft[3-4]and the travel control of the clutch[5-6]can hardly provide desired clutch transmitting torque for the drive mode switch.

    A prerequisite for clutch transmitting torque control is to estimate the clutch friction torque. The engage/disengage travel of automatic diaphragm clutches can be directly controlled. However, the relationship between engage/disengage travel and clutch transmitting torque shows strongly nonlinear characteristics because of the elasticity of clutch elements, the quasi-static variation of friction coefficient, and the wearing of friction lining[7-8]. Therefore, it is difficult to theoretically build an accurate model to calculate the clutch transmitting torque.

    State estimation based on analysis of power train dynamics could be a feasible approach to this problem. French scholars R. Amari and P. Tona established a mathematical model for clutch torque estimation by solving Riccati equations, which is a continuous system Kalman-like observer[9]. However, the purpose of their study is to establish the nonlinear function between the clutch travel and clutch torque, and their method can not be used for real-time control.

    This paper introduces a method to estimate the clutch transmitting torque for coaxial parallelHEVs. A state space model of the hybrid power train system is built. Based on the model, a Kalman filter is designed to estimate the clutch transmitting torque in the process of drive mode switch. This study makes it possible to control the clutch transmitting torque directly during HEV mode switch.

    1 Modeling of a coaxial parallel hybrid power train

    The configuration of a coaxial parallel hybrid power train (Fig.1) includes an engine, a motor, a battery set, an automatic clutch, an AMT, and a final drive. The motor is fixed at the input shaft of the AMT. The automatic clutch switchs the drive mode by controlling a dry clutch to engage or disengage. The AMT can automatically change gear ratios by using an actuator.

    Fig.1 Configuration of a coaxial parallel hybrid power train with AMT

    The automatic clutch has three operating states, including disengagement, slipping and engagement. When it is disengaged or slipping, the engine and the motor rotate at different speeds. In that case, the engine torque and the clutch transmitting torque act on the engine crankshaft simultaneously, and the motor torque and the clutch transmitting torque act on the AMT input shaft simultaneously. When the clutch is engaged, it transmits static friction torque, and in that case, the motor torque and the engine torque act on the AMT input shaft simultaneously.

    When the clutch is completely engaged, the dynamics equation of the system is

    (1)

    And when the clutch is disengaged or slipping, the equations are given by

    (2)

    whereJeis the equivalent inertia of the rotational parts of engine and the input shaft of the clutch,Jmis the inertia of the motor rotor,Jvis the equivalent vehicle inertia measured on the input shaft of the gearbox,Teandweare the engine torque and the engine rotational speed respectively,Tmandwmare the motor torque and the motor rotational speed respectively,Tcis the clutch friction torque,Tris the equivalent running resistance torque measured on the input shaft of the gearbox. In Eqs. (1) (2), the sign depends on the rotation direction of the clutch torque.

    The equivalent vehicle inertiaJvis given by

    (3)

    wheremis the vehicle mass,ris the tire rolling radius,Jwis the wheel inertia,igis the gearbox ratio,i0is the final drive ratio. Without consideration of the wind speed, the vehicle running resistance force is calculated by

    (4)

    wherefis the tire rolling resistance coefficient and is considered to be a constant,iis the road’s longitudinal gradient,Ais the frontal area, andCdis the drag coefficient. Here, the velocity,v, is measured in m/s, and is linearly correlated towmaccording to

    (5)

    The equivalent running resistance torque measured on the input shaft of the gearbox is expressed by

    (6)

    From Eqs.(4)-(6),Trcan be written as

    (7)

    WithTrbeing replaced according to Eq.(7), Eqs.(1)-(2) can unambiguously describe the power train dynamics behavior.

    2 State space model for estimating the clutch transmitting torque

    When a vehicle starts, the coaxial parallel hybrid power train (Fig.1) keeps the automatic clutch disengaged so that the motor provides propulsion. When the vehicle speed is up to a threshold value, the automatic clutch gets engaged and the engine starts. In that case, the engine alone, or the engine and the motor jointly supply the motive power. While getting engaged to start the engine, the clutch is sliding and the system has two degrees of freedom. The clutch transmitting torque,Tc, is the engine starting torque and the motor resistance torque at the same time. The dynamics Eq.(2) can be rewritten as

    (8)

    Eq.(8) models the dynamics characteristics of the engine and motor rotation. The first equation describes the engine dynamics where the engine torque,Te, refers to the transient torque and is hard to acquire. The second equation gives the motor rotor’s dynamics where the motor torque,Tm, is available from the motor controller. And the running resistance torqueTrcan be assumed as a constant since the switching process is short enough. Therefore, the second equation of Eq. (8) can be used to estimateTcand for that purpose, which can be discretized into

    (9)

    whereTsis the sample time of discretization. Eq.(9) can be rewritten as

    (10)

    For the time stepk+1, we have

    (11)

    Eq.(9) can be differentiated and discretized into

    (12)

    and then transformed to

    (13)

    For the time stepk+1, we have

    (14)

    We have identical equation as

    (15)

    With Eqs.(10)(11)(14)(15) parallel put together, the matrix model of the discrete state system can be expressed as

    X(k+1)=A1X(k+1)+A2X(k)+B1U(k+1)

    (16)

    where the discrete state variable vector X(k) and the control vector U(k) were

    (17)

    The matrix A1, A2and B1were

    Let A=(I-A1)-1A2, B=(I-A1)-1B1, and take the process noiseW(k) into consideration, Eq.(17) is rewritten as

    X(k+1)=AX(k)+BU(k+1)+W(k)

    (18)

    Z(k)=HX(k)+V(k)

    (19)

    where H=[1 0 0 0] is the observation matrix, and V(k) is the observation noise.

    3 Kalman filtering estimation of the clutch torque

    The state equation of Eq.(18) and the observation equation of Eq.(19) constitute the state space model of the linear discrete system.

    (20)

    The process noise, W(k), and the observation noise, V(k), are assumed zero mean Gaussian white noise with covarianceQandRrespectively. Based on the model, the discrete Kalman filter can be used to estimate the clutch transmitting torque. The Kalman filter is conceptualized as two distinct phases, “predict” and “update”. The predict phase uses the state estimate at the current time step to produce a priori estimate of the state for the next time step. In the update phase, the priori estimate is combined with the observation information at the next time step to refine the state estimate and get a posteriori state estimate[8]. The estimation steps are as follows.

    ① Predict

    The priori estimate of the state for the next time step is given by

    (k+1/k)=A(k/k)+BU(k+1)

    (21)

    The priori estimate covariance is obtained according to

    P(k+1/k)=AP(k/k)AT+Q(k)

    (22)

    ② Update

    Optimal Kalman gain is given by

    K(k+1)=P(k+1/k)HT/[HP(k+1/k)HT+R(k)]

    (23)

    The posteriori estimate of the state for the next time step is given by

    (k+1/k+1)=(k+1/k)+K(k+1)[Z(k+1)-H(k+1/k)]

    (24)

    The posteriori estimate covariance is calculated by

    P(k+1/k+1)=[I-K(k+1)H]P(k+1/k)

    (25)

    Eqs.(21)-(25) provide iterative steps of the Kalman filter estimating the clutch torque, and some variables are explained as follows.

    K(k+1), Kalman gain matrix for the time stepk+1;

    P(k+1/k), priori estimate covariance matrix for the time stepk+1;

    P(k/k), posteriori estimate covariance matrix for the time stepk;

    Q(k), covariance matrix of the process noise;

    R(k), covariance matrix of the observation noise.

    4 Simulation and analysis on estimating the clutch transmitting torque for HEV drive-mode switch

    The HEV drive-mode switch includes two situations. The first situation refers to switching motor drive mode to engine drive mode or to engine-and-motor drive mode, where the automatic clutch is controlled to move from disengagement to engagement. The second one is switching engine drive mode or engine-and-motor driving mode to motor driving mode, where the automatic clutch is controlled to move from engagement to disengagement. This paper focuses on the first situation, simulating and studying the most important mode-switch processes, from motor drive mode to engine-and-motor drive mode.

    4.1 Clutch transmitting torque estimation for HEV drive-mode switch

    The Matlab/Simulink is employed to simulate the dynamic behavior of the HEV power train. The simulation model is shown in Fig.2.

    The varying torques of engine, motor and clutch are determined by the mode-switch controller. The mode-switch control strategy is

    Fig.2 Simulation model of HEV mode-switch process

    different under different drive-mode switch situations. Two mode-switch control processes are simulated. Simulation results are shown in Fig.3.

    Fig.3 Profile of power train torques for the HEV drive-mode switch

    Fig.3a provides torque history for switching from motor drive to engine-and-motor drive. Fig.3b provides torque history for switching from motor drive to engine drive. At the beginning of mode switching in Fig.3a, the motor drive torque is 300 N·m and equivalent resistance torque is 36 N·m. The clutch is completely disengaged and the engine stops, therefore the engine torque and the clutch torque are zero. With the clutch being controlled to get engaged, the engine is driven to start by clutch friction torque. At 0.36 s, the engine generates driving torque and the engine speed exceeds its idle speed. At 0.53 s, the clutch gets into the static friction state, which indicates the end of mode switching. Fig.3b shows the engine starting process, which is part of the whole mode-switch process. The engine torque is always zero since its speed does not reach the idle speed.

    The initial motor speed is 1 440 r/min. Based on the above data, for the state space model described by Eq.(20), the initial values of state vector X(0) and control vector U(0) are

    (26)

    The process noise mainly includes the non-ideal characteristics of the PWM inverter and the motor inner friction torque. The observation noise comes from the quantization errors in programming and the various errors in rotation speed measurement. The noise covariance, Q and R, can be acquired through the experimental analysis. According to Ref. [10], Q and R are assigned by

    (27)

    R=0.01

    (28)

    With Eqs.(20)-(25) applied to the two switching processes shown in Fig.3, the clutch transmitting torque can be estimated. Fig.4 and Fig.5 compare the estimate torque with the actual one.

    Fig.4 and Fig.5 show that the estimated clutch torque has random errors when adding Gaussian white noise signal at the motor torque and speed signal. Fig 4a and Fig 5a compares estimated torque and actual torque, which shows that the estimated torque match with the actual torque very well. Fig.4b and Fig.5b show the error curve of clutch torque estimation. The profile data can be quantitatively analyzed. As for Fig.4, the maximum clutch torque is 104.5 N·m. The maximum estimation error is 3.754 N·m for the period from 0 to 0.3 s. While for the period from 0.3 s to 0.5 s, the error decreases and the maximum is 3.364 N·m with an estimation accuracy of 3.22%. The results indicate that the accuracy of the clutch estimation algorithm is available and effective.

    Fig.4 Clutch torque estimation for switching motor drive to engine-and-motor drive

    Fig.5 Clutch torque estimation for switching motor drive mode to engine drive mode

    4.2 Impact of the noise covariance on the clutch torque estimation

    The process noise covariance Q and the observation noise covariance R should be acquired through the experimental analysis. The impact of noise parameters on the clutch torque estimation is examined by simulation and computation. The covariance of process noise is assigned with 0.1×Q, Q and 10×Q respectively for the clutch torque estimation process. Q and R take values according to Eqs.(27) (28), and the sample time is 0.001 s. Fig.6 and Fig.7 show clutch torque estimation errors versus time.

    Statistical analysis is performed on the torque estimation error data in Fig.6 and Fig.7, and the mean and variance of the torque errors are filled in Tab.1.

    Fig.6 Clutch torque estimation errors for switching motor drive to engine-and-motor drive

    Fig.7 Clutch torque estimation errors for switching motor drive mode to engine drive mode

    Tab.1 Statistics of the clutch torque estimation errors at different noise covariance

    SwitchcaseMean/(N·m)Variance/(N·m)0 1×QQ10×Q0 1×QQ10×QMotordrivetoengine?and?motordrive0 971 461 461 411 421 44Motordrivetoenginedrive0 570 620 650 640 690 71

    The data in Tab.1 indicates that the mean of torque estimation error gets smaller while the process noise covariance Q becoming smaller. The reason is that the priori estimate covariance, P, is getting smaller along with estimating iteration going. At the beginning, P dominates the values of the Kalman gain since it is largely greater than Q and R. With estimating iteration going, P

    becomes smaller, leading to Q and R weighing much more in determining the Kalman gain. If Q is assigned values small enough, the Kalman gain will be near 0, which means the estimation and the observation are decoupled. If Q takes too large values, the estimation will include much more observation noise, leading to more uncertainty.

    4.3 Impact of the sample time on the clutch torque estimation

    The sample time is an important parameter for the discrete system to ensure the sampled digital signal sufficient for perfect fidelity for the original analog signal. Clutch torque estimation is simulated at different sampling times, while Q and R are set the same value in Section 4.1. Estimation errors at different sampling times are shown in Fig.8 and Fig.9.

    According to the torque estimation error data in Fig.8 and Fig.9, the mean and variance of the torque errors are analyzed and filled in Tab.2.

    Fig.8 Impact of the sample time on the clutch torque estimation for switching motor drive to engine drive

    Fig.9 Impact of the sample time on the clutch torque estimation for switching motor drive mode to the engine-and-motor drive mode

    Tab.2 Statistics of the clutch torque estimation errors for different sample times

    SwitchcaseMean/(N·m)Variance/(N·m)0 001s0 002s0 005s0 001s0 002s0 005sMotordrivetotheengine?and?motordrive1 4571 2690 7021 4200 5911 115Motordrivetoenginedrivemode0 6201 1100 4420 6900 7151 117

    Fig.8, Fig.9 and Tab.2 show that the mean of clutch torque estimation errors gets smaller with the sample time becoming larger. The mean of the errors for the sample time of 0.001 s is the largest, but estimation errors curve for the sample time of 0.001 s is more stable. It seems that larger sample time is effective. In the development of the actual control system, it is necessary to comprehensively consider the Shannon theorem, and the real-time control and the torque estimation errors for determining sampling time.

    5 Conclusions

    The two-freedom dynamics model for the power train of coaxial parallel HEVs is built with consideration of the clutch engagement/disengagement states, and on the basis of that, following issues are studied.

    ① With the motor rotation speed and the clutch transmitting torque at two successive time steps constituting the state variable vector, and with the motor rotation speed as the observation vector, the discrete state space model for estimating the clutch transmitting torque is built. And in order to minimize the influence of noise, the Kalman filtering algorithm is developed to estimate the clutch transmitting torque.

    ② The Matlab/Simulink is employed to simulate the clutch transmitting torque for mode-switch from motor drive to engine drive and from motor drive to engine-and-motor drive. The estimated and simulated values of the clutch torque are compared, which shows good accuracy of the estimation method.

    ③ Impact of the noise covariance and the sample time on clutch torque estimation errors are explored, indicating the estimation errors are acceptable if the variations of the noise covariance and the sample time are limited to some range.

    It can be concluded that the algorithm developed in this paper provides an estimation method with good accuracy to estimate the clutch transmitting torque for a HEV. On the basis of this algorithm, torque for automatic diaphragm clutches can be controlled to improve the performance of the drive mode switch of a HEV.

    [1] Liu J, Peng H, Filipi Z. Modeling and analysis of the Toyota hybrid system[C]∥IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey CA,2005.

    [2] Grewe T, Conlon B, Holmes A. Defining the general motors 2-mode hybrid transmission[C]∥Proceedings of the 2007 SAE World Congress, Detroit, MI, 2007.

    [3] Glielmo L, Iannelli L, Vacca V, et al. Speed control for automated manual transmission with dry clutch[C]∥43th IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, 2004.

    [4] Dolcini P, Canudas C, Wit de, et al. Improved optimal control of dry clutch engagement[C]∥16th IFAC World Congress, Prague, Czech Republic, 2005.

    [5] Zhang Xionghua. Research and development of electro-controlled clutch for HEV[D]. Dalian : Dalian University of Technology, 2005. (in Chinese)

    [6] Xie Xianping, Wang Xudong, Zhang Xun. Study on precision position tracking control of electronic controlled automatic clutch[J]. Power Electronics, 2008, 42(10): 58-60. (in Chinese)

    [7] Andreas Myklebust, Lars Eriksson. Torque model with fast and slow temperature dynamics of a slipping dry clutch[C]∥2012 IEEE Vehicle Power and Propulsion Conference, Seoul, Korea, 2012.

    [8] Vasca F, Innelli L. Torque transmissibility assessment for automotive dry-clutch engagement[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(3):564-573.

    [9] Amari R, Tona P, Alamir M. A phenomenological model for torque transmissibility during dry clutch engagement[C]∥18th IEEE International Conference on Control Applications, Saint Petersburg, Russia, 2009.

    [10] Su Weifeng, Liu Congwei, Sun Xudong, et al. Speed controller for induction motors based on Kalman filtering[J]. Jourhal of Tsinghua University (Sci & Tech), 2003,43(9):1202-1205. (in Chinese)

    (Edited by Cai Jianying)

    10.15918/j.jbit1004-0579.201524.0404

    U 463 Document code: A Article ID: 1004- 0579(2015)04- 0449- 09

    Received 2015- 03- 10

    Supported by the National High Technology Research and Development Program of China (863 Program) (2012AA111104)

    E-mail: 09119003@bjtu.edu.cn

    猜你喜歡
    張欣
    《卯兔之年》
    《保護生態(tài)》
    《城》
    Boron at tera-Pascal pressures
    平面向量線性運算的轉(zhuǎn)化思想的應(yīng)用
    Novel structures and mechanical properties of Zr2N:Ab initio description under high pressures*
    隨筆四則
    作品(2020年4期)2020-05-11 06:21:45
    Dynamical stable-jump-stable-jump picture in a non-periodically driven quantum relativistic kicked rotor system?
    自作多情
    張欣現(xiàn)代重彩作品欣賞
    欧美黑人欧美精品刺激| 午夜福利欧美成人| 欧美日本亚洲视频在线播放| 欧美日本亚洲视频在线播放| 免费av毛片视频| 香蕉av资源在线| 九色成人免费人妻av| 欧美成人免费av一区二区三区| 三级毛片av免费| 欧美另类亚洲清纯唯美| 亚洲人成电影免费在线| 最近在线观看免费完整版| 18禁黄网站禁片午夜丰满| 国产97色在线日韩免费| 国产v大片淫在线免费观看| 亚洲精品乱码久久久v下载方式 | 久久精品亚洲精品国产色婷小说| 欧美激情久久久久久爽电影| 一个人看的www免费观看视频| 一级黄色大片毛片| 悠悠久久av| 欧美又色又爽又黄视频| 丁香欧美五月| 国产精品久久久久久精品电影| 麻豆国产97在线/欧美| 国产伦人伦偷精品视频| 中亚洲国语对白在线视频| 午夜精品在线福利| 精品欧美国产一区二区三| 日本黄色片子视频| 成人亚洲精品av一区二区| 亚洲在线观看片| 午夜视频国产福利| 99久久九九国产精品国产免费| 午夜两性在线视频| 男人舔奶头视频| 久久婷婷人人爽人人干人人爱| 九色成人免费人妻av| 啪啪无遮挡十八禁网站| 99久久精品国产亚洲精品| svipshipincom国产片| 成人18禁在线播放| 中文字幕av在线有码专区| www日本在线高清视频| 人人妻人人澡欧美一区二区| 88av欧美| 午夜老司机福利剧场| 校园春色视频在线观看| 国产熟女xx| 老熟妇仑乱视频hdxx| 深夜精品福利| 色精品久久人妻99蜜桃| 欧美一级毛片孕妇| 一本综合久久免费| 精品国产超薄肉色丝袜足j| 精品久久久久久,| 99热只有精品国产| 69av精品久久久久久| 操出白浆在线播放| 亚洲在线自拍视频| 熟女电影av网| 久久香蕉国产精品| 日本黄色片子视频| 国产亚洲精品综合一区在线观看| 国产三级在线视频| 久久亚洲真实| 午夜精品一区二区三区免费看| 色哟哟哟哟哟哟| 日本精品一区二区三区蜜桃| 亚洲五月婷婷丁香| 午夜免费男女啪啪视频观看 | 国产淫片久久久久久久久 | 国产av麻豆久久久久久久| 91久久精品电影网| 18美女黄网站色大片免费观看| 久久精品国产99精品国产亚洲性色| 国产伦一二天堂av在线观看| 草草在线视频免费看| 久久久久久久精品吃奶| 国产在视频线在精品| 女同久久另类99精品国产91| 麻豆国产97在线/欧美| 99精品久久久久人妻精品| 欧美一级a爱片免费观看看| 国内精品美女久久久久久| 久久精品影院6| 青草久久国产| 日日摸夜夜添夜夜添小说| 亚洲 国产 在线| 听说在线观看完整版免费高清| 久久久久性生活片| 一本综合久久免费| 高清日韩中文字幕在线| 一本一本综合久久| 中文字幕高清在线视频| 亚洲真实伦在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲无线在线观看| 亚洲国产精品成人综合色| 欧美日韩福利视频一区二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 男人和女人高潮做爰伦理| 性欧美人与动物交配| 欧洲精品卡2卡3卡4卡5卡区| 免费人成在线观看视频色| 久久久久久久亚洲中文字幕 | 成人18禁在线播放| 国产亚洲精品av在线| 熟女电影av网| 久久久久久久午夜电影| 欧美一级毛片孕妇| 老汉色∧v一级毛片| 久久久久久国产a免费观看| 99热6这里只有精品| 国产熟女xx| 国产一区在线观看成人免费| 亚洲成av人片免费观看| 国产亚洲精品综合一区在线观看| 亚洲精品成人久久久久久| 夜夜爽天天搞| 99精品在免费线老司机午夜| 精品久久久久久,| 免费搜索国产男女视频| 日本一本二区三区精品| 日本免费一区二区三区高清不卡| 97碰自拍视频| 母亲3免费完整高清在线观看| 精品久久久久久久久久久久久| 亚洲精品在线美女| 叶爱在线成人免费视频播放| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人免费电影在线观看| 乱人视频在线观看| 特大巨黑吊av在线直播| 搡老熟女国产l中国老女人| 国产精品综合久久久久久久免费| 亚洲av一区综合| 日韩欧美在线二视频| 亚洲国产高清在线一区二区三| 99在线人妻在线中文字幕| 国产视频内射| 网址你懂的国产日韩在线| 国产私拍福利视频在线观看| 亚洲成人久久爱视频| 特级一级黄色大片| 欧美黑人欧美精品刺激| 成年女人毛片免费观看观看9| 亚洲色图av天堂| 日韩欧美三级三区| 久久久国产成人精品二区| h日本视频在线播放| 亚洲国产欧洲综合997久久,| 精品日产1卡2卡| 女同久久另类99精品国产91| 天天添夜夜摸| 中文字幕人妻熟人妻熟丝袜美 | 夜夜夜夜夜久久久久| 成人国产综合亚洲| 丰满乱子伦码专区| av黄色大香蕉| 男女午夜视频在线观看| 嫩草影院入口| 看片在线看免费视频| 日韩成人在线观看一区二区三区| 亚洲av免费高清在线观看| 亚洲国产欧美网| 亚洲成人精品中文字幕电影| 啪啪无遮挡十八禁网站| 亚洲国产欧美网| 国内揄拍国产精品人妻在线| 操出白浆在线播放| 国产精品亚洲一级av第二区| 欧美一区二区国产精品久久精品| 日韩欧美在线二视频| 99久久久亚洲精品蜜臀av| 一个人免费在线观看电影| 亚洲天堂国产精品一区在线| 国产精品久久久久久亚洲av鲁大| 亚洲精品久久国产高清桃花| 在线观看舔阴道视频| 精品国产三级普通话版| 亚洲人成伊人成综合网2020| 日韩中文字幕欧美一区二区| 亚洲七黄色美女视频| 中文字幕人妻熟人妻熟丝袜美 | 欧美中文综合在线视频| 国产三级中文精品| 日本 欧美在线| 窝窝影院91人妻| 美女免费视频网站| 亚洲最大成人手机在线| 在线十欧美十亚洲十日本专区| 国产成年人精品一区二区| 97超级碰碰碰精品色视频在线观看| 婷婷亚洲欧美| 最近视频中文字幕2019在线8| 蜜桃久久精品国产亚洲av| 久久久久久人人人人人| 中亚洲国语对白在线视频| 怎么达到女性高潮| 人妻夜夜爽99麻豆av| 午夜福利高清视频| 久久精品国产自在天天线| a级毛片a级免费在线| 久久久久国内视频| 国产v大片淫在线免费观看| 99久久99久久久精品蜜桃| 精品一区二区三区人妻视频| 男女做爰动态图高潮gif福利片| 日韩欧美免费精品| 免费在线观看成人毛片| 国产成人av激情在线播放| 国产99白浆流出| 国产精品,欧美在线| 亚洲黑人精品在线| 国产97色在线日韩免费| 在线播放无遮挡| 日本免费一区二区三区高清不卡| 99在线人妻在线中文字幕| 男人和女人高潮做爰伦理| 99热这里只有是精品50| 最新中文字幕久久久久| 97超级碰碰碰精品色视频在线观看| 欧美区成人在线视频| 少妇的逼好多水| www国产在线视频色| 亚洲成人免费电影在线观看| 成人午夜高清在线视频| 亚洲无线观看免费| 九色成人免费人妻av| 亚洲男人的天堂狠狠| 久久久久久九九精品二区国产| 免费搜索国产男女视频| 午夜日韩欧美国产| 88av欧美| 亚洲avbb在线观看| 人人妻人人澡欧美一区二区| 一进一出抽搐动态| 欧美日韩黄片免| 黄色视频,在线免费观看| 亚洲天堂国产精品一区在线| 精品国产三级普通话版| 美女高潮的动态| 亚洲中文字幕一区二区三区有码在线看| 亚洲av第一区精品v没综合| 欧美一级a爱片免费观看看| 日本与韩国留学比较| 男女视频在线观看网站免费| 免费av观看视频| 久久精品国产清高在天天线| 欧美日韩亚洲国产一区二区在线观看| 又粗又爽又猛毛片免费看| 日韩高清综合在线| 99久久九九国产精品国产免费| 亚洲无线在线观看| 国产色爽女视频免费观看| 亚洲成人中文字幕在线播放| 国产97色在线日韩免费| 久久久久久人人人人人| 国产精品嫩草影院av在线观看 | 久久草成人影院| 欧美一区二区精品小视频在线| 色精品久久人妻99蜜桃| 激情在线观看视频在线高清| 免费观看人在逋| 免费在线观看日本一区| 美女黄网站色视频| 色尼玛亚洲综合影院| 免费看a级黄色片| 国产欧美日韩一区二区精品| 动漫黄色视频在线观看| 国模一区二区三区四区视频| 内射极品少妇av片p| 国产黄a三级三级三级人| 国产精品 欧美亚洲| 人人妻人人澡欧美一区二区| 国内精品久久久久久久电影| 伊人久久大香线蕉亚洲五| 啦啦啦韩国在线观看视频| 欧美bdsm另类| www国产在线视频色| 一进一出抽搐gif免费好疼| 18禁在线播放成人免费| 啦啦啦观看免费观看视频高清| av欧美777| 97超级碰碰碰精品色视频在线观看| 老汉色∧v一级毛片| 一区二区三区免费毛片| 少妇高潮的动态图| 制服丝袜大香蕉在线| 免费观看精品视频网站| 日本精品一区二区三区蜜桃| 九色国产91popny在线| 男人舔女人下体高潮全视频| 91麻豆av在线| 97碰自拍视频| 在线免费观看不下载黄p国产 | 欧美日韩精品网址| 亚洲七黄色美女视频| 免费av观看视频| АⅤ资源中文在线天堂| 高潮久久久久久久久久久不卡| 国产高清激情床上av| 久久久国产成人精品二区| 久久精品人妻少妇| 免费观看的影片在线观看| 欧美日韩精品网址| 老鸭窝网址在线观看| 免费看光身美女| 亚洲狠狠婷婷综合久久图片| 人人妻人人看人人澡| 免费高清视频大片| 国产色婷婷99| 亚洲国产欧洲综合997久久,| 午夜精品一区二区三区免费看| 丰满的人妻完整版| 成人18禁在线播放| www.色视频.com| 国产97色在线日韩免费| 村上凉子中文字幕在线| 一进一出抽搐动态| 国产三级中文精品| 很黄的视频免费| 精品人妻偷拍中文字幕| 精品熟女少妇八av免费久了| 国内少妇人妻偷人精品xxx网站| 国产亚洲av嫩草精品影院| 精品福利观看| 久久精品91无色码中文字幕| 又紧又爽又黄一区二区| a在线观看视频网站| 国产乱人伦免费视频| 天美传媒精品一区二区| 亚洲最大成人中文| 久久久久久久精品吃奶| 亚洲色图av天堂| 成人午夜高清在线视频| 白带黄色成豆腐渣| 日韩欧美免费精品| 天天一区二区日本电影三级| 久久6这里有精品| 特级一级黄色大片| 国产高清有码在线观看视频| 久久久久国产精品人妻aⅴ院| 在线观看美女被高潮喷水网站 | 国产精品亚洲一级av第二区| 日本一二三区视频观看| 国产极品精品免费视频能看的| 国产精品久久视频播放| 国产亚洲精品久久久久久毛片| 天天躁日日操中文字幕| 小说图片视频综合网站| 男插女下体视频免费在线播放| 小说图片视频综合网站| 夜夜爽天天搞| 91九色精品人成在线观看| 午夜免费观看网址| 国产日本99.免费观看| 精品一区二区三区视频在线观看免费| 天美传媒精品一区二区| 伊人久久精品亚洲午夜| 久久久久久久精品吃奶| av福利片在线观看| 国产成人影院久久av| 麻豆成人av在线观看| 一区二区三区免费毛片| 动漫黄色视频在线观看| 亚洲国产色片| 日韩精品青青久久久久久| 国产成人aa在线观看| 久久久久久九九精品二区国产| 别揉我奶头~嗯~啊~动态视频| 久久香蕉精品热| 男女之事视频高清在线观看| 精品日产1卡2卡| 国产69精品久久久久777片| 亚洲精品一卡2卡三卡4卡5卡| 麻豆国产97在线/欧美| av黄色大香蕉| 亚洲美女视频黄频| 欧美3d第一页| 人妻夜夜爽99麻豆av| 久久久久久久精品吃奶| 久久精品国产综合久久久| 女生性感内裤真人,穿戴方法视频| 九色国产91popny在线| 久久久久久久久大av| 色av中文字幕| 97人妻精品一区二区三区麻豆| 99热6这里只有精品| 三级国产精品欧美在线观看| 中国美女看黄片| 老熟妇乱子伦视频在线观看| 免费观看人在逋| 看片在线看免费视频| 深夜精品福利| 级片在线观看| 久久精品国产自在天天线| 非洲黑人性xxxx精品又粗又长| av在线蜜桃| 美女cb高潮喷水在线观看| 久久精品国产亚洲av涩爱 | 国产亚洲精品久久久久久毛片| 两个人视频免费观看高清| 色综合婷婷激情| 国产精品一及| 欧美色欧美亚洲另类二区| 国产乱人伦免费视频| 国产伦人伦偷精品视频| 手机成人av网站| 最近最新免费中文字幕在线| 国产午夜福利久久久久久| 男人和女人高潮做爰伦理| 国产高清视频在线播放一区| 中文字幕精品亚洲无线码一区| 国产野战对白在线观看| 亚洲avbb在线观看| 久久久久久久久久黄片| 国产精品电影一区二区三区| av在线天堂中文字幕| 免费看光身美女| 母亲3免费完整高清在线观看| 国产视频一区二区在线看| 青草久久国产| 日韩欧美国产一区二区入口| 又爽又黄无遮挡网站| 国产真人三级小视频在线观看| 国产久久久一区二区三区| 宅男免费午夜| 精品久久久久久久人妻蜜臀av| 俄罗斯特黄特色一大片| 精品福利观看| 日韩亚洲欧美综合| 日韩欧美国产一区二区入口| 亚洲av电影不卡..在线观看| 日韩欧美三级三区| 中文字幕高清在线视频| 最近最新中文字幕大全免费视频| 中文亚洲av片在线观看爽| 99在线视频只有这里精品首页| 精品人妻偷拍中文字幕| 少妇的丰满在线观看| 久久亚洲精品不卡| 精品一区二区三区av网在线观看| 国产一区二区三区在线臀色熟女| www日本在线高清视频| 在线观看午夜福利视频| 午夜福利高清视频| 久久草成人影院| 国产蜜桃级精品一区二区三区| 淫妇啪啪啪对白视频| 欧美性猛交黑人性爽| 欧美日韩国产亚洲二区| 国产精品 国内视频| 夜夜看夜夜爽夜夜摸| 久99久视频精品免费| 日本五十路高清| 色av中文字幕| 日本精品一区二区三区蜜桃| 免费看日本二区| 成人三级黄色视频| av黄色大香蕉| 欧美性猛交黑人性爽| 日韩国内少妇激情av| 午夜老司机福利剧场| 欧美日韩黄片免| 国产精华一区二区三区| 欧美日韩国产亚洲二区| www日本在线高清视频| 床上黄色一级片| 国产色爽女视频免费观看| 国产欧美日韩一区二区三| 久久久国产成人精品二区| 3wmmmm亚洲av在线观看| 人妻久久中文字幕网| 亚洲乱码一区二区免费版| 51国产日韩欧美| 大型黄色视频在线免费观看| 欧美日韩福利视频一区二区| 日韩免费av在线播放| 国产淫片久久久久久久久 | 精品无人区乱码1区二区| 成人国产一区最新在线观看| 熟女人妻精品中文字幕| 久久久久久九九精品二区国产| 亚洲最大成人手机在线| 夜夜看夜夜爽夜夜摸| 国模一区二区三区四区视频| av天堂中文字幕网| 亚洲精品影视一区二区三区av| 老司机在亚洲福利影院| 一个人观看的视频www高清免费观看| 欧美+日韩+精品| 国产精品女同一区二区软件 | 99在线视频只有这里精品首页| 国内精品美女久久久久久| 成年人黄色毛片网站| 成年女人看的毛片在线观看| 国产亚洲精品久久久com| 亚洲成人免费电影在线观看| 男人的好看免费观看在线视频| 日本黄色视频三级网站网址| 一本久久中文字幕| 成人特级黄色片久久久久久久| 亚洲精品久久国产高清桃花| 欧美日韩综合久久久久久 | 在线观看免费视频日本深夜| 国产成人影院久久av| 精品一区二区三区人妻视频| 黄片大片在线免费观看| 国产精品98久久久久久宅男小说| 欧美黑人巨大hd| 亚洲电影在线观看av| 一本久久中文字幕| 亚洲一区二区三区色噜噜| 成年人黄色毛片网站| 一进一出抽搐gif免费好疼| 麻豆成人午夜福利视频| 人妻夜夜爽99麻豆av| 美女 人体艺术 gogo| 免费看a级黄色片| 国产成人欧美在线观看| 18禁黄网站禁片免费观看直播| 国产单亲对白刺激| 人人妻人人澡欧美一区二区| 蜜桃亚洲精品一区二区三区| 色在线成人网| e午夜精品久久久久久久| 国产av在哪里看| 最新在线观看一区二区三区| 国产三级在线视频| 日本黄色片子视频| 亚洲自拍偷在线| 久久精品国产99精品国产亚洲性色| 国产成人系列免费观看| 人妻久久中文字幕网| 国产高清激情床上av| av黄色大香蕉| 亚洲精品色激情综合| 精品国内亚洲2022精品成人| 国产一区二区亚洲精品在线观看| 18+在线观看网站| 香蕉丝袜av| 免费无遮挡裸体视频| 国产成人影院久久av| 老汉色∧v一级毛片| 51国产日韩欧美| 村上凉子中文字幕在线| 久久草成人影院| av欧美777| 日韩欧美国产在线观看| 五月玫瑰六月丁香| 中文字幕av在线有码专区| 天天躁日日操中文字幕| 欧美又色又爽又黄视频| 最近最新中文字幕大全电影3| 国产精品自产拍在线观看55亚洲| 亚洲中文字幕日韩| 亚洲精品456在线播放app | 草草在线视频免费看| 18+在线观看网站| 俺也久久电影网| 村上凉子中文字幕在线| 久久久精品大字幕| 欧美zozozo另类| 日本免费一区二区三区高清不卡| 成人18禁在线播放| 欧美性感艳星| 麻豆久久精品国产亚洲av| 精品久久久久久成人av| 国产一区二区三区在线臀色熟女| 一区二区三区激情视频| 精品午夜福利视频在线观看一区| 亚洲熟妇熟女久久| 老熟妇乱子伦视频在线观看| 亚洲人成伊人成综合网2020| 亚洲av美国av| 成人国产综合亚洲| 亚洲人成伊人成综合网2020| 亚洲av免费在线观看| 天天一区二区日本电影三级| 熟女人妻精品中文字幕| 欧美午夜高清在线| 久久精品国产亚洲av涩爱 | 亚洲午夜理论影院| 桃红色精品国产亚洲av| 五月伊人婷婷丁香| 一区二区三区国产精品乱码| a在线观看视频网站| 搡老岳熟女国产| 麻豆一二三区av精品| 一本久久中文字幕| 日韩 欧美 亚洲 中文字幕| 看黄色毛片网站| 青草久久国产| 男人舔女人下体高潮全视频| 18+在线观看网站| 欧美乱妇无乱码| 久久亚洲精品不卡| 亚洲无线观看免费| 99精品久久久久人妻精品| 免费av毛片视频| 内射极品少妇av片p| 女警被强在线播放| 精品乱码久久久久久99久播| 国产精品国产高清国产av| 狂野欧美白嫩少妇大欣赏| 国产精品免费一区二区三区在线| www日本在线高清视频| 一级黄片播放器| 99精品欧美一区二区三区四区| 老司机在亚洲福利影院| 国产97色在线日韩免费| 久久香蕉国产精品| 国产精品久久久久久久电影 |