• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalized ionospheric dispersion simulation method for wideband satellite-ground-link radio systems

    2015-04-22 02:39:04ZHOUYang周揚(yáng)ZHENGZhe鄭哲WUSiLiang吳嗣亮
    關(guān)鍵詞:周揚(yáng)

    ZHOU Yang (周揚(yáng)), ZHENG Zhe (鄭哲), WU Si-Liang (吳嗣亮)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Generalized ionospheric dispersion simulation method for wideband satellite-ground-link radio systems

    ZHOU Yang (周揚(yáng)), ZHENG Zhe (鄭哲), WU Si-Liang (吳嗣亮)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    A generalized ionospheric dispersion simulation method is presented to verify and test wideband satellite-ground-link radio systems for dispersion robustness. In the method, ionospheric dispersive effects on wideband radio waves are modeled as an allpass nonlinear phase system, thus greatly decreasing the need for signal priori information. To accurately simulate the ionospheric dispersion and reduce the implementation complexity, the system is decomposed into three new allpass subsystems: with a linear phase passing through zero frequency, a constant phase, and a nonlinear phase with zero-offset and quasi-parabolic form respectively. The three subsystems are implemented respectively by the combination of integer-interval delay and fractional delay filter, digital shifting phase and the complex-coefficient finite impulse response (FIR) filter. The ionospheric dispersion simulation can be achieved by cascading the three subsystems in a complex baseband and converting the frequency to a radio frequency. Simulation results show that the method has the ability to accurately simulate the ionospheric dispersion characteristics without knowing the signal priori information and has a low implementation complexity.

    generalization; ionospheric dispersion simulation; system decomposition; fractional delay filter; complex-coefficient FIR filter

    The ionosphere, as a kind of complex medium in the wireless channel environment, has found effects on numerous satellite-ground-link radio systems, such as radar imaging systems[1], navigation and positioning systems[2], satellite communication systems[3], and so on. For wideband and ultra-wideband radio systems, ionospheric effects become more severe. Due to these tremendous ionospheric effects, there is a great interest in testing wideband satellite-ground-link radio systems for ionospheric robustness.

    Such testing can be done effectively by passing the wideband radio waves through a channel simulator in which ionospheric effects are simulated and reproduced in ground test environments[4-8]. Currently, ionospheric characteristic simulation mainly concentrates on two aspects. One aims at simulating those characteristics intro-duced by the uniform background ionosphere[4-6]. The other is to simulate ionospheric scintillations caused by irregularities[7-8]. In this paper, we focus on the former aspect.

    In the background ionosphere, ionospheric dispersion is a huge influencing factor for wideband satellite-ground-link radio systems. For transionospheric radio waves, ionospheric dispersion will introduce an advanced phase and an additive group delay which are the nonlinear function of radio wave frequency[9]. Researches show that the existing methods usually adopt the following routes[4-6]. It replaces the nonlinear advanced phase and the additive group delay by a constant phase and an average group delay, and then stacks them to the carrier wave and baseband modulation signal, respectively, according to the signal priori information. However, several problems arise as follows. The method cannot truly capture the dispersive effects since it ignores the nonlinear characteristic of the advanced phase and the additive group delay. Furthermore, the method greatly relies on the signal priori information, and hence, it is hard to realize a generalized simulation which is an important development tendency in the channel simulation field.

    In this paper, we present a generalized ionospheric dispersion simulation method that can accurately capture the dispersive effects on the wideband radio systems without knowing any signal priori information. Compared to conventional methods, our method models the dispersive effects on wideband radio waves as an allpass nonlinear phase system, thus alleviating the need for signal priori information. By decomposing the allpass nonlinear phase system into three new allpass subsystems, the method also has the ability to accurately simulate ionospheric dispersion with a low implementation complexity.

    1 Ionospheric dispersion

    For transionospheric radio waves, the effects introduced by the background ionosphere can be analyzed via the ionospheric refractive index. As mentioned in Ref.[9], when radio wave frequency is higher than very high frequency (VHF), the ionospheric refractive index can be given as

    (1)

    whereeis the charge on an electron,mis the mass of an electron,Neis number density of free electrons,ε0is the electric permittivity of free space, andωis the angular frequency of radio waves. Eq.(1) is also called phase refractive index. By contrast the group refractive index is defined as

    (2)

    It is evident that the ionosphere is a dispersive medium because the phase refractive indexnand the group refractive indexngare different and frequency dependent. To determine the effective phase path lengthPof the transionospheric radio waves, we can integrate the phase refractive index along the transmission paths, that is

    (3)

    Then the change of phase path length, relative to free space, can be obtained as

    (5)

    whereλis the free space wavelength andcis the free space velocity of the radio waves.

    By replacingnin Eq.(4) byng, we also obtain the change of group path length

    (6)

    Contrarily, ionospheric dispersion increases the group path length, relative to free space, and this will introduce a nonlinear additive group delayτio(ω) as defined by

    (7)

    It can be known from the above analysis that ionospheric dispersion changes phase path and group path length of the transionospheric radio waves, and thereby leads to a nonlinear advanced phase and an additive group delay. As a result, ionospheric dispersion will severely affect the functions and performances of the wideband satellite-ground-link radio systems.

    2 Ionospheric dispersion simulation

    The ionospheric dispersion simulation aims at accurately simulating the nonlinear advanced phase (Eq.(5)) and the additive group delay (Eq.(7)). Comparing Eq.(5) with Eq.(7), we know that the advanced phase and the additive group delay have the relationship as

    τio(ω)=-dφio(ω)/dω

    (8)

    If we pass over the ionospheric effects on the amplitude of radio waves, the dispersive effects can be modeled as an allpass nonlinear phase system with the frequency response

    (9)

    where |Hio(ω)|≡1, arg[Hio(ω)]=φio(ω), and the group delay isτio(ω).

    Then the ionospheric dispersion simulation can be achieved by passing the wideband radio waves through this allpass nonlinear phase system, that is

    Sio(ω)=S(ω)Hio(ω)

    (10)

    whereS(ω) is the spectrum of a radio frequency (RF) input signal with the frequency range ofω∈[ωmin,ωmax], andSio(ω) is the spectrum of a simulated RF output signal.

    Now, the problem is how to accurately approximate the allpass nonlinear phase systemHio(ω), as well as to simply implement in hardware. This problem can be solved as shown in Fig.1 by first translatingHio(ω) into a complex baseband, in which numerous useful digital design methods could be introduced, and then converting the frequency to RF again.

    Fig.1 Block diagram of ionospheric dispersion simulation

    In Fig.1, the spectra of a demodulated signal and a modulated signal respectively are

    SLD(ω)=2πδ(ω+ωL)

    (11)

    SLU(ω)=2πδ(ω-ωL)

    (12)

    whereωLis defined as the center of the frequency rangeω∈[ωmin,ωmax], that isωL=(ωmin+ωmax)/2. Complex baseband systemHiob(ω) has the form as

    (13)

    with

    (14)

    whereω∈[ωbmin,ωbmax] and

    (15)

    It is known from Eq.(13) that the complex baseband systemHiob(ω) is hard to be approximated directly because its phase response curve (curve 1 in Fig. 2) has several characteristics: ① it is nonlinear and proportional to (ω+ωL)-1; ② it is monotonically decreasing and quasi-linear; ③ it has a large phase offset. However, such characteristics can be used to decompose theHiob(ω) into three more simple and easily implemented allpass subsystems.

    Fig.2 Decomposing of the phase response

    In the baseband frequency range, we choose a reference frequencyω0=(ωbmin+ωbmax)/2=0 and decompose the phase response curveφiob(ω) into two parts: the linear partφL(ω) passing through the reference frequencyω0(curve 2 in Fig. 2) and the nonlinear partφnL(ω) (curve 3 in Fig. 2), that is

    φiob(ω)=φL(ω)+φnL(ω)

    (16)

    The linear partφL(ω) has the form as

    φL(ω)=kω+d

    (17)

    where the slopekis defined as the derivative of theφiob(ω) atω0=0

    (18)

    Thenthelongitudinalinterceptdcan be calculated as

    d=φL(ω0)-kω0=φiob(ω0)-kω0=φio(ωL)

    (19)

    Sincedis frequency independent, the linear partφL(ω) can be decomposed again into two more simple parts: the linear partφL0(ω) passing through the zero frequency and the constant phaseφoas

    φL0(ω)=kω=-ωτio(ωL)

    (20)

    φo=d=φio(ωL)

    (21)

    Substituting Eq.(20) and Eq.(21) into Eq. (16), we have

    (22)

    Now the complex baseband system described by Eq.(13) has been decomposed into three new allpass subsystems: the linear phase subsystemHL(ω), the constant phase subsystemHo(ω), and the nonlinear phase subsystemHnL(ω).

    HL(ω)=exp[jφL0(ω)]=exp[-jωτio(ωL)]

    (23)

    Ho(ω)=exp[jφo]=exp[jφio(ωL)]

    (24)

    (25)

    The three allpass subsystems have some attractive characteristics that make them be easily implemented by numerous useful digital methods. The linear phase subsystemHL(ω) can be viewed as an ideal delay system with a constant delay. If we express the delayτio(ωL) as sampling intervalTs, that isτio(ωL)=NTs, the digital delayNis usually a positive real value that can be split into an integer value and a fractional value. Hence, the method that combines integer-interval delay and a Lagrange-type fractional delay filter[10]is preferred. The constant phase subsystemHo(ω) has the simplest form and can be simply implemented by the digital complex multiply. The subsystemHnL(ω) has a nonlinear phase curve with a zero-offset and a quasi-parabolic shape, and it can be approximated by a complex-coefficient FIR filter[11].

    3 Performance simulations

    Simulations have been conducted to verify the validity and the performance of the proposed ionospheric dispersion simulation method. The frequency range of the wideband RF input signalS(ω) was assumed to be 2.0 GHz to 2.1 GHz, and the frequency of the demodulated signal and the modulated signal was 2.05 GHz. This means that the frequency range of the complex baseband systemHiob(ω) is -50 MHz to 50 MHz and the reference frequency is zero after quadrature demodulation. The sampling rate was assumed to be 400 MHz and the total electron content is assumed to be a constant, that isTe=500 TECU. To clearly exhibit the performance of the method, we present the decomposing process of the complex baseband systemHiob(ω) and the approximation errors of the subsystems in terms of magnitude, phase and group delay. It should be noted that the approximation errors of the constant phase subsystemHo(ω) were not considered in our simulations because it is a constant for the simulation conditions.

    Fig.3 illustrates the phase and group delay decomposing processes of the complex baseband systemHiob(ω) withTe=500 TECU. It is noted that the subsystemHo(ω) is not included because it is independent of frequency. The phase of the subsystemHo(ω) is approximately 2.361×105degree and its group delay is zero. In addition, the group delay of the linear phase subsystemHL(ω) in Fig.3 is approximately 159.969 ns. It can be seen from Fig.3 that both the phase and group delays of the complex baseband system are the nonlinear function of frequency. The maximum phase is approximately 1.210×105degree and the difference in the frequency range is about 5 762°. The maximum group delay is approximately 168 ns and the difference is about 15 ns. As a result, it is necessary to decompose theHiob(ω) into three allpass subsystems for the accurate simulation of ionospheric dispersion and simple implementation in hardware.

    Fig.3 Phase and group delay decomposing of the system Hiob(ω)

    The linear phase subsystemHL(ω) is approximated by the combination of the integer-interval delay and the Lagrange-type fractional delay filter, and the approximation errors in terms of the magnitude, phase, and group delay have been illustrated in Fig.4. In this simulation, the integer-interval delay is 63 samples and the fractional delay is about 0.987 7 samples. The integer-interval delay was assumed to be approximated with zero error, and the order of the Lagrange-type fraction delay filter was 3. It can be seen from the figure that the approximation errors achieve the minimum atω0=0 and degrade as frequency increases. However, the maximum magnitude, phase, and group delay errors in the frequency range of -50 MHz to 50 MHz will not exceed 0.004 dB, 0.01° and 2 ps, respectively.

    Fig.4 Approximation errors of the linear phase subsystem

    The nonlinear phase subsystemHnL(ω) is approximated by the complex-coefficient FIR filter that is based on the frequency-domain weighted least square method. Fig.5 illustrates the approximation errors of the subsystemHnL(ω) where the filter order was 21 and the frequency resolution was 0.1 MHz. For the nonlinear phase subsystem, the quasi-symmetry characteristic of the phase response is very important because such characteristic makes the subsystem be accurately approximated with lower filter orders. In our simulation, the magnitude, phase and group delay errors are less than 0.004 dB, 0.01° and 8 ps, respectively.

    Fig.5 Approximation errors of the nonlinear phase subsystem

    Fig.6 illustrates the total errors of our proposed ionospheric dispersion simulation method by summing the approximation errors of each subsystem. It can be summarized from the simulations that the method simulates ionospheric dispersion with a magnitude error not exceeding 0.003 dB, a phase error not exceeding 0.01°, and a group delay error not exceeding 10 ps. However, only a 3-order Lagrange-type fractional delay filter and a 21-order FIR filter are introduced. This means that our method has the ability to accurately capture the ionospheric dispersion characteristics, as well as to simply implement them.

    Fig.6 Total errors of the ionospheric dispersion simulation

    4 Conclusion

    In this paper, we have presented a generalized ionospheric dispersion simulation method to test wideband satellite-ground-link radio systems for dispersion robustness. Comparing with conventional methods, we model the dispersive effects on radio waves as an allpass nonlinear phase system, and hence, the method can simulate ionospheric dispersion without knowing any signal priori information. To improve the simulation accuracy and reduce the implementation complexity, the system is decomposed into three allpass subsystems and the design methods are given briefly. Using simulations, we show that our proposed method has the ability to accurately simulate the nonlinear advanced phase and the additive group delay introduced by ionospheric dispersion with a low implementation complexity.

    [1] Liu J, Kuga Y, Ishimaru A, et al. Ionospheric effects on SAR imaging: a numerical study [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 41(5): 939-946.

    [2] Humphreys T E, Psiaki M L, Kintner P M. Modeling the effects of ionospheric scintillation on GPS carrier phase tracking [J]. IEEE Transactions on Aerospace and Electronic System, 2010, 46(4): 1624-1637.

    [3] Li S Y, Liu C H. Modeling the effects of ionospheric scintillations on LEO satellite communications [J]. IEEE Communications Letters, 2004, 8(3): 147-149.

    [4] Zhao Junxiang, Chang Qing, Zhang Qishan, et al. Research of ionospheric time-delay error simulation in high dynamic GPS signal simulator [J]. Chinese Journal of Aeronautics, 2003, 16(3):169-176.

    [5] Wang Jun, Xi Xiaoli, Liu Jiangfan. The design of GPS IF signal software simulator [C]∥Proceedings of the 2010 International Symposium on Signals, Systems and Electronics. Piscataway: Institute of Electrical and Electronics Engineers Inc, 2010:1-3.

    [6] Hu Yan, Li Hong, Lu Mingquan. Design and implementation of a high fidelity GLONASS signal simulator [C] ∥Proceedings of 2012 Spring World Congress on Engineering and Technology. Washington: IEEE Computer Society, 2012:1-3.

    [7] Humphreys T E, Psiaki M L, et al. Simulating ionosphere-induced scintillation for testing GPS receiver phase tracking loops [J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(4):707-715.

    [8] Conker R S, El-Arini M B, Hegarty C J, et al. Modeling the effects of ionospheric scintillation on GPS/satellite-based augmentation System availability [J]. Radio Science, 2003, 48(1): 688-693.

    [9] Lawrence R S, Little C G, Chivers H J A. A Survey of ionospheric effects upon earth-space radio propagation [J]. Proceedings of the IEEE, 1964, 52(1):4-27.

    [10] Deng T B. Coefficient-symmetries for implementing arbitrary-order Lagrange-type variable fractional delay digital filters [J]. IEEE Transactions on Signal Processing, 2007, 55(8): 4078-4090.

    [11] Pei S C, Shyu J J. Design of arbitrary complex coefficient FIR digital filters by complex weighted least squares approximation [J]. IEEE Transactions on Circuits and Systems-Ⅱ, 1994, 41(12):817-820.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004-0579.201524.0413

    TN 955 Document code: A Article ID: 1004- 0579(2015)04- 0513- 06

    Received 2014- 04- 21

    Supported by the Foundation of Shanghai Aerospace Science and Technology (20120541088); China Postdoctoral Science Foundation (2015M580997)

    E-mail: zhengzhebit@bit.edu.cn

    猜你喜歡
    周揚(yáng)
    一眼萬年
    花火彩版B(2022年2期)2022-10-19 07:23:54
    Parity–time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
    1975 年,毛澤東三次批示“周揚(yáng)一案”
    中外文摘(2020年8期)2020-04-30 05:31:38
    私房錢風(fēng)波
    37°女人(2018年8期)2018-08-23 05:59:06
    追憶“文革”中的周揚(yáng)
    黨史博覽(2018年6期)2018-06-21 02:08:02
    私房錢風(fēng)波
    分憂(2018年6期)2018-06-08 04:35:24
    知音·下半月(2018年3期)2018-04-02 04:51:28
    遲暮之年的周揚(yáng)與陳伯達(dá)
    誰動(dòng)了我的肖像權(quán)
    愛情攻略
    中文字幕av电影在线播放| 精品乱码久久久久久99久播| 狠狠狠狠99中文字幕| 欧美日韩福利视频一区二区| 天堂8中文在线网| 丝袜脚勾引网站| 久久精品国产a三级三级三级| 99re6热这里在线精品视频| 免费看十八禁软件| 亚洲综合色网址| 日日摸夜夜添夜夜添小说| 热re99久久精品国产66热6| 两个人免费观看高清视频| 亚洲欧美一区二区三区黑人| 在线av久久热| 国产精品久久久久成人av| 性色av一级| 国产精品一区二区精品视频观看| 热99re8久久精品国产| 国产男人的电影天堂91| 亚洲av片天天在线观看| 一级黄色大片毛片| 国产日韩欧美亚洲二区| 一区福利在线观看| 岛国毛片在线播放| 国产成人精品久久二区二区91| 国产国语露脸激情在线看| www.精华液| 欧美乱码精品一区二区三区| www日本在线高清视频| 超碰成人久久| 又紧又爽又黄一区二区| 久久久久国产精品人妻一区二区| 少妇粗大呻吟视频| 久久精品国产a三级三级三级| 午夜福利一区二区在线看| 久久亚洲国产成人精品v| 19禁男女啪啪无遮挡网站| 亚洲人成77777在线视频| 亚洲精品日韩在线中文字幕| 极品人妻少妇av视频| 性少妇av在线| 制服人妻中文乱码| 中文字幕av电影在线播放| 窝窝影院91人妻| 亚洲人成电影免费在线| 99久久精品国产亚洲精品| 中文字幕人妻熟女乱码| 国产欧美亚洲国产| 少妇被粗大的猛进出69影院| 亚洲精品在线美女| 亚洲成人免费av在线播放| a级片在线免费高清观看视频| 国产av一区二区精品久久| 性高湖久久久久久久久免费观看| cao死你这个sao货| 一区二区av电影网| 久久久国产一区二区| 丰满人妻熟妇乱又伦精品不卡| 亚洲av男天堂| 十分钟在线观看高清视频www| 一级毛片电影观看| 国产免费一区二区三区四区乱码| 亚洲色图综合在线观看| 亚洲av片天天在线观看| 国产亚洲av高清不卡| 中文字幕制服av| 精品亚洲成a人片在线观看| 伊人久久大香线蕉亚洲五| 老熟女久久久| 一区福利在线观看| 欧美激情高清一区二区三区| 电影成人av| 亚洲av日韩在线播放| 成年人黄色毛片网站| 老司机午夜十八禁免费视频| 青草久久国产| 久久香蕉激情| 在线观看免费午夜福利视频| 国产一区二区在线观看av| 18禁黄网站禁片午夜丰满| 久9热在线精品视频| 99精品久久久久人妻精品| 1024视频免费在线观看| 母亲3免费完整高清在线观看| 国产福利在线免费观看视频| 欧美精品人与动牲交sv欧美| 欧美精品一区二区大全| 亚洲精品自拍成人| 亚洲av国产av综合av卡| 69av精品久久久久久 | 老司机靠b影院| 一个人免费看片子| 午夜福利,免费看| 日韩三级视频一区二区三区| 亚洲人成77777在线视频| 91国产中文字幕| 亚洲国产欧美在线一区| 精品少妇久久久久久888优播| 老司机深夜福利视频在线观看 | 亚洲av国产av综合av卡| 桃花免费在线播放| 9色porny在线观看| 国产成+人综合+亚洲专区| 欧美亚洲日本最大视频资源| h视频一区二区三区| 男女之事视频高清在线观看| 久久香蕉激情| 欧美国产精品va在线观看不卡| 亚洲精品久久成人aⅴ小说| 亚洲激情五月婷婷啪啪| 日日摸夜夜添夜夜添小说| 99国产极品粉嫩在线观看| 国内毛片毛片毛片毛片毛片| www.精华液| 国产日韩欧美视频二区| 欧美精品高潮呻吟av久久| 亚洲视频免费观看视频| 国产精品熟女久久久久浪| 久久人人97超碰香蕉20202| 亚洲欧美激情在线| 久久精品国产亚洲av香蕉五月 | 777久久人妻少妇嫩草av网站| 99久久人妻综合| 午夜福利免费观看在线| 一进一出抽搐动态| 免费在线观看日本一区| 老司机靠b影院| 国产一区二区三区综合在线观看| 最新的欧美精品一区二区| 国产人伦9x9x在线观看| 一边摸一边做爽爽视频免费| 久久天堂一区二区三区四区| 国产黄色免费在线视频| 久久午夜综合久久蜜桃| 国产亚洲一区二区精品| 人妻一区二区av| 日本av免费视频播放| 高潮久久久久久久久久久不卡| 蜜桃国产av成人99| 亚洲精品粉嫩美女一区| 丝袜美腿诱惑在线| av福利片在线| 啦啦啦视频在线资源免费观看| 国产亚洲一区二区精品| 1024香蕉在线观看| 亚洲五月婷婷丁香| 50天的宝宝边吃奶边哭怎么回事| 亚洲成人免费电影在线观看| av视频免费观看在线观看| 日韩欧美免费精品| 99精品久久久久人妻精品| 久久ye,这里只有精品| 色老头精品视频在线观看| 啦啦啦免费观看视频1| 成在线人永久免费视频| 亚洲熟女精品中文字幕| 成人三级做爰电影| 天天躁日日躁夜夜躁夜夜| 欧美激情久久久久久爽电影 | 久久综合国产亚洲精品| 一边摸一边做爽爽视频免费| 久久av网站| 国产成人精品久久二区二区91| 91麻豆av在线| 亚洲欧美日韩高清在线视频 | a级片在线免费高清观看视频| 午夜老司机福利片| 日韩精品免费视频一区二区三区| 91av网站免费观看| 欧美 日韩 精品 国产| 一二三四在线观看免费中文在| 黑人欧美特级aaaaaa片| 欧美成狂野欧美在线观看| 国产欧美亚洲国产| 新久久久久国产一级毛片| 国产成+人综合+亚洲专区| 欧美日韩福利视频一区二区| 99国产精品一区二区蜜桃av | 色婷婷av一区二区三区视频| 日韩中文字幕视频在线看片| 久久午夜综合久久蜜桃| 亚洲av成人一区二区三| 中文字幕精品免费在线观看视频| 国产老妇伦熟女老妇高清| 一边摸一边做爽爽视频免费| 成年av动漫网址| 国产真人三级小视频在线观看| 国产不卡av网站在线观看| 成人亚洲精品一区在线观看| 啪啪无遮挡十八禁网站| 免费高清在线观看视频在线观看| 爱豆传媒免费全集在线观看| 欧美日韩福利视频一区二区| 亚洲欧洲日产国产| 久久国产亚洲av麻豆专区| 久久 成人 亚洲| 亚洲国产精品成人久久小说| 好男人电影高清在线观看| 久热这里只有精品99| 国产精品自产拍在线观看55亚洲 | 久久人人97超碰香蕉20202| h视频一区二区三区| 黄色视频,在线免费观看| 汤姆久久久久久久影院中文字幕| 纵有疾风起免费观看全集完整版| 久久天躁狠狠躁夜夜2o2o| 菩萨蛮人人尽说江南好唐韦庄| 日本一区二区免费在线视频| 亚洲国产中文字幕在线视频| 精品卡一卡二卡四卡免费| av免费在线观看网站| 悠悠久久av| 精品高清国产在线一区| 99久久综合免费| 国产日韩欧美视频二区| 在线亚洲精品国产二区图片欧美| 妹子高潮喷水视频| 精品少妇一区二区三区视频日本电影| 亚洲欧美激情在线| 男人舔女人的私密视频| 国产一级毛片在线| 女人被躁到高潮嗷嗷叫费观| 每晚都被弄得嗷嗷叫到高潮| videos熟女内射| 热re99久久精品国产66热6| 亚洲精品成人av观看孕妇| 婷婷成人精品国产| 狂野欧美激情性bbbbbb| 悠悠久久av| 黄频高清免费视频| 亚洲色图综合在线观看| 欧美午夜高清在线| 午夜老司机福利片| 亚洲精品中文字幕在线视频| 69av精品久久久久久 | 在线 av 中文字幕| 国产一区有黄有色的免费视频| 欧美亚洲 丝袜 人妻 在线| 9191精品国产免费久久| 午夜福利,免费看| 色婷婷av一区二区三区视频| 妹子高潮喷水视频| 亚洲激情五月婷婷啪啪| 国产在视频线精品| 人人妻人人爽人人添夜夜欢视频| 女人精品久久久久毛片| 999精品在线视频| 99国产精品一区二区蜜桃av | 成人18禁高潮啪啪吃奶动态图| 久久精品国产a三级三级三级| a级毛片在线看网站| 亚洲av片天天在线观看| kizo精华| av网站在线播放免费| 欧美日韩亚洲高清精品| 视频在线观看一区二区三区| 天天躁日日躁夜夜躁夜夜| 亚洲,欧美精品.| 国产区一区二久久| 亚洲精品国产av蜜桃| 国内毛片毛片毛片毛片毛片| 天堂8中文在线网| 免费黄频网站在线观看国产| 一区在线观看完整版| 99久久99久久久精品蜜桃| 亚洲,欧美精品.| 自拍欧美九色日韩亚洲蝌蚪91| 免费在线观看影片大全网站| 亚洲国产欧美一区二区综合| 久久精品国产综合久久久| 亚洲,欧美精品.| 亚洲综合色网址| 中文字幕制服av| 国产黄色免费在线视频| 老司机影院成人| 欧美老熟妇乱子伦牲交| 法律面前人人平等表现在哪些方面 | 丰满饥渴人妻一区二区三| 一个人免费在线观看的高清视频 | 日韩视频在线欧美| 亚洲国产av新网站| 狂野欧美激情性bbbbbb| 大型av网站在线播放| 在线观看免费高清a一片| 考比视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 黑人巨大精品欧美一区二区蜜桃| 成年人黄色毛片网站| 在线观看舔阴道视频| 久久av网站| 亚洲精品国产一区二区精华液| 久久久精品区二区三区| 十八禁人妻一区二区| 在线观看舔阴道视频| 日韩,欧美,国产一区二区三区| 国产成人啪精品午夜网站| 日本91视频免费播放| 国产极品粉嫩免费观看在线| 韩国高清视频一区二区三区| 纵有疾风起免费观看全集完整版| 夜夜骑夜夜射夜夜干| 亚洲中文av在线| 国产日韩一区二区三区精品不卡| 精品视频人人做人人爽| 狂野欧美激情性xxxx| 亚洲精品国产av蜜桃| 久久精品亚洲av国产电影网| 一二三四在线观看免费中文在| 黄频高清免费视频| 又黄又粗又硬又大视频| 欧美日韩亚洲综合一区二区三区_| 久久综合国产亚洲精品| 免费在线观看完整版高清| 国产精品免费大片| 啦啦啦免费观看视频1| 菩萨蛮人人尽说江南好唐韦庄| 欧美 日韩 精品 国产| 嫁个100分男人电影在线观看| 国产老妇伦熟女老妇高清| 精品国产一区二区三区久久久樱花| 黄色毛片三级朝国网站| 欧美激情极品国产一区二区三区| 国产一区二区 视频在线| 日韩视频在线欧美| av网站在线播放免费| 久久久国产欧美日韩av| 一进一出抽搐动态| 欧美日韩亚洲高清精品| 亚洲人成电影免费在线| 久久久久久久大尺度免费视频| 日韩大码丰满熟妇| 久久人人爽人人片av| 一级片免费观看大全| 午夜91福利影院| 岛国毛片在线播放| 亚洲伊人久久精品综合| 人妻人人澡人人爽人人| 亚洲精品一区蜜桃| 久久国产精品大桥未久av| 色综合欧美亚洲国产小说| 又黄又粗又硬又大视频| h视频一区二区三区| 欧美人与性动交α欧美精品济南到| 午夜福利影视在线免费观看| 国产一卡二卡三卡精品| 精品久久久久久电影网| 欧美人与性动交α欧美软件| 亚洲成人国产一区在线观看| 三级毛片av免费| 岛国在线观看网站| 亚洲第一青青草原| 99久久国产精品久久久| 色婷婷久久久亚洲欧美| 两个人免费观看高清视频| 两性夫妻黄色片| 热re99久久国产66热| 国产精品久久久av美女十八| 大香蕉久久成人网| 亚洲色图综合在线观看| 涩涩av久久男人的天堂| 欧美精品人与动牲交sv欧美| 99国产精品99久久久久| 国产精品99久久99久久久不卡| a级片在线免费高清观看视频| 少妇人妻久久综合中文| 老司机亚洲免费影院| 国产91精品成人一区二区三区 | 欧美日韩一级在线毛片| 欧美精品啪啪一区二区三区 | 热99re8久久精品国产| 九色亚洲精品在线播放| 他把我摸到了高潮在线观看 | 亚洲精华国产精华精| 久久人人爽av亚洲精品天堂| 亚洲成人免费av在线播放| 亚洲美女黄色视频免费看| 91精品伊人久久大香线蕉| 欧美97在线视频| 波多野结衣一区麻豆| 欧美 亚洲 国产 日韩一| 另类亚洲欧美激情| 少妇人妻久久综合中文| 黑人巨大精品欧美一区二区mp4| 人人妻人人澡人人爽人人夜夜| 爱豆传媒免费全集在线观看| 999久久久精品免费观看国产| 日韩视频一区二区在线观看| 久久午夜综合久久蜜桃| 精品亚洲成国产av| 青草久久国产| 高清欧美精品videossex| 90打野战视频偷拍视频| 黄色怎么调成土黄色| 1024香蕉在线观看| 国产亚洲欧美精品永久| 精品少妇一区二区三区视频日本电影| 国产伦人伦偷精品视频| 精品少妇久久久久久888优播| 亚洲av成人不卡在线观看播放网 | 亚洲五月色婷婷综合| 久久99一区二区三区| 国产成人精品久久二区二区免费| 捣出白浆h1v1| 国产一区二区 视频在线| 日韩欧美一区视频在线观看| 日韩制服骚丝袜av| 成年av动漫网址| 国产熟女午夜一区二区三区| 麻豆乱淫一区二区| 国产亚洲精品久久久久5区| av在线播放精品| 国产伦理片在线播放av一区| 2018国产大陆天天弄谢| 亚洲 国产 在线| 国产欧美日韩一区二区精品| 性色av一级| 一区二区三区精品91| 欧美日韩av久久| 欧美日韩亚洲综合一区二区三区_| 大片免费播放器 马上看| 人妻一区二区av| 99久久国产精品久久久| 999精品在线视频| 免费看十八禁软件| 97人妻天天添夜夜摸| 精品免费久久久久久久清纯 | 嫁个100分男人电影在线观看| 久久久久网色| 免费女性裸体啪啪无遮挡网站| 我的亚洲天堂| 两个人免费观看高清视频| 久久久久视频综合| 亚洲精品成人av观看孕妇| 成人亚洲精品一区在线观看| 国产99久久九九免费精品| 国产91精品成人一区二区三区 | 久久久久精品国产欧美久久久 | 国产一区有黄有色的免费视频| 国产欧美日韩精品亚洲av| 久久久久国产一级毛片高清牌| 午夜精品国产一区二区电影| 交换朋友夫妻互换小说| 搡老熟女国产l中国老女人| 精品人妻熟女毛片av久久网站| 欧美另类一区| 青春草视频在线免费观看| 日本撒尿小便嘘嘘汇集6| 欧美日韩精品网址| 精品久久久久久久毛片微露脸 | 精品高清国产在线一区| 亚洲第一青青草原| 成人三级做爰电影| 日韩电影二区| 成年女人毛片免费观看观看9 | 国产熟女午夜一区二区三区| 亚洲国产精品成人久久小说| 免费观看人在逋| 黄色a级毛片大全视频| 欧美97在线视频| 国产97色在线日韩免费| 99热全是精品| 91av网站免费观看| 啦啦啦在线免费观看视频4| 久久久欧美国产精品| 十分钟在线观看高清视频www| 精品人妻一区二区三区麻豆| 亚洲精品国产一区二区精华液| 国产伦理片在线播放av一区| 精品国产国语对白av| 香蕉丝袜av| 老司机在亚洲福利影院| 欧美日韩视频精品一区| 免费黄频网站在线观看国产| 国产精品一区二区在线不卡| 国产成人精品在线电影| 欧美日韩av久久| 亚洲色图 男人天堂 中文字幕| 亚洲少妇的诱惑av| 丰满人妻熟妇乱又伦精品不卡| 宅男免费午夜| 黑人猛操日本美女一级片| 91字幕亚洲| 老熟妇仑乱视频hdxx| 亚洲五月婷婷丁香| 秋霞在线观看毛片| 国产亚洲精品久久久久5区| 精品一区在线观看国产| 国产免费视频播放在线视频| 热99久久久久精品小说推荐| av又黄又爽大尺度在线免费看| 老熟女久久久| 国产国语露脸激情在线看| 性色av一级| 男女免费视频国产| 在线观看舔阴道视频| 久久亚洲精品不卡| 精品久久蜜臀av无| 91成人精品电影| 久久性视频一级片| www日本在线高清视频| 国产精品自产拍在线观看55亚洲 | 亚洲免费av在线视频| 国产av一区二区精品久久| 我的亚洲天堂| 99国产综合亚洲精品| 丝袜脚勾引网站| 久久香蕉激情| 国产又爽黄色视频| 50天的宝宝边吃奶边哭怎么回事| 久久国产精品大桥未久av| 国产精品免费视频内射| 国产欧美日韩综合在线一区二区| 免费少妇av软件| 国产一区二区 视频在线| 99国产综合亚洲精品| 国产亚洲av高清不卡| 国产欧美日韩综合在线一区二区| h视频一区二区三区| 欧美另类一区| 久久久欧美国产精品| 女人久久www免费人成看片| 性少妇av在线| 国产在线一区二区三区精| 日本一区二区免费在线视频| 纯流量卡能插随身wifi吗| 麻豆av在线久日| 水蜜桃什么品种好| 久久天躁狠狠躁夜夜2o2o| 亚洲自偷自拍图片 自拍| 99精国产麻豆久久婷婷| 国产av国产精品国产| 人人妻人人爽人人添夜夜欢视频| 国产一区二区 视频在线| 高清视频免费观看一区二区| 久久久久久久精品精品| 亚洲成av片中文字幕在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品粉嫩美女一区| 国产成人精品久久二区二区免费| 国产精品一区二区在线观看99| 午夜福利视频精品| 男女床上黄色一级片免费看| 日本av手机在线免费观看| 日韩,欧美,国产一区二区三区| 久久热在线av| 国产欧美日韩一区二区三 | 免费观看a级毛片全部| 97精品久久久久久久久久精品| 免费看十八禁软件| 少妇 在线观看| 欧美精品一区二区免费开放| 欧美日韩亚洲高清精品| 免费观看a级毛片全部| 成人av一区二区三区在线看 | 麻豆乱淫一区二区| 一级,二级,三级黄色视频| 午夜两性在线视频| 超色免费av| 免费在线观看影片大全网站| 欧美日韩福利视频一区二区| 日韩制服丝袜自拍偷拍| 精品一区二区三区四区五区乱码| 涩涩av久久男人的天堂| 色综合欧美亚洲国产小说| 精品一品国产午夜福利视频| 国产精品欧美亚洲77777| 久久天堂一区二区三区四区| 青青草视频在线视频观看| 国产在线视频一区二区| 窝窝影院91人妻| 国产在线免费精品| 大片免费播放器 马上看| 国产精品av久久久久免费| av电影中文网址| 满18在线观看网站| 欧美日韩av久久| 国产色视频综合| 自线自在国产av| 日本猛色少妇xxxxx猛交久久| 国产精品一区二区在线观看99| 亚洲熟女毛片儿| 久久久久久亚洲精品国产蜜桃av| 国产欧美日韩精品亚洲av| 精品福利观看| 桃花免费在线播放| 久久久久精品人妻al黑| 国产精品一区二区精品视频观看| 亚洲av男天堂| 99精品欧美一区二区三区四区| 天天躁日日躁夜夜躁夜夜| 国产精品 国内视频| 国产精品1区2区在线观看. | 50天的宝宝边吃奶边哭怎么回事| 久久国产精品大桥未久av| 国产精品久久久久成人av| 交换朋友夫妻互换小说| 悠悠久久av| 精品一区二区三区四区五区乱码| 久久国产精品男人的天堂亚洲| 久久ye,这里只有精品| 99国产精品免费福利视频| 中文字幕av在线有码专区| 久久人妻福利社区极品人妻图片| 国产亚洲精品av在线| 亚洲一码二码三码区别大吗| 黄色成人免费大全| 欧美人与性动交α欧美精品济南到| 欧美又色又爽又黄视频| 婷婷丁香在线五月| 美女黄网站色视频| 中文字幕久久专区| 中文字幕熟女人妻在线| 国产成人精品久久二区二区免费| 国产黄色小视频在线观看|