• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalized ionospheric dispersion simulation method for wideband satellite-ground-link radio systems

    2015-04-22 02:39:04ZHOUYang周揚(yáng)ZHENGZhe鄭哲WUSiLiang吳嗣亮
    關(guān)鍵詞:周揚(yáng)

    ZHOU Yang (周揚(yáng)), ZHENG Zhe (鄭哲), WU Si-Liang (吳嗣亮)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Generalized ionospheric dispersion simulation method for wideband satellite-ground-link radio systems

    ZHOU Yang (周揚(yáng)), ZHENG Zhe (鄭哲), WU Si-Liang (吳嗣亮)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    A generalized ionospheric dispersion simulation method is presented to verify and test wideband satellite-ground-link radio systems for dispersion robustness. In the method, ionospheric dispersive effects on wideband radio waves are modeled as an allpass nonlinear phase system, thus greatly decreasing the need for signal priori information. To accurately simulate the ionospheric dispersion and reduce the implementation complexity, the system is decomposed into three new allpass subsystems: with a linear phase passing through zero frequency, a constant phase, and a nonlinear phase with zero-offset and quasi-parabolic form respectively. The three subsystems are implemented respectively by the combination of integer-interval delay and fractional delay filter, digital shifting phase and the complex-coefficient finite impulse response (FIR) filter. The ionospheric dispersion simulation can be achieved by cascading the three subsystems in a complex baseband and converting the frequency to a radio frequency. Simulation results show that the method has the ability to accurately simulate the ionospheric dispersion characteristics without knowing the signal priori information and has a low implementation complexity.

    generalization; ionospheric dispersion simulation; system decomposition; fractional delay filter; complex-coefficient FIR filter

    The ionosphere, as a kind of complex medium in the wireless channel environment, has found effects on numerous satellite-ground-link radio systems, such as radar imaging systems[1], navigation and positioning systems[2], satellite communication systems[3], and so on. For wideband and ultra-wideband radio systems, ionospheric effects become more severe. Due to these tremendous ionospheric effects, there is a great interest in testing wideband satellite-ground-link radio systems for ionospheric robustness.

    Such testing can be done effectively by passing the wideband radio waves through a channel simulator in which ionospheric effects are simulated and reproduced in ground test environments[4-8]. Currently, ionospheric characteristic simulation mainly concentrates on two aspects. One aims at simulating those characteristics intro-duced by the uniform background ionosphere[4-6]. The other is to simulate ionospheric scintillations caused by irregularities[7-8]. In this paper, we focus on the former aspect.

    In the background ionosphere, ionospheric dispersion is a huge influencing factor for wideband satellite-ground-link radio systems. For transionospheric radio waves, ionospheric dispersion will introduce an advanced phase and an additive group delay which are the nonlinear function of radio wave frequency[9]. Researches show that the existing methods usually adopt the following routes[4-6]. It replaces the nonlinear advanced phase and the additive group delay by a constant phase and an average group delay, and then stacks them to the carrier wave and baseband modulation signal, respectively, according to the signal priori information. However, several problems arise as follows. The method cannot truly capture the dispersive effects since it ignores the nonlinear characteristic of the advanced phase and the additive group delay. Furthermore, the method greatly relies on the signal priori information, and hence, it is hard to realize a generalized simulation which is an important development tendency in the channel simulation field.

    In this paper, we present a generalized ionospheric dispersion simulation method that can accurately capture the dispersive effects on the wideband radio systems without knowing any signal priori information. Compared to conventional methods, our method models the dispersive effects on wideband radio waves as an allpass nonlinear phase system, thus alleviating the need for signal priori information. By decomposing the allpass nonlinear phase system into three new allpass subsystems, the method also has the ability to accurately simulate ionospheric dispersion with a low implementation complexity.

    1 Ionospheric dispersion

    For transionospheric radio waves, the effects introduced by the background ionosphere can be analyzed via the ionospheric refractive index. As mentioned in Ref.[9], when radio wave frequency is higher than very high frequency (VHF), the ionospheric refractive index can be given as

    (1)

    whereeis the charge on an electron,mis the mass of an electron,Neis number density of free electrons,ε0is the electric permittivity of free space, andωis the angular frequency of radio waves. Eq.(1) is also called phase refractive index. By contrast the group refractive index is defined as

    (2)

    It is evident that the ionosphere is a dispersive medium because the phase refractive indexnand the group refractive indexngare different and frequency dependent. To determine the effective phase path lengthPof the transionospheric radio waves, we can integrate the phase refractive index along the transmission paths, that is

    (3)

    Then the change of phase path length, relative to free space, can be obtained as

    (5)

    whereλis the free space wavelength andcis the free space velocity of the radio waves.

    By replacingnin Eq.(4) byng, we also obtain the change of group path length

    (6)

    Contrarily, ionospheric dispersion increases the group path length, relative to free space, and this will introduce a nonlinear additive group delayτio(ω) as defined by

    (7)

    It can be known from the above analysis that ionospheric dispersion changes phase path and group path length of the transionospheric radio waves, and thereby leads to a nonlinear advanced phase and an additive group delay. As a result, ionospheric dispersion will severely affect the functions and performances of the wideband satellite-ground-link radio systems.

    2 Ionospheric dispersion simulation

    The ionospheric dispersion simulation aims at accurately simulating the nonlinear advanced phase (Eq.(5)) and the additive group delay (Eq.(7)). Comparing Eq.(5) with Eq.(7), we know that the advanced phase and the additive group delay have the relationship as

    τio(ω)=-dφio(ω)/dω

    (8)

    If we pass over the ionospheric effects on the amplitude of radio waves, the dispersive effects can be modeled as an allpass nonlinear phase system with the frequency response

    (9)

    where |Hio(ω)|≡1, arg[Hio(ω)]=φio(ω), and the group delay isτio(ω).

    Then the ionospheric dispersion simulation can be achieved by passing the wideband radio waves through this allpass nonlinear phase system, that is

    Sio(ω)=S(ω)Hio(ω)

    (10)

    whereS(ω) is the spectrum of a radio frequency (RF) input signal with the frequency range ofω∈[ωmin,ωmax], andSio(ω) is the spectrum of a simulated RF output signal.

    Now, the problem is how to accurately approximate the allpass nonlinear phase systemHio(ω), as well as to simply implement in hardware. This problem can be solved as shown in Fig.1 by first translatingHio(ω) into a complex baseband, in which numerous useful digital design methods could be introduced, and then converting the frequency to RF again.

    Fig.1 Block diagram of ionospheric dispersion simulation

    In Fig.1, the spectra of a demodulated signal and a modulated signal respectively are

    SLD(ω)=2πδ(ω+ωL)

    (11)

    SLU(ω)=2πδ(ω-ωL)

    (12)

    whereωLis defined as the center of the frequency rangeω∈[ωmin,ωmax], that isωL=(ωmin+ωmax)/2. Complex baseband systemHiob(ω) has the form as

    (13)

    with

    (14)

    whereω∈[ωbmin,ωbmax] and

    (15)

    It is known from Eq.(13) that the complex baseband systemHiob(ω) is hard to be approximated directly because its phase response curve (curve 1 in Fig. 2) has several characteristics: ① it is nonlinear and proportional to (ω+ωL)-1; ② it is monotonically decreasing and quasi-linear; ③ it has a large phase offset. However, such characteristics can be used to decompose theHiob(ω) into three more simple and easily implemented allpass subsystems.

    Fig.2 Decomposing of the phase response

    In the baseband frequency range, we choose a reference frequencyω0=(ωbmin+ωbmax)/2=0 and decompose the phase response curveφiob(ω) into two parts: the linear partφL(ω) passing through the reference frequencyω0(curve 2 in Fig. 2) and the nonlinear partφnL(ω) (curve 3 in Fig. 2), that is

    φiob(ω)=φL(ω)+φnL(ω)

    (16)

    The linear partφL(ω) has the form as

    φL(ω)=kω+d

    (17)

    where the slopekis defined as the derivative of theφiob(ω) atω0=0

    (18)

    Thenthelongitudinalinterceptdcan be calculated as

    d=φL(ω0)-kω0=φiob(ω0)-kω0=φio(ωL)

    (19)

    Sincedis frequency independent, the linear partφL(ω) can be decomposed again into two more simple parts: the linear partφL0(ω) passing through the zero frequency and the constant phaseφoas

    φL0(ω)=kω=-ωτio(ωL)

    (20)

    φo=d=φio(ωL)

    (21)

    Substituting Eq.(20) and Eq.(21) into Eq. (16), we have

    (22)

    Now the complex baseband system described by Eq.(13) has been decomposed into three new allpass subsystems: the linear phase subsystemHL(ω), the constant phase subsystemHo(ω), and the nonlinear phase subsystemHnL(ω).

    HL(ω)=exp[jφL0(ω)]=exp[-jωτio(ωL)]

    (23)

    Ho(ω)=exp[jφo]=exp[jφio(ωL)]

    (24)

    (25)

    The three allpass subsystems have some attractive characteristics that make them be easily implemented by numerous useful digital methods. The linear phase subsystemHL(ω) can be viewed as an ideal delay system with a constant delay. If we express the delayτio(ωL) as sampling intervalTs, that isτio(ωL)=NTs, the digital delayNis usually a positive real value that can be split into an integer value and a fractional value. Hence, the method that combines integer-interval delay and a Lagrange-type fractional delay filter[10]is preferred. The constant phase subsystemHo(ω) has the simplest form and can be simply implemented by the digital complex multiply. The subsystemHnL(ω) has a nonlinear phase curve with a zero-offset and a quasi-parabolic shape, and it can be approximated by a complex-coefficient FIR filter[11].

    3 Performance simulations

    Simulations have been conducted to verify the validity and the performance of the proposed ionospheric dispersion simulation method. The frequency range of the wideband RF input signalS(ω) was assumed to be 2.0 GHz to 2.1 GHz, and the frequency of the demodulated signal and the modulated signal was 2.05 GHz. This means that the frequency range of the complex baseband systemHiob(ω) is -50 MHz to 50 MHz and the reference frequency is zero after quadrature demodulation. The sampling rate was assumed to be 400 MHz and the total electron content is assumed to be a constant, that isTe=500 TECU. To clearly exhibit the performance of the method, we present the decomposing process of the complex baseband systemHiob(ω) and the approximation errors of the subsystems in terms of magnitude, phase and group delay. It should be noted that the approximation errors of the constant phase subsystemHo(ω) were not considered in our simulations because it is a constant for the simulation conditions.

    Fig.3 illustrates the phase and group delay decomposing processes of the complex baseband systemHiob(ω) withTe=500 TECU. It is noted that the subsystemHo(ω) is not included because it is independent of frequency. The phase of the subsystemHo(ω) is approximately 2.361×105degree and its group delay is zero. In addition, the group delay of the linear phase subsystemHL(ω) in Fig.3 is approximately 159.969 ns. It can be seen from Fig.3 that both the phase and group delays of the complex baseband system are the nonlinear function of frequency. The maximum phase is approximately 1.210×105degree and the difference in the frequency range is about 5 762°. The maximum group delay is approximately 168 ns and the difference is about 15 ns. As a result, it is necessary to decompose theHiob(ω) into three allpass subsystems for the accurate simulation of ionospheric dispersion and simple implementation in hardware.

    Fig.3 Phase and group delay decomposing of the system Hiob(ω)

    The linear phase subsystemHL(ω) is approximated by the combination of the integer-interval delay and the Lagrange-type fractional delay filter, and the approximation errors in terms of the magnitude, phase, and group delay have been illustrated in Fig.4. In this simulation, the integer-interval delay is 63 samples and the fractional delay is about 0.987 7 samples. The integer-interval delay was assumed to be approximated with zero error, and the order of the Lagrange-type fraction delay filter was 3. It can be seen from the figure that the approximation errors achieve the minimum atω0=0 and degrade as frequency increases. However, the maximum magnitude, phase, and group delay errors in the frequency range of -50 MHz to 50 MHz will not exceed 0.004 dB, 0.01° and 2 ps, respectively.

    Fig.4 Approximation errors of the linear phase subsystem

    The nonlinear phase subsystemHnL(ω) is approximated by the complex-coefficient FIR filter that is based on the frequency-domain weighted least square method. Fig.5 illustrates the approximation errors of the subsystemHnL(ω) where the filter order was 21 and the frequency resolution was 0.1 MHz. For the nonlinear phase subsystem, the quasi-symmetry characteristic of the phase response is very important because such characteristic makes the subsystem be accurately approximated with lower filter orders. In our simulation, the magnitude, phase and group delay errors are less than 0.004 dB, 0.01° and 8 ps, respectively.

    Fig.5 Approximation errors of the nonlinear phase subsystem

    Fig.6 illustrates the total errors of our proposed ionospheric dispersion simulation method by summing the approximation errors of each subsystem. It can be summarized from the simulations that the method simulates ionospheric dispersion with a magnitude error not exceeding 0.003 dB, a phase error not exceeding 0.01°, and a group delay error not exceeding 10 ps. However, only a 3-order Lagrange-type fractional delay filter and a 21-order FIR filter are introduced. This means that our method has the ability to accurately capture the ionospheric dispersion characteristics, as well as to simply implement them.

    Fig.6 Total errors of the ionospheric dispersion simulation

    4 Conclusion

    In this paper, we have presented a generalized ionospheric dispersion simulation method to test wideband satellite-ground-link radio systems for dispersion robustness. Comparing with conventional methods, we model the dispersive effects on radio waves as an allpass nonlinear phase system, and hence, the method can simulate ionospheric dispersion without knowing any signal priori information. To improve the simulation accuracy and reduce the implementation complexity, the system is decomposed into three allpass subsystems and the design methods are given briefly. Using simulations, we show that our proposed method has the ability to accurately simulate the nonlinear advanced phase and the additive group delay introduced by ionospheric dispersion with a low implementation complexity.

    [1] Liu J, Kuga Y, Ishimaru A, et al. Ionospheric effects on SAR imaging: a numerical study [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 41(5): 939-946.

    [2] Humphreys T E, Psiaki M L, Kintner P M. Modeling the effects of ionospheric scintillation on GPS carrier phase tracking [J]. IEEE Transactions on Aerospace and Electronic System, 2010, 46(4): 1624-1637.

    [3] Li S Y, Liu C H. Modeling the effects of ionospheric scintillations on LEO satellite communications [J]. IEEE Communications Letters, 2004, 8(3): 147-149.

    [4] Zhao Junxiang, Chang Qing, Zhang Qishan, et al. Research of ionospheric time-delay error simulation in high dynamic GPS signal simulator [J]. Chinese Journal of Aeronautics, 2003, 16(3):169-176.

    [5] Wang Jun, Xi Xiaoli, Liu Jiangfan. The design of GPS IF signal software simulator [C]∥Proceedings of the 2010 International Symposium on Signals, Systems and Electronics. Piscataway: Institute of Electrical and Electronics Engineers Inc, 2010:1-3.

    [6] Hu Yan, Li Hong, Lu Mingquan. Design and implementation of a high fidelity GLONASS signal simulator [C] ∥Proceedings of 2012 Spring World Congress on Engineering and Technology. Washington: IEEE Computer Society, 2012:1-3.

    [7] Humphreys T E, Psiaki M L, et al. Simulating ionosphere-induced scintillation for testing GPS receiver phase tracking loops [J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(4):707-715.

    [8] Conker R S, El-Arini M B, Hegarty C J, et al. Modeling the effects of ionospheric scintillation on GPS/satellite-based augmentation System availability [J]. Radio Science, 2003, 48(1): 688-693.

    [9] Lawrence R S, Little C G, Chivers H J A. A Survey of ionospheric effects upon earth-space radio propagation [J]. Proceedings of the IEEE, 1964, 52(1):4-27.

    [10] Deng T B. Coefficient-symmetries for implementing arbitrary-order Lagrange-type variable fractional delay digital filters [J]. IEEE Transactions on Signal Processing, 2007, 55(8): 4078-4090.

    [11] Pei S C, Shyu J J. Design of arbitrary complex coefficient FIR digital filters by complex weighted least squares approximation [J]. IEEE Transactions on Circuits and Systems-Ⅱ, 1994, 41(12):817-820.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004-0579.201524.0413

    TN 955 Document code: A Article ID: 1004- 0579(2015)04- 0513- 06

    Received 2014- 04- 21

    Supported by the Foundation of Shanghai Aerospace Science and Technology (20120541088); China Postdoctoral Science Foundation (2015M580997)

    E-mail: zhengzhebit@bit.edu.cn

    猜你喜歡
    周揚(yáng)
    一眼萬年
    花火彩版B(2022年2期)2022-10-19 07:23:54
    Parity–time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
    1975 年,毛澤東三次批示“周揚(yáng)一案”
    中外文摘(2020年8期)2020-04-30 05:31:38
    私房錢風(fēng)波
    37°女人(2018年8期)2018-08-23 05:59:06
    追憶“文革”中的周揚(yáng)
    黨史博覽(2018年6期)2018-06-21 02:08:02
    私房錢風(fēng)波
    分憂(2018年6期)2018-06-08 04:35:24
    知音·下半月(2018年3期)2018-04-02 04:51:28
    遲暮之年的周揚(yáng)與陳伯達(dá)
    誰動(dòng)了我的肖像權(quán)
    愛情攻略
    国产不卡av网站在线观看| 国产一区二区三区视频了| 大码成人一级视频| 久久精品91无色码中文字幕| 天天躁日日躁夜夜躁夜夜| 如日韩欧美国产精品一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 老司机亚洲免费影院| 午夜精品久久久久久毛片777| 人人妻人人澡人人爽人人夜夜| 久久精品熟女亚洲av麻豆精品| 婷婷成人精品国产| 中文字幕精品免费在线观看视频| 丰满迷人的少妇在线观看| 亚洲五月婷婷丁香| h视频一区二区三区| 18禁观看日本| 建设人人有责人人尽责人人享有的| 亚洲av成人一区二区三| 欧美精品av麻豆av| 50天的宝宝边吃奶边哭怎么回事| 一区在线观看完整版| 久久中文字幕人妻熟女| 人妻一区二区av| 国产精品98久久久久久宅男小说| 啦啦啦视频在线资源免费观看| 制服人妻中文乱码| 精品第一国产精品| 国产av国产精品国产| 视频区欧美日本亚洲| 国产精品av久久久久免费| 亚洲精品一二三| 久久精品熟女亚洲av麻豆精品| 国产日韩欧美亚洲二区| 精品一区二区三区视频在线观看免费 | 亚洲人成伊人成综合网2020| 久久亚洲精品不卡| 久久99热这里只频精品6学生| 久久99一区二区三区| 下体分泌物呈黄色| 黄色丝袜av网址大全| 免费看十八禁软件| 亚洲第一av免费看| 一区二区av电影网| 亚洲欧美色中文字幕在线| 人妻久久中文字幕网| 捣出白浆h1v1| 色在线成人网| 国产日韩欧美亚洲二区| 999久久久国产精品视频| 老司机亚洲免费影院| 丰满少妇做爰视频| 精品少妇久久久久久888优播| 中亚洲国语对白在线视频| 国产欧美亚洲国产| 人妻一区二区av| 丁香欧美五月| 午夜精品国产一区二区电影| 在线十欧美十亚洲十日本专区| 久久久久精品国产欧美久久久| 国产成人精品在线电影| 日韩视频在线欧美| 女同久久另类99精品国产91| 91精品国产国语对白视频| 美国免费a级毛片| 女性生殖器流出的白浆| 黑人操中国人逼视频| 免费观看人在逋| 久久久久网色| 一区二区av电影网| 少妇被粗大的猛进出69影院| 十八禁高潮呻吟视频| 婷婷成人精品国产| 天堂俺去俺来也www色官网| 亚洲午夜精品一区,二区,三区| 精品久久久精品久久久| 夫妻午夜视频| 久久免费观看电影| 亚洲av国产av综合av卡| 久久精品国产亚洲av高清一级| 国产色视频综合| 色婷婷av一区二区三区视频| 国产精品免费大片| 99精品在免费线老司机午夜| 黄色a级毛片大全视频| 热re99久久国产66热| 国产精品久久久久成人av| 不卡av一区二区三区| 中文亚洲av片在线观看爽 | 五月天丁香电影| 国产亚洲av高清不卡| 大型黄色视频在线免费观看| 免费黄频网站在线观看国产| 精品人妻熟女毛片av久久网站| 啪啪无遮挡十八禁网站| 亚洲情色 制服丝袜| 成人特级黄色片久久久久久久 | 最近最新中文字幕大全免费视频| 99久久国产精品久久久| 我的亚洲天堂| 美女国产高潮福利片在线看| 色在线成人网| 视频区欧美日本亚洲| 成人手机av| 高清在线国产一区| 老司机亚洲免费影院| 少妇粗大呻吟视频| 国产不卡一卡二| 国产精品九九99| 国产欧美日韩一区二区精品| 法律面前人人平等表现在哪些方面| 女人爽到高潮嗷嗷叫在线视频| 99久久人妻综合| 国产三级黄色录像| 1024视频免费在线观看| 精品久久久久久电影网| 夫妻午夜视频| 精品国产乱子伦一区二区三区| 日本av手机在线免费观看| 无限看片的www在线观看| 久热爱精品视频在线9| 亚洲专区中文字幕在线| 91字幕亚洲| 精品一品国产午夜福利视频| 久久av网站| 久久中文字幕人妻熟女| 青草久久国产| 女人精品久久久久毛片| 亚洲 欧美一区二区三区| 丝瓜视频免费看黄片| 大陆偷拍与自拍| 亚洲成国产人片在线观看| 免费日韩欧美在线观看| 一区二区日韩欧美中文字幕| 欧美日韩福利视频一区二区| 超碰成人久久| 99精品欧美一区二区三区四区| 欧美日韩一级在线毛片| 咕卡用的链子| 亚洲美女黄片视频| 国产一区二区激情短视频| 制服诱惑二区| 久久久久精品国产欧美久久久| 色老头精品视频在线观看| 99久久人妻综合| av欧美777| 大香蕉久久网| 69av精品久久久久久 | 手机成人av网站| 蜜桃国产av成人99| 国产精品香港三级国产av潘金莲| 人人妻人人澡人人爽人人夜夜| 亚洲七黄色美女视频| 国产精品99久久99久久久不卡| 久久狼人影院| 国产精品二区激情视频| 久久九九热精品免费| 国产成人免费观看mmmm| 亚洲av成人一区二区三| 午夜两性在线视频| 日韩 欧美 亚洲 中文字幕| 精品国产一区二区三区久久久樱花| 免费在线观看黄色视频的| 亚洲欧美日韩高清在线视频 | 国产欧美亚洲国产| 天堂中文最新版在线下载| 18禁裸乳无遮挡动漫免费视频| 久久热在线av| 女性被躁到高潮视频| 精品少妇一区二区三区视频日本电影| 天堂俺去俺来也www色官网| 欧美av亚洲av综合av国产av| 黄色视频不卡| a级毛片在线看网站| 亚洲国产av新网站| 欧美大码av| 99国产精品一区二区三区| 老司机靠b影院| av在线播放免费不卡| 免费高清在线观看日韩| 国产精品成人在线| 欧美久久黑人一区二区| 精品亚洲成国产av| 丝袜人妻中文字幕| 成人永久免费在线观看视频 | xxxhd国产人妻xxx| 精品视频人人做人人爽| 国产国语露脸激情在线看| 女性被躁到高潮视频| 欧美激情 高清一区二区三区| 一区二区av电影网| 成人特级黄色片久久久久久久 | 国产在线精品亚洲第一网站| 午夜福利免费观看在线| 操美女的视频在线观看| 亚洲中文字幕日韩| 欧美日韩中文字幕国产精品一区二区三区 | 在线播放国产精品三级| 精品人妻1区二区| 日韩人妻精品一区2区三区| 啦啦啦在线免费观看视频4| 无遮挡黄片免费观看| 久久精品91无色码中文字幕| 国产免费视频播放在线视频| 久久精品aⅴ一区二区三区四区| 免费观看a级毛片全部| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美人与性动交α欧美软件| 日本黄色日本黄色录像| 亚洲欧洲日产国产| 亚洲全国av大片| 亚洲七黄色美女视频| 91老司机精品| 久久精品熟女亚洲av麻豆精品| 国产熟女午夜一区二区三区| 在线观看66精品国产| 国产精品.久久久| 国产亚洲欧美精品永久| 12—13女人毛片做爰片一| 黄频高清免费视频| 亚洲精品久久午夜乱码| 午夜福利欧美成人| 久久这里只有精品19| 成年版毛片免费区| 日韩熟女老妇一区二区性免费视频| 国产亚洲欧美精品永久| 国产精品影院久久| 后天国语完整版免费观看| 热99国产精品久久久久久7| 亚洲第一青青草原| 2018国产大陆天天弄谢| 极品少妇高潮喷水抽搐| 99精品久久久久人妻精品| 色老头精品视频在线观看| 亚洲精品粉嫩美女一区| 伦理电影免费视频| 国产xxxxx性猛交| 国产av又大| 在线 av 中文字幕| 极品教师在线免费播放| 一级毛片精品| av欧美777| 国产国语露脸激情在线看| 777久久人妻少妇嫩草av网站| av有码第一页| 精品一区二区三区av网在线观看 | 别揉我奶头~嗯~啊~动态视频| 超碰成人久久| 亚洲人成77777在线视频| av天堂久久9| 免费黄频网站在线观看国产| 一区在线观看完整版| 一边摸一边抽搐一进一出视频| 日本黄色日本黄色录像| 成人18禁高潮啪啪吃奶动态图| 国产成人系列免费观看| 日韩一卡2卡3卡4卡2021年| 成人特级黄色片久久久久久久 | 免费一级毛片在线播放高清视频 | 免费在线观看日本一区| 1024香蕉在线观看| 国产成人欧美在线观看 | www.999成人在线观看| 久久久国产一区二区| 亚洲专区中文字幕在线| 成年人黄色毛片网站| 成年人午夜在线观看视频| 国产午夜精品久久久久久| 免费av中文字幕在线| 国产野战对白在线观看| 无人区码免费观看不卡 | 亚洲人成伊人成综合网2020| 少妇粗大呻吟视频| 成年人黄色毛片网站| 美女国产高潮福利片在线看| 免费女性裸体啪啪无遮挡网站| 正在播放国产对白刺激| 又紧又爽又黄一区二区| 在线永久观看黄色视频| 一区二区三区精品91| 中文字幕高清在线视频| 国产亚洲精品第一综合不卡| 亚洲性夜色夜夜综合| 99精品久久久久人妻精品| 一区二区三区国产精品乱码| 亚洲成人免费av在线播放| 满18在线观看网站| 国产精品免费大片| 激情视频va一区二区三区| 久久久久精品人妻al黑| 菩萨蛮人人尽说江南好唐韦庄| 欧美 亚洲 国产 日韩一| 精品一品国产午夜福利视频| 日韩大码丰满熟妇| 亚洲精品久久午夜乱码| www.自偷自拍.com| 久久精品人人爽人人爽视色| 欧美黄色淫秽网站| 亚洲欧美日韩另类电影网站| 一级片免费观看大全| 精品久久久精品久久久| 国产男女超爽视频在线观看| 热re99久久国产66热| 亚洲成av片中文字幕在线观看| 国产亚洲午夜精品一区二区久久| 午夜福利视频在线观看免费| 老司机午夜十八禁免费视频| 国产深夜福利视频在线观看| 精品国产乱码久久久久久小说| 建设人人有责人人尽责人人享有的| 纵有疾风起免费观看全集完整版| 亚洲自偷自拍图片 自拍| 亚洲av日韩精品久久久久久密| 最近最新中文字幕大全电影3 | 另类亚洲欧美激情| 法律面前人人平等表现在哪些方面| 久久久国产欧美日韩av| 色婷婷av一区二区三区视频| 99国产极品粉嫩在线观看| 波多野结衣一区麻豆| 一级黄色大片毛片| 午夜福利在线观看吧| 亚洲va日本ⅴa欧美va伊人久久| 一个人免费在线观看的高清视频| 一区二区三区国产精品乱码| 久久久国产精品麻豆| 淫妇啪啪啪对白视频| 欧美午夜高清在线| 久久久精品94久久精品| 久久精品国产亚洲av香蕉五月 | av不卡在线播放| 免费高清在线观看日韩| 午夜91福利影院| 19禁男女啪啪无遮挡网站| 搡老乐熟女国产| 在线观看免费视频网站a站| 首页视频小说图片口味搜索| 色在线成人网| 少妇的丰满在线观看| 精品亚洲乱码少妇综合久久| 亚洲伊人久久精品综合| 91精品三级在线观看| 国产成人啪精品午夜网站| 国产日韩欧美在线精品| 自拍欧美九色日韩亚洲蝌蚪91| 精品亚洲乱码少妇综合久久| 99热网站在线观看| 午夜福利视频在线观看免费| 国产单亲对白刺激| 女人高潮潮喷娇喘18禁视频| 免费不卡黄色视频| 亚洲少妇的诱惑av| 女人精品久久久久毛片| 日韩成人在线观看一区二区三区| 亚洲精品乱久久久久久| 国产又爽黄色视频| 免费久久久久久久精品成人欧美视频| 欧美黑人精品巨大| av一本久久久久| 久热这里只有精品99| 色综合欧美亚洲国产小说| 波多野结衣av一区二区av| 99久久精品国产亚洲精品| 日韩欧美国产一区二区入口| 日本vs欧美在线观看视频| 久久久久久久国产电影| 国产成人av教育| 在线亚洲精品国产二区图片欧美| 三级毛片av免费| 大型黄色视频在线免费观看| 极品人妻少妇av视频| 亚洲av成人不卡在线观看播放网| 国产成人一区二区三区免费视频网站| 十八禁高潮呻吟视频| 亚洲国产av影院在线观看| 国产深夜福利视频在线观看| e午夜精品久久久久久久| 国产在线一区二区三区精| 99热国产这里只有精品6| 亚洲精品国产区一区二| 欧美日韩福利视频一区二区| 日韩欧美国产一区二区入口| 久9热在线精品视频| 一区二区三区乱码不卡18| 久久久欧美国产精品| 一区二区av电影网| 亚洲精品在线美女| av网站免费在线观看视频| 国产精品电影一区二区三区 | 91麻豆精品激情在线观看国产 | 精品乱码久久久久久99久播| 亚洲第一欧美日韩一区二区三区 | 亚洲中文av在线| 午夜久久久在线观看| 成人国产一区最新在线观看| 制服诱惑二区| 黑人巨大精品欧美一区二区mp4| 国产成人精品在线电影| 精品一区二区三区av网在线观看 | 久久免费观看电影| 老司机深夜福利视频在线观看| 捣出白浆h1v1| 久久午夜综合久久蜜桃| 国产又色又爽无遮挡免费看| 女人精品久久久久毛片| 好男人电影高清在线观看| 午夜老司机福利片| 一个人免费看片子| 欧美国产精品一级二级三级| 高清视频免费观看一区二区| 国产免费视频播放在线视频| 91av网站免费观看| 激情在线观看视频在线高清 | 制服人妻中文乱码| 黄色视频不卡| 国产在视频线精品| 啪啪无遮挡十八禁网站| 久久久精品区二区三区| 精品熟女少妇八av免费久了| 国产男靠女视频免费网站| 一本—道久久a久久精品蜜桃钙片| 国产日韩欧美在线精品| 亚洲精品国产色婷婷电影| 欧美激情 高清一区二区三区| 亚洲欧美日韩高清在线视频 | 一边摸一边抽搐一进一出视频| 一级,二级,三级黄色视频| 午夜两性在线视频| 国产极品粉嫩免费观看在线| 免费看a级黄色片| 亚洲第一欧美日韩一区二区三区 | 18禁裸乳无遮挡动漫免费视频| 亚洲国产看品久久| 两个人看的免费小视频| 成人亚洲精品一区在线观看| 国产精品熟女久久久久浪| av超薄肉色丝袜交足视频| 亚洲成人免费电影在线观看| 王馨瑶露胸无遮挡在线观看| 久久毛片免费看一区二区三区| 亚洲国产av新网站| 老熟妇仑乱视频hdxx| 国产黄色免费在线视频| 国产老妇伦熟女老妇高清| 91成年电影在线观看| 人人澡人人妻人| 国产主播在线观看一区二区| 日韩中文字幕视频在线看片| 久久精品国产a三级三级三级| 香蕉国产在线看| 精品福利观看| 肉色欧美久久久久久久蜜桃| 中文字幕av电影在线播放| 国产伦理片在线播放av一区| 国产精品 欧美亚洲| 日韩视频在线欧美| 一本—道久久a久久精品蜜桃钙片| 丝瓜视频免费看黄片| 亚洲一卡2卡3卡4卡5卡精品中文| 日本黄色视频三级网站网址 | 在线观看免费午夜福利视频| 欧美亚洲日本最大视频资源| 久久免费观看电影| www日本在线高清视频| 狠狠婷婷综合久久久久久88av| 热re99久久国产66热| 亚洲中文av在线| 中文字幕av电影在线播放| 啦啦啦 在线观看视频| 天天躁日日躁夜夜躁夜夜| 欧美精品人与动牲交sv欧美| 悠悠久久av| av片东京热男人的天堂| 国产主播在线观看一区二区| 一级毛片女人18水好多| 国产亚洲精品久久久久5区| 少妇 在线观看| 最黄视频免费看| 新久久久久国产一级毛片| 法律面前人人平等表现在哪些方面| 男女床上黄色一级片免费看| 香蕉久久夜色| 免费看十八禁软件| 嫩草影视91久久| 精品久久蜜臀av无| 黄片小视频在线播放| 一区二区三区国产精品乱码| 欧美在线一区亚洲| 丝袜在线中文字幕| 狂野欧美激情性xxxx| 国产一卡二卡三卡精品| 亚洲中文日韩欧美视频| 夜夜爽天天搞| 免费在线观看影片大全网站| 一本色道久久久久久精品综合| 欧美变态另类bdsm刘玥| 午夜福利视频精品| 久久久久久久久久久久大奶| 纯流量卡能插随身wifi吗| 一本—道久久a久久精品蜜桃钙片| 一进一出好大好爽视频| 丝袜美足系列| 久久精品91无色码中文字幕| 成人国产一区最新在线观看| www.精华液| 欧美日本中文国产一区发布| 欧美人与性动交α欧美软件| 中文欧美无线码| 亚洲成人免费av在线播放| 久久ye,这里只有精品| 久久精品人人爽人人爽视色| 水蜜桃什么品种好| 欧美日韩一级在线毛片| 巨乳人妻的诱惑在线观看| av一本久久久久| 19禁男女啪啪无遮挡网站| 亚洲自偷自拍图片 自拍| 中国美女看黄片| 三上悠亚av全集在线观看| 18禁裸乳无遮挡动漫免费视频| 久久天堂一区二区三区四区| 精品高清国产在线一区| 69av精品久久久久久 | kizo精华| 99热国产这里只有精品6| 精品国产亚洲在线| 欧美成狂野欧美在线观看| 欧美亚洲日本最大视频资源| 久久午夜亚洲精品久久| 亚洲专区中文字幕在线| aaaaa片日本免费| 老司机靠b影院| 国产成人免费观看mmmm| 国产xxxxx性猛交| 亚洲成av片中文字幕在线观看| 久久久久久久久免费视频了| 亚洲精品国产精品久久久不卡| 亚洲中文日韩欧美视频| 久久中文字幕人妻熟女| 欧美性长视频在线观看| 日本a在线网址| 国产精品一区二区精品视频观看| 一边摸一边抽搐一进一小说 | 久久精品亚洲熟妇少妇任你| 免费观看人在逋| 久久久久网色| 一级,二级,三级黄色视频| 亚洲成人免费电影在线观看| 亚洲五月婷婷丁香| 美女视频免费永久观看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 999久久久国产精品视频| 国产成人一区二区三区免费视频网站| 亚洲少妇的诱惑av| 久久久久国产一级毛片高清牌| 精品一品国产午夜福利视频| 国产片内射在线| 十八禁网站网址无遮挡| 男男h啪啪无遮挡| 国产av精品麻豆| www日本在线高清视频| 久久天躁狠狠躁夜夜2o2o| 免费在线观看影片大全网站| 美女扒开内裤让男人捅视频| 成年人免费黄色播放视频| 老司机在亚洲福利影院| 亚洲人成伊人成综合网2020| 欧美激情 高清一区二区三区| 国产精品久久久久成人av| 免费观看a级毛片全部| h视频一区二区三区| 亚洲av片天天在线观看| 嫁个100分男人电影在线观看| 日韩成人在线观看一区二区三区| 免费在线观看日本一区| 电影成人av| 十八禁高潮呻吟视频| 久久久久久久久免费视频了| 国产成人精品无人区| 大型黄色视频在线免费观看| 中文字幕最新亚洲高清| 免费观看av网站的网址| 丝袜在线中文字幕| 国产精品 欧美亚洲| 国产av精品麻豆| 婷婷成人精品国产| 亚洲欧洲日产国产| 久久中文字幕人妻熟女| 久久婷婷成人综合色麻豆| 国产成人啪精品午夜网站| 老司机影院毛片| 成人特级黄色片久久久久久久 | 丝瓜视频免费看黄片| 最新美女视频免费是黄的| 亚洲七黄色美女视频| 成人国产一区最新在线观看| 久久人妻av系列| 国产福利在线免费观看视频| 伊人久久大香线蕉亚洲五| 成人18禁高潮啪啪吃奶动态图| 亚洲av第一区精品v没综合| 999久久久国产精品视频| 欧美大码av| 最近最新中文字幕大全免费视频| 欧美日韩黄片免| 18禁裸乳无遮挡动漫免费视频| 久久天堂一区二区三区四区| 久久久精品国产亚洲av高清涩受| 国产免费视频播放在线视频| 女人久久www免费人成看片| 欧美 亚洲 国产 日韩一| av超薄肉色丝袜交足视频| 黄网站色视频无遮挡免费观看| 超色免费av| 少妇粗大呻吟视频|