• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parity–time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits

    2022-06-29 08:55:12YangZhou周揚ZhangZhaoYang楊彰昭YaoYinPeng彭堯吟andXinYeZou鄒欣曄
    Chinese Physics B 2022年6期
    關(guān)鍵詞:周揚

    Yang Zhou(周揚) Zhang-Zhao Yang(楊彰昭) Yao-Yin Peng(彭堯吟) and Xin-Ye Zou(鄒欣曄)

    1Key Laboratory of Modern Acoustics,MOE,Institute of Acoustics,Department of Physics,Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    2State Key Laboratory of Acoustics,Chinese Academy of Sciences,Beijing 100190,China

    Keywords: parity-time symmetry,acoustic gain material,piezoelectric composite plate,exceptional point

    1. Introduction

    Parity–time (PT) symmetry, or space–time reflection symmetry, initially proposed in quantum mechanics by Bender,[1,2]reveals that the quantum systems with non-Hermitian Hamiltonians can still host a real spectrum corresponding to observable physical quantities when they satisfy PT symmetry. After being introduced into optics,[3]PT symmetry has been extensively investigated on the experimental implementation and properties demonstration in the classical wave systems, such as unidirectional zero reflection,[4,5]coherent perfect absorption,[6–8]asymmetric mode conversion,[9,10]power oscillations of light propagation[11]and single-mode laser.[12–14]In the meantime,PT-symmetric acoustics[15]also has attracted intense attention after being proposed by Zhuet al.Since it is difficult to find the natural gain material in acoustics,[16]passive PT-symmetric systems[17–19]that consist of purely dissipative elements inspire the diverse designs of the acoustic PTsymmetric system. Moreover,the intriguing effects of exceptional points (EPs) corresponding to the PT phase transition points can also be observed in a passive PT-symmetric system,such as unidirectional invisibility,[20–24]anomalous reflection and refraction,[25–28]unidirectional sound focusing effect,[29]acoustic negative refraction[30]and sound absorption.[31]However,it is still difficult to construct a gain part for an active PT symmetry in the acoustic system,as the gain parts reported always consist of properly controlled loudspeakers,[32,33]interdigital transducers,[34]etc.

    Meanwhile,the piezoelectric composite material[35,36]is widely used in many fields as it is a kind of low-cost but practical transducer. The most commonly used composite material consists of a copper baseplate and a piezoelectric ceramic piece attached to the baseplate. It always can be lumped into idealized discrete elements because it is thin enough and the diameter is much smaller than the acoustic wavelength of the frequency interested.[37,38]Then, the piezoelectric composite material with an external circuit can be easily analyzed with the lumped element model.[39]It can be found that the composite material can perform as a negative impedance device with specific external circuits,that is,we can synthesize a kind of gain material into the acoustic field by adjusting the external circuits connected to the piezoelectric composite material.

    In this paper,we present an acoustic active PT-symmetric system constructed by a pair of piezoelectric composite plates that are loaded at the side wall of the waveguide with suitably tailored external electrical circuits. Two identical piezoelectric composite plates are controlled by independent external electrical circuits,respectively,which can provide the desired positive or negative resistances. Crucially,the EPs with unidirectional transparency can also be exactly induced in the presented structure. Meanwhile,the PT-broken phases as well as the reverse of the direction of acoustic transparency can be directly observed by adjusting the distance between the gain and loss parts. Our results are expected to open a different route for acoustic wave control and synthesis of EPs.

    2. Theoretical analysis

    The structure of the designed PT-symmetric system is shown in Fig. 1. Here, a gain part and a loss part with settled distanceLare placed on the same side of the airborne tube with hard-wall boundaries. The cross-sectional area of the main tube isSm, and the area of the gain (loss) part isSa(Sb). The acoustic pressure and the corresponding velocity of the incident wave and the transmitted wave are (p-,v-) and(p+,v+), respectively. The air density and speed of acoustic wave areρ0andc0in the tube, respectively. To construct an acoustic PT-symmetric system that satisfies the fundamental relation(PT)S(ω*)(PT)=S-1(ω),[40]where the operatorPrepresents parity reflection,the operatorTrepresents time reversal andSis the scattering matrix of the system,respectively.We take the relationship for the acoustic pressures and velocities of the incident and transmitted waves into consideration because the system can be described as a standard two-port network model,which can be written as

    Fig.1. Schematic of the designed PT-symmetric system.

    As quantum EPs designed by engineering the Hamiltonian matrix, acoustic EPs can be achieved by manipulating the elements in the corresponding scattering matrix. The system will be in a unidirectional invisible state when it is at EPs, which corresponds toS11=0 whenγ1=-γ2=2 (Appendix B).In this case,the reflection from the left is zero while it is non-zero from the right. We can substituteγ1=-γ2=γ(γis real number)into Eq.(3),and obtain the relation as presented in Fig. 2(a). Here,x=k0Lis the acoustic separation length between the gain and loss parts,we setx=arcsin(3/5)as the choice ofxvalue does not make much difference to the shapes of the curves. As we can see, only whenγ=2,the reflection coefficient from the left comes to zero while the reflection coefficient from the other side is non-zero. And the transmission coefficients from both sides are unity at the point.It means thatγ=2 is the particular situation where the system is at EPs with arbitraryx.

    Then we consider another nonspecial situationγ=1+j.The scattering parameters are shown in Fig.2(b)with different values ofx. There are two different zero points atx=0.463 andx=1.571 corresponding to zero reflection coefficient from left and right, respectively. Whenx=0.463, the reflection from the side of loss part is zero. And whenx=1.571, the reflection from the side of gain part is zero. That is to say,the reversal of the direction of the unidirectional invisibility can be found by turning the distance between the two parts. The transmission coefficients at these points have the unity absolute value while the absolute values of the eigenvalues are at the tipping points,for eigenvalues degenerate or not as can be seen in Fig. 2(c). It means that the two points are both EPs here and the system is at the PT-broken phase whenxdiffers from 0.463 to 1.571.

    Fig.2. Theoretical results of the scattering parameters and eigenvalues of the scattering matrix.(a)Scattering parameters with different γ when x=arcsin(3/5). Only one EP at γ=2 where S11=0 and abs(S12)=1(‘a(chǎn)bs’means absolute value). (b)Scattering parameters with different x when γ=1+j. (c)Eigenvalues of the scattering matrix with different x when γ =1+j. The two eigenvalues begin to split when x=0.463 and degenerate again when x=1.571. Both the two points are EPs.

    To obtain the required normalized acoustic impedance for the gain and loss side branches, the piezoelectric composite plate with an external circuit is introduced. As shown in Fig. 3(a), there is a short tube with the piezoelectric composite plate covering the opening. The tube is used to ensure the external environment of the piezoelectric composite plate. Therefore,the acoustic impedance of this structure can be obtained as the sum of the piezoelectric composite plate and the tube asZsum=Zplate+Ztube. Here, if we consider the end as acoustic hard-wall boundary,Ztubecan be calculated directly by using the impedance transfer equation asZtube≈-jρ0c0cot(kh),wherehis the length of the tube.

    As for the piezoelectric composite plate [Fig. 3(a), right panel], it consists of a piece of copper as baseplate and a piece of PZT-5H (with aluminized surface) attached to the middle of the upper surface of the baseplate. We consider that the thickness of the aluminum film is negligible. The radius and thickness of the PZT-5H are Thk1=0.21 mm and Rad1=9.5 mm, respectively. The dimensions of the copper baseplate are Thk2=0.13 mm and Rad2=13.5 mm,respectively. Considering that the dimensions of the plate are much smaller than the wavelengths of the interesting frequencies,the composite plate can thus be lumped into idealized discrete circuit elements around the resonant frequency as illustrated in Fig. 3(b). It can be lumped into two parts: the first part is described as the acoustic domain that includes the acoustic resistanceRap,acoustic massMapand the short-circuit acoustic complianceCapof the piezoelectric composite plate; the second part is described as the electrical domain that includes the blocked electrical capacitanceCebof the piezoelectric diaphragm and the external electrical load impedanceZelacross the piezoelectric composite plate.Between the two parts,there is an approximate lossless transformer with the turn ratioφthat converts energy between the two domains. Therefore,the blocked electrical capacitance and electrical impedance can be transformed to acoustic domain asCaeb=Ceb/φ2andZal=φ2Zel. As a result, we can obtain the simplified equivalent circuit representation by the pure acoustic impedance as shown in Fig. 3(c), and the total acoustic impedance of the plate is given by

    whereω=2π fis the angular frequency when the operating frequency isf. The acoustic impedance of a piezoelectric composite plate is determined once made, while it is feasible to change the whole equivalent acoustic impedance by adjusting the impedance of the external circuit. Thus,active control can be introduced, and we can synthesize the gain part and loss part by linking the negative or positive impedance circuit to the piezoelectric composite plates. To begin with, we should measure the parameters of the piezoelectric composite plate. Here,we put forward a method to determine all the parameters of a piezoelectric composite plate around the resonant frequency by measuring the short-circuit resonant frequency(f1),the open-circuit resonant frequency(f2),and the impedance of the plate with short-circuit external circuit at the open-circuit resonant frequency(Zp0,the real part ofZp0noted asZp01, andZp02for the imaginary part). The parameters of the piezoelectric composite plate can be obtained from the following equations(Appendix C):

    Here,ω1=2π f1andω2=2π f2. This method has no need to carefully measure the transverse displacement of the whole plate as the traditional method,[37–39]in which it is hard to measure the lateral displacement accurately and deduce these parameters by integrating with respect to the displacement.

    Fig.3. (a)Schematic of a single part loaded at the side of waveguide.(b)Lumped element model of a piezoelectric composite plate with the external circuit load Zel. (c)Acoustics analogy circuit diagram to(b)as the electrical domain can transfer to acoustic domain by the transformer with Caeb=Ceb/φ2 and Zal=Zelφ2.

    3. Computational results

    The acoustic impedances and the reflection coefficients of the piezoelectric composite plate can be obtained from the two-microphone method (TMM).[41]The illustration of the TMM is shown in Fig. 4(a). The distance between the two microphones iss,the distance from the surface of the measuring structure to the nearest microphone isl,and the frequency response function between Mic. 1 and Mic. 2 isH12. Here,the frequency response can also be expressed as the ratio of the complex pressure at Mic. 2 to the complex pressure at Mic. 1.We assume that the effects of tube attenuation and viscosity are negligible,and only plane wave propagates along the tube,then the complex reflection coefficient at the sample surface and its acoustic impedance can be given by

    Then, the acoustic impedances of the piezoelectric composite plate at different frequencies and its resonant frequencies with open or short external circuit can be obtained.With the dimensions proposed above, we get the two resonant frequenciesf1=1755.9 Hz andf2=1874.2 Hz from Figs. 4(b)–4(e). It can be seen that the imaginary part of the specific acoustic impedance comes to zero and the absolute value of the reflection coefficient reaches the minimum value, which agrees well with the theory. And we can getZp0=765882.2+j·9632156.2 kg/(m4·s) further. Then, the parameters of the piezoelectric composite plate (Rap,Caeb,Cap,Map) can be obtained (Appendix C). However, the turn ratioφis necessary if we want to design the external circuits for different required equivalent acoustic impedance.We choosef3= 1800 Hz to calculate it. When the plate is shorted-circuited, the corresponding acoustic impedance isZa1=765917+j·3652139 kg/(m4·s). Further, we load the plate withZel0=1000 Ω and then the acoustic impedance isZa2=3989143.5+j·2441532.5 kg/(m4·s). Thus, the turn ratioφcan be obtained by

    whereZti=Zi/sa-Za1-Ztube. Since that the electrical load can be expressed asZe=Re0+jω3Me0, the external circuits are then deduced from the relations shown before and can be presented as resistances and inductances asRe0p=-255.74 Ω,Me0p=-98.91 mH for the passive plate andRe0a=-548.72 Ω,Me0a=-93.07 mH for the active plate,respectively. To obtain the negative impedance and inductance,a non-foster circuit is used here as shown in Fig. 5(a). the negative impedance is implemented by an operational amplifier with feedback resistors,and the corresponding equivalent circuit diagram is shown in Fig. 5(b). The effective negative electric impedance at the connector is

    Fig. 4. (a) Schematic of the two-microphone method. (b) Specific acoustic impedance near the resonant frequency when the piezoelectric composite plate is open-circuited. (c)Specific acoustic impedance near the resonant frequency when the plate is short-circuited. (d)Reflection coefficient when the plate is open-circuited. (e)Reflection coefficient when the plate is short-circuited. (f)Acoustic impedances of the plate acquired by calculating with the lumped elements.

    Fig.5. (a)The electronic schematic for external circuits. The resistors R3 and R4 provide the input bias of Vcc/2 at the positive input of the amplifier. Specifically,R3=R4=100 kΩ,R2=1 kΩ,R1=5 kΩ. (b)Equivalent circuit schematic of the circuit,Re0=-5Re,Me0=-5Me.

    Further, we combine the passive part and active part for the synthesis of the EP in PT-symmetric system as shown in Fig. 1. The active part is connected to the external circuit as presented in Fig. 5(a) withRea=51.15 Ω andMea=19.78 mH,while the passive part is connected to the same circuit withRep=109.74 Ω andMep=18.61 mH.And the corresponding acoustic pressure fields of distributions are depicted in Fig. 6. It is clear that the reflected acoustic wave nearly vanishes when the acoustic wave comes from the left of loss part. On the contrary, the reflection coefficient is relatively large when the acoustic wave comes from the right of gain part. These results indicate that the presented PT-symmetric system and the corresponding EPs are consistent with the calculation results and fairly accurate.

    Then, we chooseγ= 1-j as an example for the nonspecial situation, which corresponds toZ1= 172-172j kg/(m2·s) andZ2=-172-172j kg/(m2·s). All the other parameters are as the same as the sample discussed above,and we can synthesize the special acoustic impedances directly by merely turningReandMe. In this case, the passive part is connected to the external circuit withRep=-(280.16/5) Ω = 56.03 Ω andMep=-(115.4/5) mH =23.08 mH, while the active part is connected to the same circuit withRea=124.0 Ω andMea=21.52 mH. The measured special acoustic impedance of passive part isZ′sp=169.23-177.43j kg/(m2·s), andZ′sa=-169.03-172.30j kg/(m2·s)for the active part. Crucially,the percentage error here is less than 3%as well. Then we combine the passive part and active part for the synthesis of the EP as shown in Fig.7.Here we setx=1.57 which is corresponding to the unidirectional transparent point for the wave coming from the left of loss part.The actual reflection coefficient is 0.134 in simulation which is much larger than the coefficient obtained from the particular situationγ=2 as the deviation of the distanceLand the normalized quantityγboth influence the result.

    Fig. 6. The γ =2 is fulfilled thus the system is at EPs with arbitrary value of L,and x=1.7 is chosen as an example. (a)Scattering acoustic pressure when the input is coming from the left of loss part. The reflection coefficient here is 0.024 and the frequency of acoustic waves is f3=1800 Hz.(b)Scattering acoustic pressure when the input is coming from the right of gain part.

    Fig.7. The γ=1-j and the system is at EPs when x=1.571 or 2.687,and x=1.571 is chosen as an example. (a)Scattering acoustic pressure when input is coming from the left of loss part. The reflection coefficient here is 0.134 and the frequency of acoustic waves is f3=1800 Hz.(b)Scattering acoustic pressure when input is coming from the right of gain part.

    4. Discussion and conclusion

    In summary, we have designed an active-controlled acoustic PT-symmetric system by the piezoelectric composite plates that connect to different active external circuits.Lumped element model is used and all the parameters are determined by a different way without integrating with respect to the lateral displacement as before,which simplifies the design of the external circuits for the synthesis of PT-symmetric system and EPs. We can also obtain different values of the normalized quantityγwith the same structure and same frequency by adjusting external circuits of the piezoelectric composite plates. Unidirectional invisibility can be found at EPs,and the spontaneous PT symmetry broken or the reversal of the direction of the unidirectional invisibility can be achieved by turning the distance between gain part and loss part as well.Our study provides an active control method for constructing PT-symmetric system and opens a different route to controlling scattering parameters of acoustic structures.

    Appendix A:Transfer matrix of the system

    It is assumed that only plane waves propagate in the pipe,and the pressure and velocity at the left of the middle of loss part arep1andv1,at the right arep2andv2; similarly, at the left of the middle of gain part arep3andv3,at the right arep4andv4. Then, the relationships between thesepandvcan be expressed as

    Z0=ρ0c0is the specific acoustics impedance of the air in main tube asρ0andc0are air mass density and acoustic velocity in tube,respectively,x=k0Lis the acoustic separation length between the gain and loss parts with the wave vectork0.

    The total transfer matrix can be expressed as

    Acknowledgements

    Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303700), the National Natural Science Foundation of China (Grant Nos. 11634006,11934009,and 12074184),the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20191245), and the State Key Laboratory of Acoustics,Chinese Academy of Sciences.

    猜你喜歡
    周揚
    一眼萬年
    花火彩版B(2022年2期)2022-10-19 07:23:54
    1975 年,毛澤東三次批示“周揚一案”
    中外文摘(2020年8期)2020-04-30 05:31:38
    私房錢風(fēng)波
    37°女人(2018年8期)2018-08-23 05:59:06
    追憶“文革”中的周揚
    黨史博覽(2018年6期)2018-06-21 02:08:02
    私房錢風(fēng)波
    分憂(2018年6期)2018-06-08 04:35:24
    知音·下半月(2018年3期)2018-04-02 04:51:28
    遲暮之年的周揚與陳伯達(dá)
    誰動了我的肖像權(quán)
    故事會(2016年19期)2016-10-11 12:31:57
    Generalized ionospheric dispersion simulation method for wideband satellite-ground-link radio systems
    愛情攻略
    精品福利观看| 国产免费视频播放在线视频| 国产国语露脸激情在线看| 国产av精品麻豆| 国产在线免费精品| 久久免费观看电影| 女人精品久久久久毛片| 欧美乱码精品一区二区三区| 99久久人妻综合| www.999成人在线观看| 母亲3免费完整高清在线观看| 无人区码免费观看不卡 | 妹子高潮喷水视频| 两个人免费观看高清视频| 久久中文字幕人妻熟女| 免费不卡黄色视频| 咕卡用的链子| 极品少妇高潮喷水抽搐| 国产成人精品在线电影| av福利片在线| av国产精品久久久久影院| 国产精品98久久久久久宅男小说| 波多野结衣av一区二区av| 美女高潮到喷水免费观看| 久久免费观看电影| 91大片在线观看| a级毛片黄视频| 丁香六月天网| 日韩欧美免费精品| 国产区一区二久久| 国产精品熟女久久久久浪| 大型黄色视频在线免费观看| 成年人免费黄色播放视频| 日韩人妻精品一区2区三区| 在线av久久热| 我要看黄色一级片免费的| 好男人电影高清在线观看| 亚洲男人天堂网一区| av超薄肉色丝袜交足视频| 中文字幕色久视频| 国产精品一区二区在线不卡| av免费在线观看网站| 亚洲第一av免费看| 国产成人精品无人区| 亚洲成a人片在线一区二区| av国产精品久久久久影院| 亚洲欧美日韩另类电影网站| 日韩精品免费视频一区二区三区| 欧美在线一区亚洲| 国产精品 欧美亚洲| 五月天丁香电影| 丁香六月天网| 交换朋友夫妻互换小说| 久久久久国产一级毛片高清牌| videosex国产| 亚洲久久久国产精品| 免费看a级黄色片| 99国产极品粉嫩在线观看| 波多野结衣av一区二区av| 黑人巨大精品欧美一区二区蜜桃| 日本欧美视频一区| 日韩制服丝袜自拍偷拍| 国产精品免费视频内射| 亚洲国产欧美日韩在线播放| 丁香六月天网| 99国产精品免费福利视频| 露出奶头的视频| 欧美日韩一级在线毛片| 99九九在线精品视频| 三上悠亚av全集在线观看| 99在线人妻在线中文字幕 | 国产97色在线日韩免费| 成年版毛片免费区| av视频免费观看在线观看| 久久精品国产亚洲av高清一级| 十分钟在线观看高清视频www| 精品卡一卡二卡四卡免费| 国产在线一区二区三区精| 极品教师在线免费播放| 自拍欧美九色日韩亚洲蝌蚪91| 香蕉久久夜色| 男女无遮挡免费网站观看| 纵有疾风起免费观看全集完整版| 最近最新中文字幕大全电影3 | 亚洲 国产 在线| 欧美激情极品国产一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 在线观看免费高清a一片| 十八禁高潮呻吟视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品乱久久久久久| 久久久国产一区二区| 免费一级毛片在线播放高清视频 | 蜜桃在线观看..| 51午夜福利影视在线观看| aaaaa片日本免费| 少妇猛男粗大的猛烈进出视频| 欧美性长视频在线观看| 动漫黄色视频在线观看| 免费看a级黄色片| 日韩欧美一区视频在线观看| a级片在线免费高清观看视频| 国产精品九九99| 欧美精品一区二区大全| 午夜精品久久久久久毛片777| 午夜激情久久久久久久| 91大片在线观看| 欧美日韩精品网址| 老汉色av国产亚洲站长工具| 久久久久久亚洲精品国产蜜桃av| 成年版毛片免费区| 深夜精品福利| 老司机午夜十八禁免费视频| www日本在线高清视频| 国产xxxxx性猛交| 国产精品久久久久久人妻精品电影 | 久久久久久免费高清国产稀缺| 欧美黑人欧美精品刺激| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美乱码精品一区二区三区| 国产av一区二区精品久久| 青草久久国产| 欧美日韩国产mv在线观看视频| 日韩成人在线观看一区二区三区| 国产成人影院久久av| 久久国产精品人妻蜜桃| 人人妻,人人澡人人爽秒播| 日韩欧美免费精品| 正在播放国产对白刺激| 精品人妻1区二区| 久久人妻熟女aⅴ| 国产精品久久电影中文字幕 | 99国产极品粉嫩在线观看| 国产免费福利视频在线观看| 黄片播放在线免费| 午夜福利视频在线观看免费| 汤姆久久久久久久影院中文字幕| 亚洲精品av麻豆狂野| 男人舔女人的私密视频| 亚洲av欧美aⅴ国产| 淫妇啪啪啪对白视频| 午夜精品国产一区二区电影| 国产福利在线免费观看视频| 国产精品电影一区二区三区 | 国产精品av久久久久免费| 久久久久国产一级毛片高清牌| 97人妻天天添夜夜摸| 国产欧美日韩一区二区三| 欧美成狂野欧美在线观看| 中文字幕av电影在线播放| 新久久久久国产一级毛片| 大型av网站在线播放| 亚洲欧洲精品一区二区精品久久久| 久久久久久亚洲精品国产蜜桃av| 91老司机精品| 侵犯人妻中文字幕一二三四区| 免费少妇av软件| 91成年电影在线观看| 视频区图区小说| 丰满迷人的少妇在线观看| 一边摸一边抽搐一进一出视频| 精品亚洲成a人片在线观看| 午夜福利在线免费观看网站| 女警被强在线播放| 50天的宝宝边吃奶边哭怎么回事| 蜜桃国产av成人99| 精品少妇黑人巨大在线播放| 最黄视频免费看| av电影中文网址| 久久毛片免费看一区二区三区| 欧美精品一区二区免费开放| 欧美精品啪啪一区二区三区| 精品一区二区三卡| 国产国语露脸激情在线看| 色老头精品视频在线观看| 日韩视频在线欧美| 欧美亚洲 丝袜 人妻 在线| 久久 成人 亚洲| 精品人妻1区二区| 日韩人妻精品一区2区三区| 国产av国产精品国产| 色在线成人网| 欧美日韩视频精品一区| 免费在线观看视频国产中文字幕亚洲| 一区福利在线观看| 国产麻豆69| 9热在线视频观看99| 91精品三级在线观看| 国产精品亚洲av一区麻豆| 亚洲熟女毛片儿| 午夜福利免费观看在线| 久久影院123| 女人高潮潮喷娇喘18禁视频| 中文欧美无线码| 欧美日韩国产mv在线观看视频| 精品一品国产午夜福利视频| 桃花免费在线播放| 少妇粗大呻吟视频| 国产精品久久久久久人妻精品电影 | 国产精品香港三级国产av潘金莲| 18禁黄网站禁片午夜丰满| 下体分泌物呈黄色| 黄色视频不卡| 色综合欧美亚洲国产小说| 悠悠久久av| 一夜夜www| 丰满迷人的少妇在线观看| videos熟女内射| 久久久久国内视频| 久久久久网色| 90打野战视频偷拍视频| 多毛熟女@视频| 丝瓜视频免费看黄片| 久久久久久久久久久久大奶| 中文字幕精品免费在线观看视频| 国产精品九九99| 多毛熟女@视频| 乱人伦中国视频| 免费看十八禁软件| 久久精品亚洲熟妇少妇任你| 美女高潮到喷水免费观看| 国产精品免费大片| 波多野结衣av一区二区av| 日本av免费视频播放| 老司机亚洲免费影院| 国产精品二区激情视频| 大片电影免费在线观看免费| 亚洲伊人色综图| 久久精品成人免费网站| 热99国产精品久久久久久7| 99在线人妻在线中文字幕 | 一二三四在线观看免费中文在| 美女高潮到喷水免费观看| www.熟女人妻精品国产| 亚洲欧美色中文字幕在线| 麻豆国产av国片精品| 757午夜福利合集在线观看| 十八禁网站免费在线| 美女扒开内裤让男人捅视频| 精品亚洲成a人片在线观看| 欧美乱妇无乱码| 在线 av 中文字幕| 免费观看人在逋| 久久久久久久久免费视频了| 搡老岳熟女国产| 国产熟女午夜一区二区三区| 一区二区三区激情视频| 夜夜爽天天搞| 国产精品久久久久成人av| 久久久水蜜桃国产精品网| 亚洲精品国产一区二区精华液| 999久久久国产精品视频| av超薄肉色丝袜交足视频| 精品少妇内射三级| www.999成人在线观看| 国产成人啪精品午夜网站| 91字幕亚洲| 中国美女看黄片| 又黄又粗又硬又大视频| 亚洲熟妇熟女久久| 丰满迷人的少妇在线观看| 国产真人三级小视频在线观看| 青草久久国产| 亚洲成人免费电影在线观看| 免费观看av网站的网址| 搡老熟女国产l中国老女人| 国产欧美日韩精品亚洲av| 男女高潮啪啪啪动态图| 无遮挡黄片免费观看| 桃红色精品国产亚洲av| 亚洲欧美日韩另类电影网站| 日韩人妻精品一区2区三区| 亚洲专区字幕在线| 久久久久精品人妻al黑| 在线播放国产精品三级| 日韩 欧美 亚洲 中文字幕| 视频区图区小说| 精品一区二区三区视频在线观看免费 | av免费在线观看网站| 成在线人永久免费视频| 99国产精品99久久久久| 亚洲精品美女久久av网站| 免费av中文字幕在线| 久久精品国产a三级三级三级| 亚洲精品自拍成人| 欧美日韩精品网址| 啪啪无遮挡十八禁网站| 亚洲午夜精品一区,二区,三区| 俄罗斯特黄特色一大片| 欧美乱码精品一区二区三区| 老司机影院毛片| 99精品在免费线老司机午夜| 深夜精品福利| 精品一区二区三区av网在线观看 | 久久精品国产99精品国产亚洲性色 | 捣出白浆h1v1| 国产在线精品亚洲第一网站| 免费在线观看完整版高清| 久久久国产一区二区| 91成人精品电影| 无人区码免费观看不卡 | 十分钟在线观看高清视频www| 18禁观看日本| 99精品久久久久人妻精品| 天堂俺去俺来也www色官网| 大型av网站在线播放| 国产色视频综合| 国产精品98久久久久久宅男小说| 一级片免费观看大全| 久久精品亚洲精品国产色婷小说| 亚洲人成77777在线视频| 久久人人爽av亚洲精品天堂| 高清视频免费观看一区二区| 最新美女视频免费是黄的| 久久狼人影院| 成人三级做爰电影| 男女无遮挡免费网站观看| 国产国语露脸激情在线看| 丝袜在线中文字幕| 后天国语完整版免费观看| 亚洲熟女毛片儿| 男女边摸边吃奶| 欧美性长视频在线观看| 满18在线观看网站| 色婷婷久久久亚洲欧美| 男女下面插进去视频免费观看| 午夜日韩欧美国产| 成年人免费黄色播放视频| 国产在线精品亚洲第一网站| 99re6热这里在线精品视频| 在线播放国产精品三级| 91麻豆精品激情在线观看国产 | 国产成人免费观看mmmm| 亚洲成人免费av在线播放| 色婷婷av一区二区三区视频| 亚洲美女黄片视频| 国产区一区二久久| 亚洲欧美色中文字幕在线| 亚洲免费av在线视频| 自线自在国产av| 日本一区二区免费在线视频| 99久久人妻综合| 三级毛片av免费| 久久久久久久国产电影| 国产精品美女特级片免费视频播放器 | 天天添夜夜摸| 国产av国产精品国产| 久久久久精品人妻al黑| 国产免费视频播放在线视频| 老司机影院毛片| 亚洲av片天天在线观看| 午夜福利在线免费观看网站| 国产在视频线精品| 亚洲性夜色夜夜综合| 9191精品国产免费久久| 精品国产一区二区三区久久久樱花| 王馨瑶露胸无遮挡在线观看| 国产一区二区三区在线臀色熟女 | 久久久久久久久免费视频了| 捣出白浆h1v1| 国产成人精品久久二区二区免费| 久久精品人人爽人人爽视色| 搡老熟女国产l中国老女人| 国产av精品麻豆| 国产亚洲精品一区二区www | 成人三级做爰电影| 久热这里只有精品99| 多毛熟女@视频| 80岁老熟妇乱子伦牲交| 两个人看的免费小视频| 在线天堂中文资源库| 国产av国产精品国产| 亚洲精品国产精品久久久不卡| 久久午夜综合久久蜜桃| 一二三四社区在线视频社区8| 黑人欧美特级aaaaaa片| www.999成人在线观看| xxxhd国产人妻xxx| 国产在线免费精品| 丰满少妇做爰视频| 精品国产乱码久久久久久男人| 亚洲欧美一区二区三区久久| 国产免费福利视频在线观看| 国产精品98久久久久久宅男小说| 欧美日韩成人在线一区二区| 麻豆成人av在线观看| 超色免费av| 亚洲精品成人av观看孕妇| 国产成人精品久久二区二区91| 亚洲午夜精品一区,二区,三区| 夜夜爽天天搞| 激情视频va一区二区三区| tocl精华| 亚洲专区中文字幕在线| 十分钟在线观看高清视频www| 午夜福利视频在线观看免费| 欧美日韩亚洲国产一区二区在线观看 | av线在线观看网站| 成人国产av品久久久| 99热网站在线观看| 国产xxxxx性猛交| 午夜久久久在线观看| 久久精品aⅴ一区二区三区四区| 高清av免费在线| 亚洲国产看品久久| 久久久精品94久久精品| 亚洲,欧美精品.| 精品国产乱子伦一区二区三区| 国产午夜精品久久久久久| 成人精品一区二区免费| 黄频高清免费视频| 手机成人av网站| 亚洲精华国产精华精| 亚洲三区欧美一区| 女警被强在线播放| 国产一区有黄有色的免费视频| 大片电影免费在线观看免费| 欧美老熟妇乱子伦牲交| 黄色毛片三级朝国网站| 精品国产乱码久久久久久男人| 老司机亚洲免费影院| 日韩人妻精品一区2区三区| 亚洲熟女毛片儿| 麻豆国产av国片精品| 丝瓜视频免费看黄片| 日韩大片免费观看网站| 成年动漫av网址| www.熟女人妻精品国产| 亚洲精品美女久久av网站| 大片免费播放器 马上看| 国产亚洲精品久久久久5区| 老熟妇乱子伦视频在线观看| 亚洲人成电影观看| 激情视频va一区二区三区| 欧美日韩福利视频一区二区| 午夜福利视频在线观看免费| 色尼玛亚洲综合影院| 国产精品免费一区二区三区在线 | 在线十欧美十亚洲十日本专区| av超薄肉色丝袜交足视频| 日本黄色视频三级网站网址 | 99久久99久久久精品蜜桃| 男女之事视频高清在线观看| 国产精品98久久久久久宅男小说| 国产av又大| 久久精品国产a三级三级三级| 可以免费在线观看a视频的电影网站| 99精品久久久久人妻精品| 天堂俺去俺来也www色官网| 欧美日韩福利视频一区二区| 国产野战对白在线观看| 婷婷丁香在线五月| 免费在线观看完整版高清| 国产免费视频播放在线视频| 亚洲国产精品一区二区三区在线| 亚洲中文字幕日韩| 亚洲国产av影院在线观看| 午夜福利视频在线观看免费| 国产激情久久老熟女| 亚洲av美国av| 男男h啪啪无遮挡| 亚洲九九香蕉| 777久久人妻少妇嫩草av网站| 欧美亚洲 丝袜 人妻 在线| 午夜精品国产一区二区电影| 首页视频小说图片口味搜索| 考比视频在线观看| 国产成人av激情在线播放| 捣出白浆h1v1| 欧美 亚洲 国产 日韩一| 久久精品成人免费网站| 亚洲 国产 在线| 亚洲国产欧美在线一区| a级片在线免费高清观看视频| 国产成人免费无遮挡视频| 久久人妻熟女aⅴ| 又紧又爽又黄一区二区| 美女主播在线视频| 日本欧美视频一区| 黄色a级毛片大全视频| 成在线人永久免费视频| 久久国产精品影院| 国产成人av教育| 国产精品久久久av美女十八| 久久ye,这里只有精品| 女性生殖器流出的白浆| 激情在线观看视频在线高清 | 日本av手机在线免费观看| 成人18禁在线播放| 亚洲精品美女久久av网站| 一本大道久久a久久精品| a级毛片在线看网站| 国产老妇伦熟女老妇高清| 亚洲av日韩在线播放| 多毛熟女@视频| 美国免费a级毛片| 国产免费现黄频在线看| 国产成人免费无遮挡视频| 久久久国产欧美日韩av| 亚洲人成电影免费在线| 黄网站色视频无遮挡免费观看| 亚洲九九香蕉| 91九色精品人成在线观看| 色94色欧美一区二区| 精品国产乱子伦一区二区三区| 精品少妇黑人巨大在线播放| 青青草视频在线视频观看| 亚洲,欧美精品.| svipshipincom国产片| av欧美777| 一级毛片电影观看| 国产精品香港三级国产av潘金莲| 自拍欧美九色日韩亚洲蝌蚪91| 人人妻,人人澡人人爽秒播| 十八禁人妻一区二区| 一级a爱视频在线免费观看| 肉色欧美久久久久久久蜜桃| 香蕉久久夜色| 俄罗斯特黄特色一大片| 9191精品国产免费久久| 大香蕉久久网| 淫妇啪啪啪对白视频| 国产精品二区激情视频| 欧美久久黑人一区二区| 国产欧美日韩一区二区三| 丰满人妻熟妇乱又伦精品不卡| 精品亚洲乱码少妇综合久久| 日本wwww免费看| 乱人伦中国视频| 国产麻豆69| 十八禁高潮呻吟视频| 女人精品久久久久毛片| 日本五十路高清| 无人区码免费观看不卡 | 亚洲国产精品一区二区三区在线| 老司机深夜福利视频在线观看| 欧美激情高清一区二区三区| 一本大道久久a久久精品| 国产成人精品在线电影| 欧美乱码精品一区二区三区| 久久中文字幕一级| 亚洲va日本ⅴa欧美va伊人久久| 天天添夜夜摸| 香蕉久久夜色| 国产精品自产拍在线观看55亚洲 | 女性被躁到高潮视频| 啪啪无遮挡十八禁网站| 亚洲色图av天堂| 久久久久久久精品吃奶| 色婷婷久久久亚洲欧美| 国产精品久久久久久人妻精品电影 | 丝袜在线中文字幕| 最黄视频免费看| 久久久久久久国产电影| 国产精品美女特级片免费视频播放器 | 成年人免费黄色播放视频| 香蕉久久夜色| 久久99一区二区三区| 水蜜桃什么品种好| 最近最新免费中文字幕在线| 久久久久网色| 国产有黄有色有爽视频| 国产精品熟女久久久久浪| 久久久久久久精品吃奶| 9热在线视频观看99| 无人区码免费观看不卡 | 少妇猛男粗大的猛烈进出视频| 亚洲一区二区三区欧美精品| 91成人精品电影| 人人妻人人添人人爽欧美一区卜| 成在线人永久免费视频| 不卡av一区二区三区| 精品免费久久久久久久清纯 | 成年版毛片免费区| 大陆偷拍与自拍| 91九色精品人成在线观看| 高清黄色对白视频在线免费看| av免费在线观看网站| 日本撒尿小便嘘嘘汇集6| 一本一本久久a久久精品综合妖精| 欧美性长视频在线观看| 99热国产这里只有精品6| 日韩欧美一区视频在线观看| 在线观看舔阴道视频| 亚洲五月婷婷丁香| 国产xxxxx性猛交| 成人精品一区二区免费| 超色免费av| 欧美在线黄色| 国产成人免费无遮挡视频| 这个男人来自地球电影免费观看| 少妇精品久久久久久久| 日日摸夜夜添夜夜添小说| 亚洲精华国产精华精| 亚洲美女黄片视频| 99精品在免费线老司机午夜| 男女边摸边吃奶| 欧美av亚洲av综合av国产av| 日日摸夜夜添夜夜添小说| 99riav亚洲国产免费| 国产又爽黄色视频| 啦啦啦视频在线资源免费观看| 色精品久久人妻99蜜桃| 极品少妇高潮喷水抽搐| 精品少妇久久久久久888优播| 一级片免费观看大全| 亚洲成人免费av在线播放| 亚洲 欧美一区二区三区| 久久精品成人免费网站| 国产日韩欧美在线精品| 中文字幕av电影在线播放| 18在线观看网站| 精品国产一区二区三区四区第35| 亚洲av成人一区二区三| 欧美日韩视频精品一区|