• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parity–time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits

    2022-06-29 08:55:12YangZhou周揚ZhangZhaoYang楊彰昭YaoYinPeng彭堯吟andXinYeZou鄒欣曄
    Chinese Physics B 2022年6期
    關(guān)鍵詞:周揚

    Yang Zhou(周揚) Zhang-Zhao Yang(楊彰昭) Yao-Yin Peng(彭堯吟) and Xin-Ye Zou(鄒欣曄)

    1Key Laboratory of Modern Acoustics,MOE,Institute of Acoustics,Department of Physics,Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    2State Key Laboratory of Acoustics,Chinese Academy of Sciences,Beijing 100190,China

    Keywords: parity-time symmetry,acoustic gain material,piezoelectric composite plate,exceptional point

    1. Introduction

    Parity–time (PT) symmetry, or space–time reflection symmetry, initially proposed in quantum mechanics by Bender,[1,2]reveals that the quantum systems with non-Hermitian Hamiltonians can still host a real spectrum corresponding to observable physical quantities when they satisfy PT symmetry. After being introduced into optics,[3]PT symmetry has been extensively investigated on the experimental implementation and properties demonstration in the classical wave systems, such as unidirectional zero reflection,[4,5]coherent perfect absorption,[6–8]asymmetric mode conversion,[9,10]power oscillations of light propagation[11]and single-mode laser.[12–14]In the meantime,PT-symmetric acoustics[15]also has attracted intense attention after being proposed by Zhuet al.Since it is difficult to find the natural gain material in acoustics,[16]passive PT-symmetric systems[17–19]that consist of purely dissipative elements inspire the diverse designs of the acoustic PTsymmetric system. Moreover,the intriguing effects of exceptional points (EPs) corresponding to the PT phase transition points can also be observed in a passive PT-symmetric system,such as unidirectional invisibility,[20–24]anomalous reflection and refraction,[25–28]unidirectional sound focusing effect,[29]acoustic negative refraction[30]and sound absorption.[31]However,it is still difficult to construct a gain part for an active PT symmetry in the acoustic system,as the gain parts reported always consist of properly controlled loudspeakers,[32,33]interdigital transducers,[34]etc.

    Meanwhile,the piezoelectric composite material[35,36]is widely used in many fields as it is a kind of low-cost but practical transducer. The most commonly used composite material consists of a copper baseplate and a piezoelectric ceramic piece attached to the baseplate. It always can be lumped into idealized discrete elements because it is thin enough and the diameter is much smaller than the acoustic wavelength of the frequency interested.[37,38]Then, the piezoelectric composite material with an external circuit can be easily analyzed with the lumped element model.[39]It can be found that the composite material can perform as a negative impedance device with specific external circuits,that is,we can synthesize a kind of gain material into the acoustic field by adjusting the external circuits connected to the piezoelectric composite material.

    In this paper,we present an acoustic active PT-symmetric system constructed by a pair of piezoelectric composite plates that are loaded at the side wall of the waveguide with suitably tailored external electrical circuits. Two identical piezoelectric composite plates are controlled by independent external electrical circuits,respectively,which can provide the desired positive or negative resistances. Crucially,the EPs with unidirectional transparency can also be exactly induced in the presented structure. Meanwhile,the PT-broken phases as well as the reverse of the direction of acoustic transparency can be directly observed by adjusting the distance between the gain and loss parts. Our results are expected to open a different route for acoustic wave control and synthesis of EPs.

    2. Theoretical analysis

    The structure of the designed PT-symmetric system is shown in Fig. 1. Here, a gain part and a loss part with settled distanceLare placed on the same side of the airborne tube with hard-wall boundaries. The cross-sectional area of the main tube isSm, and the area of the gain (loss) part isSa(Sb). The acoustic pressure and the corresponding velocity of the incident wave and the transmitted wave are (p-,v-) and(p+,v+), respectively. The air density and speed of acoustic wave areρ0andc0in the tube, respectively. To construct an acoustic PT-symmetric system that satisfies the fundamental relation(PT)S(ω*)(PT)=S-1(ω),[40]where the operatorPrepresents parity reflection,the operatorTrepresents time reversal andSis the scattering matrix of the system,respectively.We take the relationship for the acoustic pressures and velocities of the incident and transmitted waves into consideration because the system can be described as a standard two-port network model,which can be written as

    Fig.1. Schematic of the designed PT-symmetric system.

    As quantum EPs designed by engineering the Hamiltonian matrix, acoustic EPs can be achieved by manipulating the elements in the corresponding scattering matrix. The system will be in a unidirectional invisible state when it is at EPs, which corresponds toS11=0 whenγ1=-γ2=2 (Appendix B).In this case,the reflection from the left is zero while it is non-zero from the right. We can substituteγ1=-γ2=γ(γis real number)into Eq.(3),and obtain the relation as presented in Fig. 2(a). Here,x=k0Lis the acoustic separation length between the gain and loss parts,we setx=arcsin(3/5)as the choice ofxvalue does not make much difference to the shapes of the curves. As we can see, only whenγ=2,the reflection coefficient from the left comes to zero while the reflection coefficient from the other side is non-zero. And the transmission coefficients from both sides are unity at the point.It means thatγ=2 is the particular situation where the system is at EPs with arbitraryx.

    Then we consider another nonspecial situationγ=1+j.The scattering parameters are shown in Fig.2(b)with different values ofx. There are two different zero points atx=0.463 andx=1.571 corresponding to zero reflection coefficient from left and right, respectively. Whenx=0.463, the reflection from the side of loss part is zero. And whenx=1.571, the reflection from the side of gain part is zero. That is to say,the reversal of the direction of the unidirectional invisibility can be found by turning the distance between the two parts. The transmission coefficients at these points have the unity absolute value while the absolute values of the eigenvalues are at the tipping points,for eigenvalues degenerate or not as can be seen in Fig. 2(c). It means that the two points are both EPs here and the system is at the PT-broken phase whenxdiffers from 0.463 to 1.571.

    Fig.2. Theoretical results of the scattering parameters and eigenvalues of the scattering matrix.(a)Scattering parameters with different γ when x=arcsin(3/5). Only one EP at γ=2 where S11=0 and abs(S12)=1(‘a(chǎn)bs’means absolute value). (b)Scattering parameters with different x when γ=1+j. (c)Eigenvalues of the scattering matrix with different x when γ =1+j. The two eigenvalues begin to split when x=0.463 and degenerate again when x=1.571. Both the two points are EPs.

    To obtain the required normalized acoustic impedance for the gain and loss side branches, the piezoelectric composite plate with an external circuit is introduced. As shown in Fig. 3(a), there is a short tube with the piezoelectric composite plate covering the opening. The tube is used to ensure the external environment of the piezoelectric composite plate. Therefore,the acoustic impedance of this structure can be obtained as the sum of the piezoelectric composite plate and the tube asZsum=Zplate+Ztube. Here, if we consider the end as acoustic hard-wall boundary,Ztubecan be calculated directly by using the impedance transfer equation asZtube≈-jρ0c0cot(kh),wherehis the length of the tube.

    As for the piezoelectric composite plate [Fig. 3(a), right panel], it consists of a piece of copper as baseplate and a piece of PZT-5H (with aluminized surface) attached to the middle of the upper surface of the baseplate. We consider that the thickness of the aluminum film is negligible. The radius and thickness of the PZT-5H are Thk1=0.21 mm and Rad1=9.5 mm, respectively. The dimensions of the copper baseplate are Thk2=0.13 mm and Rad2=13.5 mm,respectively. Considering that the dimensions of the plate are much smaller than the wavelengths of the interesting frequencies,the composite plate can thus be lumped into idealized discrete circuit elements around the resonant frequency as illustrated in Fig. 3(b). It can be lumped into two parts: the first part is described as the acoustic domain that includes the acoustic resistanceRap,acoustic massMapand the short-circuit acoustic complianceCapof the piezoelectric composite plate; the second part is described as the electrical domain that includes the blocked electrical capacitanceCebof the piezoelectric diaphragm and the external electrical load impedanceZelacross the piezoelectric composite plate.Between the two parts,there is an approximate lossless transformer with the turn ratioφthat converts energy between the two domains. Therefore,the blocked electrical capacitance and electrical impedance can be transformed to acoustic domain asCaeb=Ceb/φ2andZal=φ2Zel. As a result, we can obtain the simplified equivalent circuit representation by the pure acoustic impedance as shown in Fig. 3(c), and the total acoustic impedance of the plate is given by

    whereω=2π fis the angular frequency when the operating frequency isf. The acoustic impedance of a piezoelectric composite plate is determined once made, while it is feasible to change the whole equivalent acoustic impedance by adjusting the impedance of the external circuit. Thus,active control can be introduced, and we can synthesize the gain part and loss part by linking the negative or positive impedance circuit to the piezoelectric composite plates. To begin with, we should measure the parameters of the piezoelectric composite plate. Here,we put forward a method to determine all the parameters of a piezoelectric composite plate around the resonant frequency by measuring the short-circuit resonant frequency(f1),the open-circuit resonant frequency(f2),and the impedance of the plate with short-circuit external circuit at the open-circuit resonant frequency(Zp0,the real part ofZp0noted asZp01, andZp02for the imaginary part). The parameters of the piezoelectric composite plate can be obtained from the following equations(Appendix C):

    Here,ω1=2π f1andω2=2π f2. This method has no need to carefully measure the transverse displacement of the whole plate as the traditional method,[37–39]in which it is hard to measure the lateral displacement accurately and deduce these parameters by integrating with respect to the displacement.

    Fig.3. (a)Schematic of a single part loaded at the side of waveguide.(b)Lumped element model of a piezoelectric composite plate with the external circuit load Zel. (c)Acoustics analogy circuit diagram to(b)as the electrical domain can transfer to acoustic domain by the transformer with Caeb=Ceb/φ2 and Zal=Zelφ2.

    3. Computational results

    The acoustic impedances and the reflection coefficients of the piezoelectric composite plate can be obtained from the two-microphone method (TMM).[41]The illustration of the TMM is shown in Fig. 4(a). The distance between the two microphones iss,the distance from the surface of the measuring structure to the nearest microphone isl,and the frequency response function between Mic. 1 and Mic. 2 isH12. Here,the frequency response can also be expressed as the ratio of the complex pressure at Mic. 2 to the complex pressure at Mic. 1.We assume that the effects of tube attenuation and viscosity are negligible,and only plane wave propagates along the tube,then the complex reflection coefficient at the sample surface and its acoustic impedance can be given by

    Then, the acoustic impedances of the piezoelectric composite plate at different frequencies and its resonant frequencies with open or short external circuit can be obtained.With the dimensions proposed above, we get the two resonant frequenciesf1=1755.9 Hz andf2=1874.2 Hz from Figs. 4(b)–4(e). It can be seen that the imaginary part of the specific acoustic impedance comes to zero and the absolute value of the reflection coefficient reaches the minimum value, which agrees well with the theory. And we can getZp0=765882.2+j·9632156.2 kg/(m4·s) further. Then, the parameters of the piezoelectric composite plate (Rap,Caeb,Cap,Map) can be obtained (Appendix C). However, the turn ratioφis necessary if we want to design the external circuits for different required equivalent acoustic impedance.We choosef3= 1800 Hz to calculate it. When the plate is shorted-circuited, the corresponding acoustic impedance isZa1=765917+j·3652139 kg/(m4·s). Further, we load the plate withZel0=1000 Ω and then the acoustic impedance isZa2=3989143.5+j·2441532.5 kg/(m4·s). Thus, the turn ratioφcan be obtained by

    whereZti=Zi/sa-Za1-Ztube. Since that the electrical load can be expressed asZe=Re0+jω3Me0, the external circuits are then deduced from the relations shown before and can be presented as resistances and inductances asRe0p=-255.74 Ω,Me0p=-98.91 mH for the passive plate andRe0a=-548.72 Ω,Me0a=-93.07 mH for the active plate,respectively. To obtain the negative impedance and inductance,a non-foster circuit is used here as shown in Fig. 5(a). the negative impedance is implemented by an operational amplifier with feedback resistors,and the corresponding equivalent circuit diagram is shown in Fig. 5(b). The effective negative electric impedance at the connector is

    Fig. 4. (a) Schematic of the two-microphone method. (b) Specific acoustic impedance near the resonant frequency when the piezoelectric composite plate is open-circuited. (c)Specific acoustic impedance near the resonant frequency when the plate is short-circuited. (d)Reflection coefficient when the plate is open-circuited. (e)Reflection coefficient when the plate is short-circuited. (f)Acoustic impedances of the plate acquired by calculating with the lumped elements.

    Fig.5. (a)The electronic schematic for external circuits. The resistors R3 and R4 provide the input bias of Vcc/2 at the positive input of the amplifier. Specifically,R3=R4=100 kΩ,R2=1 kΩ,R1=5 kΩ. (b)Equivalent circuit schematic of the circuit,Re0=-5Re,Me0=-5Me.

    Further, we combine the passive part and active part for the synthesis of the EP in PT-symmetric system as shown in Fig. 1. The active part is connected to the external circuit as presented in Fig. 5(a) withRea=51.15 Ω andMea=19.78 mH,while the passive part is connected to the same circuit withRep=109.74 Ω andMep=18.61 mH.And the corresponding acoustic pressure fields of distributions are depicted in Fig. 6. It is clear that the reflected acoustic wave nearly vanishes when the acoustic wave comes from the left of loss part. On the contrary, the reflection coefficient is relatively large when the acoustic wave comes from the right of gain part. These results indicate that the presented PT-symmetric system and the corresponding EPs are consistent with the calculation results and fairly accurate.

    Then, we chooseγ= 1-j as an example for the nonspecial situation, which corresponds toZ1= 172-172j kg/(m2·s) andZ2=-172-172j kg/(m2·s). All the other parameters are as the same as the sample discussed above,and we can synthesize the special acoustic impedances directly by merely turningReandMe. In this case, the passive part is connected to the external circuit withRep=-(280.16/5) Ω = 56.03 Ω andMep=-(115.4/5) mH =23.08 mH, while the active part is connected to the same circuit withRea=124.0 Ω andMea=21.52 mH. The measured special acoustic impedance of passive part isZ′sp=169.23-177.43j kg/(m2·s), andZ′sa=-169.03-172.30j kg/(m2·s)for the active part. Crucially,the percentage error here is less than 3%as well. Then we combine the passive part and active part for the synthesis of the EP as shown in Fig.7.Here we setx=1.57 which is corresponding to the unidirectional transparent point for the wave coming from the left of loss part.The actual reflection coefficient is 0.134 in simulation which is much larger than the coefficient obtained from the particular situationγ=2 as the deviation of the distanceLand the normalized quantityγboth influence the result.

    Fig. 6. The γ =2 is fulfilled thus the system is at EPs with arbitrary value of L,and x=1.7 is chosen as an example. (a)Scattering acoustic pressure when the input is coming from the left of loss part. The reflection coefficient here is 0.024 and the frequency of acoustic waves is f3=1800 Hz.(b)Scattering acoustic pressure when the input is coming from the right of gain part.

    Fig.7. The γ=1-j and the system is at EPs when x=1.571 or 2.687,and x=1.571 is chosen as an example. (a)Scattering acoustic pressure when input is coming from the left of loss part. The reflection coefficient here is 0.134 and the frequency of acoustic waves is f3=1800 Hz.(b)Scattering acoustic pressure when input is coming from the right of gain part.

    4. Discussion and conclusion

    In summary, we have designed an active-controlled acoustic PT-symmetric system by the piezoelectric composite plates that connect to different active external circuits.Lumped element model is used and all the parameters are determined by a different way without integrating with respect to the lateral displacement as before,which simplifies the design of the external circuits for the synthesis of PT-symmetric system and EPs. We can also obtain different values of the normalized quantityγwith the same structure and same frequency by adjusting external circuits of the piezoelectric composite plates. Unidirectional invisibility can be found at EPs,and the spontaneous PT symmetry broken or the reversal of the direction of the unidirectional invisibility can be achieved by turning the distance between gain part and loss part as well.Our study provides an active control method for constructing PT-symmetric system and opens a different route to controlling scattering parameters of acoustic structures.

    Appendix A:Transfer matrix of the system

    It is assumed that only plane waves propagate in the pipe,and the pressure and velocity at the left of the middle of loss part arep1andv1,at the right arep2andv2; similarly, at the left of the middle of gain part arep3andv3,at the right arep4andv4. Then, the relationships between thesepandvcan be expressed as

    Z0=ρ0c0is the specific acoustics impedance of the air in main tube asρ0andc0are air mass density and acoustic velocity in tube,respectively,x=k0Lis the acoustic separation length between the gain and loss parts with the wave vectork0.

    The total transfer matrix can be expressed as

    Acknowledgements

    Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303700), the National Natural Science Foundation of China (Grant Nos. 11634006,11934009,and 12074184),the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20191245), and the State Key Laboratory of Acoustics,Chinese Academy of Sciences.

    猜你喜歡
    周揚
    一眼萬年
    花火彩版B(2022年2期)2022-10-19 07:23:54
    1975 年,毛澤東三次批示“周揚一案”
    中外文摘(2020年8期)2020-04-30 05:31:38
    私房錢風(fēng)波
    37°女人(2018年8期)2018-08-23 05:59:06
    追憶“文革”中的周揚
    黨史博覽(2018年6期)2018-06-21 02:08:02
    私房錢風(fēng)波
    分憂(2018年6期)2018-06-08 04:35:24
    知音·下半月(2018年3期)2018-04-02 04:51:28
    遲暮之年的周揚與陳伯達(dá)
    誰動了我的肖像權(quán)
    故事會(2016年19期)2016-10-11 12:31:57
    Generalized ionospheric dispersion simulation method for wideband satellite-ground-link radio systems
    愛情攻略
    国产主播在线观看一区二区| 亚洲欧美日韩东京热| 女人高潮潮喷娇喘18禁视频| 亚洲成av人片在线播放无| svipshipincom国产片| 国产成人aa在线观看| 这个男人来自地球电影免费观看| 午夜福利免费观看在线| 久久久水蜜桃国产精品网| 亚洲激情在线av| 神马国产精品三级电影在线观看| 在线a可以看的网站| 亚洲av成人精品一区久久| 国产v大片淫在线免费观看| 日本撒尿小便嘘嘘汇集6| 熟女人妻精品中文字幕| 国产成人影院久久av| 最近最新免费中文字幕在线| 91在线精品国自产拍蜜月 | 亚洲专区国产一区二区| 国产精品99久久99久久久不卡| 国产激情欧美一区二区| 亚洲精品456在线播放app | 日本一二三区视频观看| av在线天堂中文字幕| www.999成人在线观看| 日本 av在线| 国产爱豆传媒在线观看| 国产视频一区二区在线看| 欧美日韩瑟瑟在线播放| 91九色精品人成在线观看| 国产亚洲精品av在线| 99精品在免费线老司机午夜| 国产成人av激情在线播放| 又爽又黄无遮挡网站| 男人的好看免费观看在线视频| 美女cb高潮喷水在线观看 | 色老头精品视频在线观看| 老司机深夜福利视频在线观看| 亚洲专区字幕在线| 日日摸夜夜添夜夜添小说| 久久热在线av| 免费在线观看日本一区| 看免费av毛片| 日日摸夜夜添夜夜添小说| 一级毛片精品| 在线观看舔阴道视频| 真人做人爱边吃奶动态| 99精品在免费线老司机午夜| 精品国产乱子伦一区二区三区| 成人18禁在线播放| 亚洲美女黄片视频| 午夜福利在线观看免费完整高清在 | 中文字幕人妻丝袜一区二区| 免费看a级黄色片| 久久欧美精品欧美久久欧美| 国产av在哪里看| 男女午夜视频在线观看| 此物有八面人人有两片| 国产爱豆传媒在线观看| 男女午夜视频在线观看| 99re在线观看精品视频| 麻豆久久精品国产亚洲av| 动漫黄色视频在线观看| 国产一级毛片七仙女欲春2| 999久久久精品免费观看国产| 中文亚洲av片在线观看爽| 久久国产精品影院| 欧美三级亚洲精品| av天堂中文字幕网| 狂野欧美激情性xxxx| 国产成人福利小说| 亚洲国产精品999在线| 国产精品亚洲一级av第二区| 搞女人的毛片| 欧美日韩亚洲国产一区二区在线观看| 国产精品亚洲av一区麻豆| 国产麻豆成人av免费视频| 久99久视频精品免费| 精品无人区乱码1区二区| 久9热在线精品视频| 国产成人影院久久av| 成人性生交大片免费视频hd| 久久九九热精品免费| bbb黄色大片| 久久久久国产一级毛片高清牌| 成人三级做爰电影| 久久久久久久久免费视频了| 怎么达到女性高潮| 国产激情欧美一区二区| 好看av亚洲va欧美ⅴa在| 国产精品乱码一区二三区的特点| 黑人巨大精品欧美一区二区mp4| 国产一级毛片七仙女欲春2| 午夜福利在线在线| 亚洲欧美日韩无卡精品| 欧美三级亚洲精品| 人妻久久中文字幕网| 好男人电影高清在线观看| 亚洲 欧美 日韩 在线 免费| 午夜福利18| 欧美日本视频| 国内精品久久久久精免费| 日日夜夜操网爽| 国产精品野战在线观看| 99热精品在线国产| 国产午夜精品论理片| 白带黄色成豆腐渣| 国产极品精品免费视频能看的| 成人国产一区最新在线观看| 午夜影院日韩av| 一a级毛片在线观看| 亚洲精品美女久久久久99蜜臀| 精品国产乱码久久久久久男人| a级毛片在线看网站| 黄片大片在线免费观看| 亚洲成人久久爱视频| 国产成人一区二区三区免费视频网站| 成年免费大片在线观看| 国产精品 欧美亚洲| 国产成人av激情在线播放| 国产亚洲精品av在线| 欧美日韩精品网址| 全区人妻精品视频| 久久欧美精品欧美久久欧美| 热99在线观看视频| 久久香蕉国产精品| cao死你这个sao货| 久久久色成人| 操出白浆在线播放| 美女扒开内裤让男人捅视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲中文日韩欧美视频| 国产伦在线观看视频一区| 国语自产精品视频在线第100页| 精品不卡国产一区二区三区| 神马国产精品三级电影在线观看| 亚洲欧美日韩无卡精品| 香蕉av资源在线| 午夜福利免费观看在线| 禁无遮挡网站| 日本撒尿小便嘘嘘汇集6| 欧美一级毛片孕妇| 男人舔奶头视频| 亚洲国产高清在线一区二区三| 国内精品美女久久久久久| 最好的美女福利视频网| 1024香蕉在线观看| 免费大片18禁| 禁无遮挡网站| 婷婷丁香在线五月| 精品久久久久久久久久免费视频| 色综合婷婷激情| 国产精品一区二区三区四区免费观看 | 欧美另类亚洲清纯唯美| 精品午夜福利视频在线观看一区| 日韩欧美国产在线观看| 国产av麻豆久久久久久久| 中文资源天堂在线| 国产精品久久久久久久电影 | 变态另类成人亚洲欧美熟女| 国产精品综合久久久久久久免费| 美女免费视频网站| 久久久国产精品麻豆| 色精品久久人妻99蜜桃| 国内精品久久久久久久电影| 国产高清videossex| 久久久久久久久中文| 黄色成人免费大全| www.自偷自拍.com| 啦啦啦免费观看视频1| 长腿黑丝高跟| 中亚洲国语对白在线视频| 无人区码免费观看不卡| 亚洲欧洲精品一区二区精品久久久| 久久久久久久久中文| 在线观看66精品国产| 神马国产精品三级电影在线观看| 欧美午夜高清在线| 国产精品av久久久久免费| 给我免费播放毛片高清在线观看| 欧美成人免费av一区二区三区| 少妇的逼水好多| 夜夜看夜夜爽夜夜摸| 亚洲美女黄片视频| 变态另类丝袜制服| 99久久无色码亚洲精品果冻| 狂野欧美白嫩少妇大欣赏| 国产精品一区二区免费欧美| 特级一级黄色大片| 色哟哟哟哟哟哟| 精品久久久久久,| 欧美又色又爽又黄视频| 男女床上黄色一级片免费看| 岛国在线免费视频观看| 国产成人一区二区三区免费视频网站| 久久午夜综合久久蜜桃| 亚洲av中文字字幕乱码综合| 搞女人的毛片| 伊人久久大香线蕉亚洲五| 国产精品久久久久久精品电影| 亚洲精品中文字幕一二三四区| 最近在线观看免费完整版| 日本三级黄在线观看| 在线十欧美十亚洲十日本专区| 成年女人看的毛片在线观看| 色噜噜av男人的天堂激情| 亚洲18禁久久av| 一夜夜www| 在线看三级毛片| 免费一级毛片在线播放高清视频| 国产精品98久久久久久宅男小说| 美女大奶头视频| 亚洲精品国产精品久久久不卡| 久久中文字幕一级| 男插女下体视频免费在线播放| www国产在线视频色| 中文字幕久久专区| 婷婷精品国产亚洲av| 又粗又爽又猛毛片免费看| 精品国产三级普通话版| 淫秽高清视频在线观看| 嫁个100分男人电影在线观看| 99久久精品国产亚洲精品| 亚洲人成网站高清观看| 白带黄色成豆腐渣| 男女午夜视频在线观看| 国产欧美日韩精品亚洲av| 亚洲国产欧美一区二区综合| 国产美女午夜福利| 怎么达到女性高潮| 手机成人av网站| 日韩欧美国产一区二区入口| 午夜免费观看网址| 51午夜福利影视在线观看| 欧美乱妇无乱码| 国产 一区 欧美 日韩| 手机成人av网站| 国产精品久久久av美女十八| 亚洲中文av在线| 午夜福利视频1000在线观看| svipshipincom国产片| 无限看片的www在线观看| 日韩成人在线观看一区二区三区| 国产一区二区激情短视频| 久久九九热精品免费| 国产av一区在线观看免费| 免费看光身美女| 久久久久亚洲av毛片大全| 国产成年人精品一区二区| 禁无遮挡网站| 在线播放国产精品三级| 少妇熟女aⅴ在线视频| av天堂在线播放| 久久久久久大精品| 嫁个100分男人电影在线观看| 蜜桃久久精品国产亚洲av| 欧美绝顶高潮抽搐喷水| 国产精品影院久久| 亚洲精品美女久久久久99蜜臀| 午夜免费激情av| www.熟女人妻精品国产| 国产精品一区二区三区四区免费观看 | 制服丝袜大香蕉在线| 欧美日韩一级在线毛片| 国产 一区 欧美 日韩| 欧美日韩综合久久久久久 | 男人舔女人的私密视频| 91麻豆精品激情在线观看国产| 免费看美女性在线毛片视频| 可以在线观看的亚洲视频| 亚洲在线观看片| 小说图片视频综合网站| 亚洲激情在线av| 一边摸一边抽搐一进一小说| 黄色丝袜av网址大全| 在线十欧美十亚洲十日本专区| 免费看a级黄色片| 黄色视频,在线免费观看| 18禁黄网站禁片午夜丰满| 欧美高清成人免费视频www| 波多野结衣高清无吗| 亚洲精品国产精品久久久不卡| 国产精品美女特级片免费视频播放器 | 欧美日韩瑟瑟在线播放| 欧美av亚洲av综合av国产av| 欧美成人性av电影在线观看| 欧美另类亚洲清纯唯美| 成人高潮视频无遮挡免费网站| 欧美在线黄色| 亚洲av熟女| 婷婷丁香在线五月| 天天一区二区日本电影三级| 亚洲自拍偷在线| 亚洲性夜色夜夜综合| 18禁黄网站禁片午夜丰满| 人人妻人人看人人澡| 婷婷精品国产亚洲av在线| 久久中文字幕人妻熟女| 免费在线观看成人毛片| 免费观看精品视频网站| 老熟妇仑乱视频hdxx| 久久精品综合一区二区三区| 两人在一起打扑克的视频| 久久精品亚洲精品国产色婷小说| 97人妻精品一区二区三区麻豆| 最近最新中文字幕大全免费视频| 欧美成人免费av一区二区三区| 成人国产综合亚洲| 男人舔女人下体高潮全视频| 一本久久中文字幕| 免费观看精品视频网站| 神马国产精品三级电影在线观看| 香蕉丝袜av| 成人亚洲精品av一区二区| 亚洲av五月六月丁香网| 久久99热这里只有精品18| 色播亚洲综合网| 久久久久精品国产欧美久久久| 欧美日韩精品网址| 国产真人三级小视频在线观看| 欧美在线一区亚洲| 国产av一区在线观看免费| 亚洲中文字幕一区二区三区有码在线看 | or卡值多少钱| 很黄的视频免费| 白带黄色成豆腐渣| 久久精品aⅴ一区二区三区四区| 99国产精品一区二区蜜桃av| 日本在线视频免费播放| 亚洲国产高清在线一区二区三| 天堂√8在线中文| 麻豆国产av国片精品| 日本一本二区三区精品| 1000部很黄的大片| 午夜福利免费观看在线| 久久久久国产一级毛片高清牌| 在线十欧美十亚洲十日本专区| 男人舔女人下体高潮全视频| 这个男人来自地球电影免费观看| 亚洲人成网站高清观看| 一区二区三区高清视频在线| 亚洲精品国产精品久久久不卡| 嫁个100分男人电影在线观看| 99久久精品一区二区三区| 2021天堂中文幕一二区在线观| 日本a在线网址| 黄色丝袜av网址大全| 成人av一区二区三区在线看| 成在线人永久免费视频| 国产单亲对白刺激| 国产黄片美女视频| 99热只有精品国产| 成人av在线播放网站| 久久精品国产综合久久久| 99re在线观看精品视频| 久久九九热精品免费| 韩国av一区二区三区四区| 热99在线观看视频| 久久久色成人| 好看av亚洲va欧美ⅴa在| 男人舔女人下体高潮全视频| 精品欧美国产一区二区三| 99久久精品一区二区三区| 99re在线观看精品视频| 国产精品久久视频播放| 久久热在线av| 色哟哟哟哟哟哟| 亚洲狠狠婷婷综合久久图片| 国产单亲对白刺激| 全区人妻精品视频| 久久久国产精品麻豆| 老司机福利观看| 九九在线视频观看精品| 国产一区二区在线av高清观看| 成年免费大片在线观看| 国产毛片a区久久久久| 国产精品免费一区二区三区在线| 国产美女午夜福利| 亚洲最大成人中文| 亚洲美女视频黄频| 1024手机看黄色片| 老司机深夜福利视频在线观看| 美女大奶头视频| 99riav亚洲国产免费| 国产精品野战在线观看| 精品久久久久久,| 午夜免费激情av| 少妇的逼水好多| 午夜福利欧美成人| 男人的好看免费观看在线视频| 日日摸夜夜添夜夜添小说| 日韩 欧美 亚洲 中文字幕| 日韩高清综合在线| 一区二区三区国产精品乱码| av欧美777| 国产麻豆成人av免费视频| 欧美精品啪啪一区二区三区| 国产免费av片在线观看野外av| 欧美日韩一级在线毛片| 白带黄色成豆腐渣| 国产成人福利小说| 很黄的视频免费| 女同久久另类99精品国产91| 九九热线精品视视频播放| 熟女少妇亚洲综合色aaa.| 久久久久久九九精品二区国产| 90打野战视频偷拍视频| 精品午夜福利视频在线观看一区| 欧美激情久久久久久爽电影| 久久中文看片网| 夜夜夜夜夜久久久久| 欧美日韩瑟瑟在线播放| 国产高清视频在线观看网站| 久久精品国产99精品国产亚洲性色| 国产极品精品免费视频能看的| а√天堂www在线а√下载| 欧美大码av| 国产野战对白在线观看| 男人的好看免费观看在线视频| 亚洲中文日韩欧美视频| 久久这里只有精品中国| 成人性生交大片免费视频hd| 亚洲午夜精品一区,二区,三区| 宅男免费午夜| 亚洲成a人片在线一区二区| 在线观看免费视频日本深夜| 久久香蕉国产精品| 成人三级做爰电影| 亚洲专区中文字幕在线| 亚洲黑人精品在线| 一级毛片高清免费大全| 免费av毛片视频| 亚洲欧美激情综合另类| 亚洲电影在线观看av| 搡老妇女老女人老熟妇| 日日摸夜夜添夜夜添小说| 热99在线观看视频| 在线看三级毛片| 两个人的视频大全免费| 国产精品女同一区二区软件 | 性色avwww在线观看| 成人永久免费在线观看视频| 美女高潮喷水抽搐中文字幕| 欧美丝袜亚洲另类 | 日本五十路高清| 亚洲成av人片免费观看| 亚洲欧美日韩东京热| 亚洲精品色激情综合| 婷婷丁香在线五月| 神马国产精品三级电影在线观看| www.www免费av| 亚洲无线观看免费| 亚洲精品美女久久av网站| 黄色丝袜av网址大全| 亚洲欧美日韩无卡精品| 可以在线观看的亚洲视频| 亚洲熟女毛片儿| 男女之事视频高清在线观看| 人人妻人人看人人澡| 99在线人妻在线中文字幕| 黄色丝袜av网址大全| 午夜影院日韩av| 在线观看日韩欧美| 久久精品91蜜桃| 日日干狠狠操夜夜爽| 亚洲无线观看免费| 久久久国产精品麻豆| 久久久久久久久免费视频了| 午夜福利欧美成人| 欧美3d第一页| 欧美+亚洲+日韩+国产| 免费观看的影片在线观看| 一个人看的www免费观看视频| 性色av乱码一区二区三区2| 怎么达到女性高潮| 精品乱码久久久久久99久播| 日本黄色片子视频| 午夜视频精品福利| 禁无遮挡网站| 亚洲国产高清在线一区二区三| 母亲3免费完整高清在线观看| 国产精品99久久久久久久久| 午夜福利免费观看在线| 欧美一级a爱片免费观看看| 99久久精品热视频| 亚洲精品456在线播放app | 五月伊人婷婷丁香| 美女 人体艺术 gogo| 成年女人看的毛片在线观看| 欧美xxxx黑人xx丫x性爽| 一个人看视频在线观看www免费 | 俄罗斯特黄特色一大片| 看免费av毛片| 国产一区二区在线观看日韩 | 99国产精品一区二区蜜桃av| 国产亚洲精品一区二区www| 午夜福利免费观看在线| 丁香六月欧美| 免费电影在线观看免费观看| 丰满人妻熟妇乱又伦精品不卡| 日韩成人在线观看一区二区三区| 欧美日韩一级在线毛片| 老司机在亚洲福利影院| 一夜夜www| 国产1区2区3区精品| 老汉色av国产亚洲站长工具| 伦理电影免费视频| 久久亚洲精品不卡| 国产激情久久老熟女| 精品久久久久久,| 免费在线观看成人毛片| 日韩人妻高清精品专区| 18禁黄网站禁片午夜丰满| 搞女人的毛片| 日韩欧美免费精品| 色综合婷婷激情| 90打野战视频偷拍视频| 99国产精品99久久久久| 国产精品九九99| 淫妇啪啪啪对白视频| www.999成人在线观看| 人妻丰满熟妇av一区二区三区| 欧美午夜高清在线| 丰满人妻熟妇乱又伦精品不卡| 国产主播在线观看一区二区| 欧美日韩亚洲国产一区二区在线观看| 在线视频色国产色| 首页视频小说图片口味搜索| 欧美日本亚洲视频在线播放| 国内精品久久久久久久电影| 又粗又爽又猛毛片免费看| 在线观看日韩欧美| 久久久久久人人人人人| 99在线视频只有这里精品首页| 三级国产精品欧美在线观看 | 日韩中文字幕欧美一区二区| 国产精品久久视频播放| 老司机在亚洲福利影院| 岛国在线免费视频观看| 婷婷亚洲欧美| cao死你这个sao货| 老熟妇乱子伦视频在线观看| 欧美性猛交╳xxx乱大交人| netflix在线观看网站| 国产一区二区在线av高清观看| 国产激情欧美一区二区| 女生性感内裤真人,穿戴方法视频| 国产精品电影一区二区三区| 男女床上黄色一级片免费看| 99热这里只有精品一区 | 国产成人精品无人区| 欧美精品啪啪一区二区三区| 51午夜福利影视在线观看| 在线观看舔阴道视频| 在线观看美女被高潮喷水网站 | 人人妻人人澡欧美一区二区| 国内精品久久久久久久电影| 久久久久久九九精品二区国产| 国产成人av教育| 国产男靠女视频免费网站| 国产视频内射| 亚洲av成人不卡在线观看播放网| 黄色片一级片一级黄色片| 此物有八面人人有两片| 精品一区二区三区四区五区乱码| ponron亚洲| 在线免费观看不下载黄p国产 | 久久精品夜夜夜夜夜久久蜜豆| 成人亚洲精品av一区二区| avwww免费| 丰满人妻熟妇乱又伦精品不卡| 免费电影在线观看免费观看| 日本一本二区三区精品| 黄片小视频在线播放| 久久久精品大字幕| 麻豆国产97在线/欧美| 日日摸夜夜添夜夜添小说| 嫩草影院精品99| 国产精品99久久久久久久久| 色播亚洲综合网| 亚洲成人免费电影在线观看| av女优亚洲男人天堂 | 最近在线观看免费完整版| 午夜福利高清视频| 日本撒尿小便嘘嘘汇集6| 少妇人妻一区二区三区视频| 国产97色在线日韩免费| 在线视频色国产色| aaaaa片日本免费| 大型黄色视频在线免费观看| 欧美乱妇无乱码| 免费无遮挡裸体视频| 老汉色av国产亚洲站长工具| 人妻久久中文字幕网| 麻豆成人av在线观看| 黄色视频,在线免费观看| 国产精品一区二区免费欧美| 男女下面进入的视频免费午夜| 国产精品美女特级片免费视频播放器 | 757午夜福利合集在线观看| 免费观看人在逋| 国产精品国产高清国产av| 在线观看午夜福利视频| 成人av一区二区三区在线看| 免费在线观看亚洲国产| 国产真人三级小视频在线观看| 日韩欧美国产在线观看| 免费高清视频大片| 亚洲成av人片在线播放无| 69av精品久久久久久| 日本成人三级电影网站| 成人性生交大片免费视频hd| 最好的美女福利视频网| 欧美极品一区二区三区四区|