• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-subpulse process of large time-bandwidth product chirp signal

    2015-04-22 02:39:02ZHANGHonggang張洪綱FANHuayu范花玉HEShaohua何少華LIUQuanhua劉泉華

    ZHANG Hong-gang(張洪綱), FAN Hua-yu(范花玉), HE Shao-hua(何少華), LIU Quan-hua(劉泉華)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Multi-subpulse process of large time-bandwidth product chirp signal

    ZHANG Hong-gang(張洪綱), FAN Hua-yu(范花玉), HE Shao-hua(何少華), LIU Quan-hua(劉泉華)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    To prevent the long-time coherent integration and limited range window stumbling blocks of stretch processing and reduce computational complexity, a novel method called multi-subpulse process of large time-bandwidth product linear frequency modulating (LFM) signal (i.e. chirp) is proposed in this paper. The wideband chirp signal is split up into several compressed subpulses. Then the fast Fourier transform (FFT) is used to reconstruct the high resolution range profile (HRRP) in a relative short computation time. For multi-frame, pulse Doppler (PD) process is performed to obtain the two-dimension range-Doppler (R-D) high resolution profile. Simulations and field experimental results show that the proposed method can provide high-quality target profile over a large range window in a short computation time and has the promising potential for long-time coherent integration.

    multi-subpulse process; large time-bandwidth product; chirp signal; computational complexity; coherent integration

    In order to achieve high range resolution, radar transmits wideband pulses; while to get high signal-to-noise ratio (SNR), it is desirable to increase the pulsewidth. Pulse compression is a method which combines the high energy of a long pulsewidth with high range resolution. Among the various large time-bandwidth product signals, chirp signal is a popular choice. There are two commonly used pulse compression techniques for chirp signal: matched filter processing and stretch processing[1].

    The digital matched filter processing requires a sampling rate of at least twice the signal bandwidth according to the Nyquist sampling theorem. When radar transmits wideband chirp signals, ittypically requires an extremely high sampling rate for the analog-to-digital (A/D) converter, which increases the computational burden of real-time digital signal processing. Thus the matched filter processing is predominantly used for narrowband radar. To overcome this problem, the stretch processor is normally used in the extremely wide bandwidth chirp signal[2]. The sampling rate of this technique can be reduced significantly. The two methods have been compared and fully discussed in Refs.[3-5]. The stretch processing has two major disadvantages. It can only yield the high range resolution profile over a limited range window and long-time coherent integration is unachievable, which leads to the degradation of image quality and the failure of measuring the Doppler and micro-Doppler[6].

    Another method to process the wide bandwidth chirp signal is presented in Refs.[7-9] where pulse compression is performed in the subband domain. This method can decrease the sampling rate and reduce the processing time. However, it still has trouble in long-time coherent integration, especially for high speed targets.

    Inspired by the concept of using multi-frame stepped frequency signals to achieve long-time coherent integration[10-13], we proposed a multi-subpulse processing method for large time-bandwidth product chirp signal. It can not only decrease the computational complexity effectively, but also achieve coherent integration simultaneously for the wideband signal. To the best of the authors’ knowledge, this method has never been reported.

    1 Multi-subpulse process

    1.1 Basic concept

    The intermediate frequency (IF) chirp pulse can be expressed as

    (1)

    where

    (2)

    and wheretrepresents time,Tpdenotes the pulsewidth,fIis the intermediate frequency, andkis the chirp slope. The bandwidth is determined byB=kTp. To get high SNR and high range resolution, the signal should have a large time-bandwidth productD=BTp.

    The multi-subpulse processing method first averagely splits up chirp signal intoNsubpulses, whereNis an integer, as shown in Fig.1. The resulting subpulses are still chirp signals whose pulsewidth is denoted byT0=Tp/Nand bandwidth is determined byB0=Δf=B/N, where Δfis the frequency division interval.

    Fig.1 Division of large time-bandwidth product chirp signal in time-frequency domain

    1.2 Choice of division numberN

    The division numberNis properly chosen to meet the condition that time-bandwidth product of the subpulse should be much greater than one, i.e.B0T0?1. Thus the frequency spectrum of the subpulse is approximately close to rectangle so that pulse compression can be applied.

    The proposed division presented here is performed simultaneously inNchannels by firstly mixing with different phase detectors and then passing through lowpass filters. The phase detectors in different channels can be written as

    (3)

    wherendenotes thenth subpulse.

    After mixing with the phase detectors and lowpass filtering, we have

    (4)

    From Eq.(4), it is obvious that each subpulse has a pulse duration ofT0and has a bandwidth ofB0=kT0. TheNsubpulses become the stepped frequency like signal whose frequency stepping interval Δfis the single subpulse bandwidthB0. To make the two types of signals equivalent, the initial phase of theNsubpulses must be linear, that is to say, the adjacent two subpulses should have a constant phase difference.

    From Eq.(4), the phase of each subpulsecan be represented as

    (5)

    Its start frequency is -B/2+nB/Nand the bandwidth is determined byB0=B/N. The initial phase of each subpulse isφn(tn) whentn=-T/2+nT/N.

    The phase difference betweenφn(tn) andφn+1(tn+1) can be calculated as

    (6)

    It contains two parts: the constant phase and the varying phase. The varying phase is rewritten as

    (7)

    Apparently, to ensure the two adjacent subpulses have a constant phase difference, 3BT/N2in the varying partφ(n) which prevents the phase of adjacent subpulses being constant should be an integer. Thereforeφ(n) will be an integer multiple of 2π. Under such condition, multi-subpulse process can be applied.

    1.3 Multi-subpulse process of chirp

    According to the aforementioned principal, subpulse numberNis properly chosen. Then multi-subpulse process can be performed for the large time-bandwidth product chirp signal. The flow chart of the processing is demonstrated in Fig.2.

    Fig.2 Flow chart of multi-subpulse process of large time-bandwidth product chirp signal

    As shown in Fig. 2, the intermediate frequency chirp signal is assigned intoNchannels. In each channel, the signal will firstly pass through the phase detectors, whose expression is given in Eq.(3). Then the frequency-shifted signals must be lowpass-filtered so that the large time-bandwidth product chirp signal can be divided up intoNsubpulses inNdifferent channels. To process the signal completely in the digital domain, the A/D converter and digital IQ processor are employed. Since each subpulse is a complex chirp signal whose time durance isT0and bandwidth isB0, the sampling rate of A/D converter can be dramatically decreased to 1/Nof the direct sampling case.

    To improve the SNR, pulse compression is performed to each subpulse using the matched filter processing. Meanwhile, the phase influence caused by the Doppler must be compensated so that the pulse train can be integrated coherently. Since the original chirp is a wideband signal, it cannot compensate the phase by using the uniform compensation coefficient. However, it is much easier for the subpulses to compensate the phase by using different coefficients in different frequency channels, because these subpulses are narrowband signals.

    Assuming the target moves towards radar in a constant velocityv, and it locates at an initial radial range ofR0. The IF chirp can be rewritten as

    (8)

    wherecis speed of light,fcis the carrier frequency,Ris determined by

    R=R0-mvTr,m=0,1,…,M-1

    (9)

    wheremis the pulse or frame number, andTris the pulse repetition interval.

    When the envelope movement of the totalMframe is less than half of the pulsewidth after compression, which is

    (10)

    The envelope movement can be ignored. From Eq.(10), we have

    v

    (11)

    It shows that the long coherent integration time requires that the target must have a limited velocity. Furthermore, with the bandwidth of the subpulse increase, the velocity limit gets stricter.

    Similarly, the target’s velocity will influence the phase. To get rid of these effects caused by the target’s motion, compensation must be applied for each subpulse.

    The first compensation coefficient which is applied in subpulse compression step eliminates the waveform dispersion caused by the target’s motion. That is

    p1(t)=exp(-j4πkvct2/c)

    (12)

    wherevcis the cued velocity which is provided by radar tracking. The second compensation coefficient is

    (13)

    wheref0=fc-B/2 is the start frequency. The first term compensates the frame influence, and the second term compensates the subpulse influence.

    Note that it is a predominant advantage for these subpulses to compensate the velocity influence, because each subpulse can be compensated at each frequency channel respectively. Hence, it makes the long-time coherent integration feasible.

    After the velocity compensation, PD process can be done for the same frequency subpulses in different frames by using FFT. This approach can distinguish targets from different velocities.

    Finally, we collect the data from same Doppler bins and obtain the high range resolution profile over a large range window by using inverse FFT (IFFT). This step is similar with the process of stepped frequency signal and it avoids the large range window problem in stretch processing. Then the two-dimension R-D high resolution profile can be obtained. The following constant false alarm detection is performed, and it results in the accurate range and velocity measurements of the detected target.

    1.4 Performance of proposed method

    Here we illustrate the performance of the proposed method and three methods in the literatures: the matched filter processor, the stretch processor and the subband pulse compression processor. Assume the chirp signal has a large time-bandwidth product, the comparisons are listed in Tab.1.

    Tab.1 Difference of the four methods

    From Tab.1, we can see that multi-subpulse process requires a sampling rate of 2B/N, which is greatly reduced compared to the matched filter processor. Since the original chirp is divided intoNsubpulses,Nparallel channels can be processed simultaneously. Thus the computation time decreases sharply. Moreover, the subpulse process makes motion compensation at different frequencies possible. And it obtains HRRP over a large range window unlike the stretch processing. The most significant benefit is that the proposed method can realize long-time coherent integration for high speed target.

    2 Simulations and field experiments

    2.1 Simulations

    In order to validate the correctness of the proposed method, simulations are performed. Suppose theXband chirp has a pulsewidth of 20 μs and its bandwidth is 1 GHz. The time repetition interval is 100 μs. According to the principal of choosing subpulse number, the number is set to 20. Thus the pulse duration of subpulse is 1 μs and the bandwidth is 50 MHz. The sampling rate is 100 MHz. Assuming the target locates at a distance of 265 m relative to the range window, its velocity is 400 m/s and the cued velocity is 370 m/s. The SNR level of original signal is -20 dB.

    According to the parameter listed above, the maximum unambiguous range is 3 m, the maximum unambiguous velocity is 150 m/s. And the maximum velocity with which the envelope movement can be neglected is 937.5 m/s. It is much larger than the target speed in our scene. The one-dimension HRRP of matched filter processor and multi-subpulse process are plotted in Fig.3.

    Fig.3 One-dimension HRRP using matched filter and multi-subpulse process

    From Fig.3, it can be seen that the multi-subpulse process approximately has the same performance with matched filter processor. Their HRRPs almost have the same peak side lobe ratio (PSLR) and the same mainbeam width. However, the latter method requires much smaller sampling rate and much shorter computation time.

    The two-dimension high resolution profiles using matched filter processor and multi-subpulse process are presented respectively in Fig.4. The integration pulse number is 16. We can evidently see that multi-subpulse process of the large time-bandwidth product chirp signal can integrate the pulses coherently in spite of the high speed motion of target. In contrast,the matched filter processor fails to integrate coherently. Therefore the R-D profile disperses due to the high speed motion.

    Fig.4 Two-dimension R-D high resolution profile of matched filter and multi-subpulse process

    2.2 Field experiments

    To further prove the feasibility of the proposed method, field experiments are carried out. The original chirp signal operates atXband with pulsewidth of 200 μs and bandwidth of 1 GHz. The subpulse number is chosen as 20. Fig.5a is the HRRP of a civil airplane using matched filter processor while Fig.5b using the multi-subpulse process. Note that thex-axis just indicates the relative range but not the absolute range. Comparing the two HRRPs, they are almost the same except that the HRRP after multi-subpulse process contains grating lobes with a level of -25 dB. And eliminating the grating lobes will be our major work in the following research.

    Fig.5 HRRP of civil airplane using matched filter and multi-subpulse process

    3 Conclusion

    We have proposed a method called multi-subpulse process for the large time-bandwidth product chirp signal. The proposed method compresses the original chirp signal with a relatively low sampling rate so that the computation time can be decreased significantly. It also circumvents the large range window problem in stretch processing. More importantly, pulses can be integrated coherently in a long time using the proposed method. To verify the feasibility of the presented method, simulations and field experiments have been performed and promising results have been achieved. Hence, the presented novel method provides a well performed solution to the real time and coherent integration problem of wideband chirp signal.

    [1] Mahafza B M, Elsherbeni A Z. MATLAB simulations for radar systems design[M]. Florida: CRC Press, 2004.

    [2] Caputi W J. Stretch: a time-transformation technique[J]. IEEE Transactions on Aerospace and Electronic System, 1971, 7(2): 269-278.

    [3] Middleton R J C. Dechirp-on-receive linearly frequency modulated radar as a matched-filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 3(3): 2716-2718.

    [4] Long T, Wang Y, Zeng T. Signal-to-noise ratio in stretch processing[J]. Electronics Letters, 2010, 46(10): 720-721.

    [5] Wang Jun, Cai Duoduo, Wen Yaya. Comparison of matched filter and dechirp processing used in Linear Frequency Modulation[C]∥International Conference on Computing, Control and Industrial Engineering, Piscataway, NJ, USA, 2011.

    [6] Zhu Fengbo, Yang Wenjun, Deng Zhenmiao. A study on coherent wideband phased-array radar systems based on dechirp processing[J]. Modern Radar, 2011, 33(2): 42-46. (in Chinese)

    [7] Rabinkin D, Truong N. Optimum subband filterbank design for radar array signal processing with pulse compression[C]∥the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop, Piscataway, NJ, USA, 2000.

    [8] Fu Wei, Li Ming, Liu Fang. A radar wideband receiving method based on subband pulse compression[J]. Fire Control Radar Technology, 2010, 39(4): 47-51. (in Chinese)

    [9] Shui Penglang, Bao Zheng. A pulse compression method of UWB radar based on intersection of frequency spectrum[J]. Acta Electronica Sinica, 1999, 27(6): 50-53. (in Chinese)

    [10] Yuan Haojuan, Gao Meiguo. Signal processing of mutli-frame stepped frequency radar based on keystone transform[J]. Transaction of Beijing Institute of Technology, 2008, 28(11): 1023-1026. (in Chinese)

    [11] Liu Haibo, Lu Jundao. Target motion compensation algorithm based on keystone transform for wideband pulse Doppler radar[J]. Transaction of Beijing Institute of Technology, 2012, 32(6): 625-630. (in Chinese)

    [12] Liu Haibo, Zhao Xiaona, Lü Huihui. Parameter design of stepped frequency waveform and its signal processing algorithm in cluter[J]. Transaction of Beijing Institute of Technology, 2013, 33(6): 638-643. (in Chinese)

    [13] Yuan Haojuan, Gao Meiguo, Mu Jianchao. Multi-frame stepped frequency signal processing based on Doppler bin alignment[J]. Journal of Electronics & Information Technology,2009, 31(7): 1659-1663. (in Chinese)

    (Edited by Cai Jianying)

    10.15918/j.jbit1004-0579.201524.0411

    TN 957.51 Document code: A Article ID: 1004- 0579(2015)04- 0501- 07

    Received 2014- 02- 09

    Supported by the National Natural Science Foundation of China (61301189)

    E-mail: liuquanhua@bit.edu.cn

    97在线视频观看| 午夜激情福利司机影院| 国产单亲对白刺激| 国产亚洲精品av在线| 你懂的网址亚洲精品在线观看 | 亚洲国产欧洲综合997久久,| 亚洲aⅴ乱码一区二区在线播放| av女优亚洲男人天堂| 欧美xxxx性猛交bbbb| 中文字幕精品亚洲无线码一区| 日韩一区二区三区影片| 久久精品国产鲁丝片午夜精品| 亚洲人成网站在线观看播放| 又粗又爽又猛毛片免费看| 国产高清视频在线观看网站| 午夜免费激情av| 亚洲精品乱码久久久v下载方式| 内射极品少妇av片p| 99久久久亚洲精品蜜臀av| 国产精品国产三级国产av玫瑰| 少妇猛男粗大的猛烈进出视频 | 久久亚洲精品不卡| 日韩成人av中文字幕在线观看| 99热6这里只有精品| 亚洲三级黄色毛片| 久久热精品热| 一级毛片电影观看 | 夜夜夜夜夜久久久久| 日日干狠狠操夜夜爽| 久久久久九九精品影院| 午夜精品一区二区三区免费看| 一个人看的www免费观看视频| 久久99蜜桃精品久久| 国产真实伦视频高清在线观看| 国产欧美日韩精品一区二区| 久久99精品国语久久久| 欧美人与善性xxx| 国产综合懂色| 亚洲不卡免费看| 欧美色欧美亚洲另类二区| 亚洲成人久久爱视频| 国产成人aa在线观看| 人妻少妇偷人精品九色| 亚洲av免费高清在线观看| 99久国产av精品国产电影| 亚洲高清免费不卡视频| 中国美女看黄片| 1024手机看黄色片| 欧美成人精品欧美一级黄| 亚洲欧美成人精品一区二区| 久久人人精品亚洲av| 舔av片在线| 亚洲成人久久爱视频| 免费观看精品视频网站| 波多野结衣高清无吗| 精品久久久久久久久av| 久久精品夜色国产| 亚洲三级黄色毛片| 国产一级毛片七仙女欲春2| 免费av毛片视频| 亚洲高清免费不卡视频| 成年av动漫网址| 久久久久国产网址| 免费观看a级毛片全部| 国产视频首页在线观看| 日本黄色片子视频| 人妻制服诱惑在线中文字幕| 一区福利在线观看| 日韩欧美精品免费久久| 成人美女网站在线观看视频| 男的添女的下面高潮视频| 国产av不卡久久| 国内精品宾馆在线| 亚洲欧美日韩高清在线视频| 天天躁夜夜躁狠狠久久av| 国产国拍精品亚洲av在线观看| 免费观看的影片在线观看| 天堂影院成人在线观看| 女同久久另类99精品国产91| 久久精品影院6| 亚洲国产精品成人久久小说 | 亚洲av不卡在线观看| 韩国av在线不卡| 国产视频内射| 99热全是精品| 国产精品一二三区在线看| 久久久国产成人精品二区| 人妻久久中文字幕网| 国产乱人偷精品视频| 欧美一级a爱片免费观看看| 国产精品不卡视频一区二区| 麻豆成人av视频| 国内精品一区二区在线观看| 成人特级黄色片久久久久久久| 免费观看在线日韩| 久久99热这里只有精品18| 久久韩国三级中文字幕| 国产色婷婷99| 久久久午夜欧美精品| 国产成人福利小说| 麻豆精品久久久久久蜜桃| 亚洲三级黄色毛片| 国产亚洲5aaaaa淫片| 国产精品三级大全| 美女 人体艺术 gogo| 美女被艹到高潮喷水动态| 成人毛片a级毛片在线播放| 久久久久久久午夜电影| 又爽又黄无遮挡网站| 内射极品少妇av片p| 国产一区二区在线观看日韩| 高清毛片免费观看视频网站| 久久久a久久爽久久v久久| 三级国产精品欧美在线观看| 我要看日韩黄色一级片| 啦啦啦啦在线视频资源| 搞女人的毛片| 丰满的人妻完整版| 一本久久精品| 亚洲av中文字字幕乱码综合| 只有这里有精品99| 免费看美女性在线毛片视频| 高清毛片免费看| 在线a可以看的网站| av免费在线看不卡| 非洲黑人性xxxx精品又粗又长| kizo精华| 一区福利在线观看| 亚洲国产精品成人久久小说 | 狠狠狠狠99中文字幕| 老司机福利观看| 国产白丝娇喘喷水9色精品| 久久99热这里只有精品18| 最近手机中文字幕大全| 麻豆乱淫一区二区| 亚洲成人久久爱视频| 国产精品蜜桃在线观看 | 女人被狂操c到高潮| 国内久久婷婷六月综合欲色啪| 精品国内亚洲2022精品成人| 99精品在免费线老司机午夜| 在线播放无遮挡| 国产熟女欧美一区二区| 此物有八面人人有两片| 婷婷六月久久综合丁香| 国产视频首页在线观看| 亚洲高清免费不卡视频| 18+在线观看网站| 你懂的网址亚洲精品在线观看 | 18禁裸乳无遮挡免费网站照片| 日韩欧美国产在线观看| 国产乱人视频| 丝袜美腿在线中文| 久久久久久久亚洲中文字幕| 国产午夜精品久久久久久一区二区三区| 午夜亚洲福利在线播放| 午夜精品一区二区三区免费看| 日韩精品青青久久久久久| 深爱激情五月婷婷| 久久精品国产亚洲av天美| 夜夜看夜夜爽夜夜摸| 少妇的逼好多水| 欧美色欧美亚洲另类二区| 岛国毛片在线播放| 国产精品一及| 韩国av在线不卡| 久久久久国产网址| 国产成人福利小说| 国产v大片淫在线免费观看| 人人妻人人澡人人爽人人夜夜 | av在线蜜桃| 欧美性猛交黑人性爽| 欧美丝袜亚洲另类| 国产白丝娇喘喷水9色精品| 爱豆传媒免费全集在线观看| 国产视频内射| 国产午夜福利久久久久久| 国产一区二区亚洲精品在线观看| 欧美极品一区二区三区四区| 91午夜精品亚洲一区二区三区| 少妇被粗大猛烈的视频| 亚洲国产精品sss在线观看| 天天躁夜夜躁狠狠久久av| 永久网站在线| 亚洲欧美精品专区久久| 久久久久久久久大av| 搡老妇女老女人老熟妇| 简卡轻食公司| 国产在视频线在精品| www.av在线官网国产| 国产乱人视频| 亚洲内射少妇av| 国产亚洲av嫩草精品影院| 一级av片app| 国产91av在线免费观看| 亚洲,欧美,日韩| 日本免费一区二区三区高清不卡| 99久久精品热视频| 淫秽高清视频在线观看| 一级毛片我不卡| 色视频www国产| 晚上一个人看的免费电影| 日本三级黄在线观看| av在线老鸭窝| 欧美潮喷喷水| 国产精品一区二区在线观看99 | 日本欧美国产在线视频| 亚洲国产精品国产精品| 国产伦理片在线播放av一区 | 亚洲av第一区精品v没综合| 国产精品久久久久久久久免| 国产亚洲精品av在线| 欧美精品一区二区大全| 国产国拍精品亚洲av在线观看| 亚洲va在线va天堂va国产| 欧美另类亚洲清纯唯美| 亚洲无线观看免费| 免费观看在线日韩| av又黄又爽大尺度在线免费看 | 欧美日韩精品成人综合77777| 国产av不卡久久| 国产亚洲av嫩草精品影院| 亚洲美女搞黄在线观看| 日韩在线高清观看一区二区三区| 男的添女的下面高潮视频| 国产一区亚洲一区在线观看| 偷拍熟女少妇极品色| 久久久国产成人免费| 观看免费一级毛片| 亚洲色图av天堂| 精品人妻视频免费看| 欧美日韩乱码在线| 欧美另类亚洲清纯唯美| 夜夜看夜夜爽夜夜摸| 2022亚洲国产成人精品| 欧美日韩在线观看h| 亚洲国产精品sss在线观看| 天堂√8在线中文| 国产精品一区二区三区四区久久| 青春草亚洲视频在线观看| 免费观看的影片在线观看| 别揉我奶头 嗯啊视频| 中国美白少妇内射xxxbb| 亚洲国产高清在线一区二区三| 国产女主播在线喷水免费视频网站 | 国产极品精品免费视频能看的| 国产亚洲精品久久久久久毛片| 18禁黄网站禁片免费观看直播| 青青草视频在线视频观看| 国产中年淑女户外野战色| 免费观看精品视频网站| 少妇熟女aⅴ在线视频| 一进一出抽搐gif免费好疼| 日韩三级伦理在线观看| av在线播放精品| 嘟嘟电影网在线观看| 亚洲成av人片在线播放无| 国产av在哪里看| 亚洲18禁久久av| 国产一区二区亚洲精品在线观看| 亚洲精品国产av成人精品| 99riav亚洲国产免费| 好男人在线观看高清免费视频| 狂野欧美白嫩少妇大欣赏| 国产精品永久免费网站| 看十八女毛片水多多多| 久久亚洲精品不卡| 嫩草影院入口| 校园春色视频在线观看| 国产毛片a区久久久久| 91av网一区二区| 性插视频无遮挡在线免费观看| 国产精品久久电影中文字幕| 婷婷精品国产亚洲av| 日韩制服骚丝袜av| 夜夜爽天天搞| 国产av一区在线观看免费| 国产成人精品久久久久久| 床上黄色一级片| 亚洲欧美中文字幕日韩二区| 极品教师在线视频| 亚洲在线观看片| 日韩,欧美,国产一区二区三区 | 国产老妇女一区| 男女下面进入的视频免费午夜| 最后的刺客免费高清国语| 成人美女网站在线观看视频| 91午夜精品亚洲一区二区三区| 美女xxoo啪啪120秒动态图| 午夜精品国产一区二区电影 | 小说图片视频综合网站| 黑人高潮一二区| 午夜老司机福利剧场| 国产日韩欧美在线精品| 成年女人看的毛片在线观看| 国产亚洲91精品色在线| 日本一二三区视频观看| 精品久久久久久久人妻蜜臀av| 日本与韩国留学比较| 高清毛片免费观看视频网站| 变态另类成人亚洲欧美熟女| 99九九线精品视频在线观看视频| 赤兔流量卡办理| 黑人高潮一二区| 亚洲不卡免费看| 亚洲乱码一区二区免费版| 国产真实乱freesex| av福利片在线观看| 天天躁日日操中文字幕| 亚洲国产精品合色在线| 女人十人毛片免费观看3o分钟| 波多野结衣巨乳人妻| 国产一区亚洲一区在线观看| 国产大屁股一区二区在线视频| 免费观看a级毛片全部| 一级黄片播放器| 亚洲成人久久性| 好男人视频免费观看在线| 91狼人影院| 亚洲内射少妇av| 十八禁国产超污无遮挡网站| 两个人的视频大全免费| 爱豆传媒免费全集在线观看| 日韩三级伦理在线观看| 欧美一区二区亚洲| 简卡轻食公司| 成人美女网站在线观看视频| 悠悠久久av| 亚洲熟妇中文字幕五十中出| 精品久久国产蜜桃| 成人漫画全彩无遮挡| 一级av片app| 夫妻性生交免费视频一级片| 99久久中文字幕三级久久日本| 在现免费观看毛片| 色5月婷婷丁香| 国产伦精品一区二区三区视频9| 国产精品嫩草影院av在线观看| 成人午夜精彩视频在线观看| 欧美日韩在线观看h| 亚洲va在线va天堂va国产| 国产午夜精品一二区理论片| 美女大奶头视频| 久久久久九九精品影院| 中文资源天堂在线| 草草在线视频免费看| 国产片特级美女逼逼视频| 中文字幕久久专区| 男的添女的下面高潮视频| 久久久久久久午夜电影| 桃色一区二区三区在线观看| 日本一本二区三区精品| 老熟妇乱子伦视频在线观看| 99久久九九国产精品国产免费| 男的添女的下面高潮视频| 色综合站精品国产| 久久草成人影院| 国产极品精品免费视频能看的| 日韩成人av中文字幕在线观看| 男女那种视频在线观看| 久久国产乱子免费精品| 男人和女人高潮做爰伦理| 久久鲁丝午夜福利片| 久久人人爽人人爽人人片va| 国产精品蜜桃在线观看 | 久久精品影院6| 欧美极品一区二区三区四区| 亚洲成人久久性| 免费人成视频x8x8入口观看| 亚洲在线观看片| 欧美bdsm另类| 亚洲国产色片| 久久久久国产网址| 国产精品精品国产色婷婷| 久久久欧美国产精品| 久久精品综合一区二区三区| 日韩欧美在线乱码| 一个人免费在线观看电影| 国产伦在线观看视频一区| 日本免费a在线| 欧美日韩国产亚洲二区| 搡老妇女老女人老熟妇| 欧美激情久久久久久爽电影| 夜夜爽天天搞| 亚洲国产高清在线一区二区三| 午夜免费激情av| 国产极品精品免费视频能看的| 久久久色成人| 国产三级中文精品| 久久精品国产99精品国产亚洲性色| 美女大奶头视频| 午夜福利成人在线免费观看| 美女国产视频在线观看| 又黄又爽又刺激的免费视频.| 国产精品人妻久久久影院| 男女那种视频在线观看| 色哟哟·www| a级一级毛片免费在线观看| 成人特级av手机在线观看| 亚洲成av人片在线播放无| 国产精品女同一区二区软件| 大香蕉久久网| 男插女下体视频免费在线播放| 永久网站在线| 美女 人体艺术 gogo| 2021天堂中文幕一二区在线观| 久久人人爽人人片av| 又黄又爽又刺激的免费视频.| 免费看a级黄色片| 国产片特级美女逼逼视频| 在线观看av片永久免费下载| 国产69精品久久久久777片| 五月伊人婷婷丁香| 天堂影院成人在线观看| 九色成人免费人妻av| 99久久精品一区二区三区| 波多野结衣高清作品| 看片在线看免费视频| 国产视频首页在线观看| 日韩,欧美,国产一区二区三区 | 99久国产av精品| 一本久久中文字幕| 久久久欧美国产精品| 亚洲av.av天堂| 桃色一区二区三区在线观看| 亚洲中文字幕一区二区三区有码在线看| 日本爱情动作片www.在线观看| 日韩一区二区视频免费看| 日韩精品有码人妻一区| 可以在线观看的亚洲视频| 成人亚洲欧美一区二区av| 亚洲精品粉嫩美女一区| 给我免费播放毛片高清在线观看| 久久久久久久久中文| 亚洲自偷自拍三级| 亚洲人成网站在线播| 国产精品一区二区三区四区免费观看| 天堂√8在线中文| 亚洲国产精品国产精品| 日本成人三级电影网站| 精品久久国产蜜桃| 久久久色成人| 成人av在线播放网站| av黄色大香蕉| 欧美又色又爽又黄视频| 亚洲欧美清纯卡通| 黄色配什么色好看| 亚州av有码| 中出人妻视频一区二区| 欧美不卡视频在线免费观看| 狂野欧美激情性xxxx在线观看| 少妇熟女欧美另类| 亚洲中文字幕一区二区三区有码在线看| 国产黄a三级三级三级人| 久久精品国产鲁丝片午夜精品| 黄色配什么色好看| 天堂√8在线中文| 最近的中文字幕免费完整| 三级国产精品欧美在线观看| 午夜精品国产一区二区电影 | 天堂中文最新版在线下载 | 成人高潮视频无遮挡免费网站| av在线蜜桃| 久久久久久伊人网av| 又爽又黄无遮挡网站| 久久久久久久久久久免费av| 听说在线观看完整版免费高清| 成年av动漫网址| 少妇高潮的动态图| 午夜亚洲福利在线播放| 中文在线观看免费www的网站| 中文欧美无线码| 黄色视频,在线免费观看| 啦啦啦韩国在线观看视频| av免费观看日本| 久久99热6这里只有精品| 国产精品国产高清国产av| 免费看美女性在线毛片视频| 一级av片app| 国语自产精品视频在线第100页| 99久久中文字幕三级久久日本| 六月丁香七月| 日韩,欧美,国产一区二区三区 | 国产v大片淫在线免费观看| 又粗又爽又猛毛片免费看| av视频在线观看入口| 欧美激情国产日韩精品一区| 人人妻人人澡欧美一区二区| 精品人妻熟女av久视频| 欧美高清成人免费视频www| 久久久精品94久久精品| 91精品国产九色| av在线观看视频网站免费| 亚洲高清免费不卡视频| 伦理电影大哥的女人| 波多野结衣高清作品| 亚洲在线观看片| 亚洲av中文av极速乱| 一本久久中文字幕| 亚洲三级黄色毛片| .国产精品久久| 国产精品不卡视频一区二区| 亚洲精品自拍成人| 综合色av麻豆| 国产亚洲精品av在线| 噜噜噜噜噜久久久久久91| 九九爱精品视频在线观看| 男人舔女人下体高潮全视频| 亚洲婷婷狠狠爱综合网| 九草在线视频观看| 久久久成人免费电影| 成熟少妇高潮喷水视频| 不卡一级毛片| 舔av片在线| 禁无遮挡网站| av在线老鸭窝| 国产极品精品免费视频能看的| 久久九九热精品免费| 亚洲中文字幕日韩| 成人午夜高清在线视频| 欧美人与善性xxx| 国产高潮美女av| 18禁在线无遮挡免费观看视频| 黄色欧美视频在线观看| 成人亚洲欧美一区二区av| 国内揄拍国产精品人妻在线| 欧美极品一区二区三区四区| 国产高潮美女av| 国产黄色视频一区二区在线观看 | 少妇的逼好多水| 黄色欧美视频在线观看| 神马国产精品三级电影在线观看| 国产成人aa在线观看| 婷婷亚洲欧美| 久久韩国三级中文字幕| 日韩一区二区视频免费看| 中文精品一卡2卡3卡4更新| 中文字幕制服av| 亚洲精品成人久久久久久| av女优亚洲男人天堂| 中文字幕av成人在线电影| 亚洲av成人av| 99热精品在线国产| 99国产极品粉嫩在线观看| 久久精品夜色国产| 波多野结衣巨乳人妻| 又粗又爽又猛毛片免费看| 亚洲av免费高清在线观看| 亚洲性久久影院| av在线天堂中文字幕| 成人欧美大片| 国产精品国产三级国产av玫瑰| 日本欧美国产在线视频| 国产一级毛片七仙女欲春2| 最近中文字幕高清免费大全6| 亚洲欧美日韩东京热| 天堂√8在线中文| 在线播放无遮挡| 美女xxoo啪啪120秒动态图| 天堂影院成人在线观看| 亚洲av男天堂| 日本一二三区视频观看| 看片在线看免费视频| 久久久久久国产a免费观看| 秋霞在线观看毛片| 免费看a级黄色片| 国产精品久久视频播放| 国产精品久久久久久久电影| 国产精品爽爽va在线观看网站| 国产伦理片在线播放av一区 | 国内少妇人妻偷人精品xxx网站| 亚洲av成人av| 国产91av在线免费观看| av天堂在线播放| 亚洲精品国产av成人精品| 国产精品国产高清国产av| 欧美成人a在线观看| 精品久久久久久久人妻蜜臀av| 亚洲最大成人av| 高清在线视频一区二区三区 | 亚洲欧美日韩高清在线视频| 国产精品久久久久久亚洲av鲁大| 青春草国产在线视频 | 中文字幕av成人在线电影| 麻豆精品久久久久久蜜桃| 国产熟女欧美一区二区| 美女cb高潮喷水在线观看| 人人妻人人澡人人爽人人夜夜 | 18禁在线无遮挡免费观看视频| 黄色日韩在线| 国产精品爽爽va在线观看网站| 久久久久久久久久成人| 精品久久国产蜜桃| 亚洲人成网站在线观看播放| 99久久中文字幕三级久久日本| 成人欧美大片| 国产一区二区三区在线臀色熟女| 99久久精品一区二区三区| 我要看日韩黄色一级片| 日韩一区二区视频免费看| av在线天堂中文字幕| 可以在线观看毛片的网站| 黄色视频,在线免费观看| 精品久久久久久久人妻蜜臀av| 国产视频首页在线观看| 国产在线精品亚洲第一网站| 亚洲内射少妇av| 国产精品野战在线观看| 亚洲av.av天堂| 99精品在免费线老司机午夜| 黑人高潮一二区| 又黄又爽又刺激的免费视频.| 一进一出抽搐gif免费好疼| 午夜亚洲福利在线播放| 成人永久免费在线观看视频|