• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Factor-graph-based iterative channel estimation and signal detection algorithm over time-varying frequency-selective fading channels

    2015-04-22 02:38:54ZHAOHongjie趙宏杰WUNan武楠WANGHua王華LIZhixin李智信KUANGJingming匡鏡明
    關鍵詞:王華

    ZHAO Hong-jie(趙宏杰), WU Nan(武楠) , WANG Hua(王華),LI Zhi-xin(李智信), KUANG Jing-ming(匡鏡明)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Factor-graph-based iterative channel estimation and signal detection algorithm over time-varying frequency-selective fading channels

    ZHAO Hong-jie(趙宏杰), WU Nan(武楠), WANG Hua(王華),LI Zhi-xin(李智信), KUANG Jing-ming(匡鏡明)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    The problem of soft-input soft-output (SISO) detection for time-varying frequency-selective fading channels is considered. Based on a suitably-designed factor graph and the sum-product algorithm, a low-complexity iterative message passing scheme is proposed for joint channel estimation, equalization and decoding. Two kinds of schedules (parallel and serial) are adopted in message updates to produce two algorithms with different latency. The computational complexity per iteration of the proposed algorithms grows only linearly with the channel length, which is a significantly decrease compared to the optimal maximum a posteriori (MAP) detection with the exponential complexity. Computer simulations demonstrate the effectiveness of the proposed schemes in terms of bit error rate performance.

    factor graph; message passing; frequency-selective fading channel; soft-input soft-output (SISO) detection; turbo equalization

    In wireless communication systems, inter-symbol interference (ISI) results in unacceptable detection over frequency-selective fading channels. Thus the equalization strategies are necessary to compensate the ISI efficiently. The optimal equalizer can be implemented by the max a posteriori (MAP) algorithm, or the Viterbi and soft-output Viterbi algorithms[1]. However, these optimal equalizers suffer high complexity and depend on acquisition of the exact channel state information. Therefore, joint channel estimation and equalization algorithm is demanded for practical applications.

    In the last decade, turbo equalization[2]has been proven to be a near-optimal solution with reasonable complexity[3-4]. Recently, the iterative receivers have been redesigned by factor graphs and message passing algorithms for their low complexity[5-8]. Several new algorithms were developed for both unconstrained and constrained linear equalization[9]. Focusing on channels with known ISI, FDM and CDMA systems, some novel algorithms for SISO detection were presented over linear channels with reduced complexity[10]. Some other problems have also been benefited from message passing algorithms, for instance, SISO detection in MIMO systems[11-13], iterative multiuser detection in CDMA systems[14-15], and iterative receiver in strong phase noise channels[16-17], etc.

    In consideration of rapidly time variations of wireless channels due to high mobility and unavailability of CSI at the receiver, this paper proposes an iterative soft-in soft-output detection scheme by applying message passing algorithm on a suitable designed factor graph for joint channel estimation, equalization and decoding over frequency-selective fading channels. The computational complexity of the proposed detector increases only linearly with the channel memory length, which is a significant reduction compared with the optimal MAP detection.

    1 System model

    Consider an LDPC-coded singer-carrier communication system over a frequency-selective Rayleigh fading channel of lengthL. At the transmitter, information bit sequenceb{bk} is first encoded to produce the coded bit sequencec{ck}, denoted by encoding functionc=fc(b)∈C. The coded bits are mapped to symbol sequencex{xk} byM-PSK constellation A, denoted by mapping functionx=fx(c)∈A, and then transmitted over frequency-selective Rayleigh fading channel. At the receiver, assuming perfect carrier recovery and timing synchronization, the equivalent baseband received signal at time instantkis given by

    (1)

    (2)

    r=Hx+n

    (3)

    where H is a (K+L-1)×KToeplitz channel matrix with entries

    (4)

    Throughout this paper,knowledge of the channel matrix H and the statistics of the noise vectornare practically unknown and have to be estimated at receiver side.

    2 Factor graph representation

    The optimal decision rule that minimizes bit error rate (BER) follows the maximum a posteriori (MAP) criterion[1], given by

    (5)

    whereP(bi|r) denotes the a posteriori probability mass function (pmf) of theith information bitbigiven the received signal vector r. This can be obtained by marginalizing the joint posterior probability distribution functionp(b,c,x,H|r), which can be factorized as

    p(b,c,x,H|r)∝p(r|x,H)p(x|c)p(c|b)p(b)p(H)∝I[c=fc(b)]I[x=fx(c)]p(r|x,H)p(b)p(H)

    (6)

    whereI[c=fc(b)] andI[x=fx(c)] denote the code and mapping constraint indicator function, respectively.p(b) defines the a priori bit information which can be factorized easily according to the uniform i.i.d. assumption.

    The factorization ofp(b,c,x,H|r) leads to the factor graph representation shown in Fig.1, where the factor nodesp(r|x,H) andp(H) correspond to the equalizer and channel estimator, respectively. Applying sum-product algorithm (SPA) on the FG, we can obtain a suboptimal but low complexity iterative message passing algorithm since the graph is cyclic[6]. The equalizer uses the received signal vector, the channel state information and the a priori information from the decoder to compute extrinsic log-likelihoods of every transmitted symbol, which are then soft demapped and decoded. The SISO decoder compute extrinsic log-likelihood ratios (LLRs), which will be fed into the equalizer and channel estimator as a priori information after soft mapping. After several iterations of soft information exchange between the SISO decoder, SISO equalizer and the channel estimator, it is stopped when a maximum iteration number is reached. Then the estimates of transmitted information bits can be obtained by the channel decoder with hard decision.

    Fig.1 Factor graph of the factorization in Eq.(6)

    3 Proposed message passing algorithm

    3.1 Decoder and demapper

    (7)

    (8)

    (9)

    3.2 Channel estimator

    Since the channel taps are continuous random variables, the messages propagating on edges adjacent to the channel tap nodes are probability density functions (pdfs). The SPA applied for continuous random variables involves the integration of pdfs, which lead to intractable computations for practical implementation. Thus, we use parameterized canonical distributions[6]as the outgoing messages of the channel tap nodes. Specifically, the impulse at estimated value is selected to approximate the actual density of the channel tap, given by

    pu(hk)=δ(hk-k)

    (10)

    which further simplifies the message calculation of the equalizer nodes in next section. Then only the estimated valuekat time indexkneeds to be computed. The optimal linear minimum mean square error (LMMSE) estimate[16]of the complex channel tap can be obtained by

    (11)

    whereNis the length (assumed odd) of a finite-impulse response (FIR) filter and the filter coefficientsωi,jcan be obtained by solving the Wiener-Hopf equations[3]. Note that the optimal Wiener solution requires knowledge of the channel autocorrelation function and the matrix inverse calculation. If the normalized fade rate is slow (fdTs?1) and the filter lengthNis small enough (N?(fdTs)-1), we can approximate the filter coefficients to be equal as

    (12)

    (13)

    At first iteration, only pilot symbols are used to calculate the initial estimates of the channel taps and noise variance. In subsequent iterations, symbol estimates and pilot symbols are used together to obtain refined channel estimates.

    3.3 SISO detector

    The likelihood functionp(r|x,H) can be expressed as

    (14)

    (15)

    with the functions

    (16)

    (17)

    Fig.2 shows the detector section for three time instants of the corresponding factor graph in Fig. 1. The nodeUk,ldenotes the inter-symbol interference betweenxkandxk-l. Note that the marginalization cannot be exactly carried out by applying the SPA to the factor graph in Fig.2 as it contains cycles[6]. On the other hand, we can see that the cycles cannot be lower than six according to the factorization in Eq.(15). Therefore, in this case SPA can make a good approximation of the exact marginalization.

    Fig.2 Three equalizer sections of the factor graph for L=3

    (18)

    (19)

    (20)

    (21)

    (22)

    (23)

    Based on the factorization method in Eq.(15), we note that function nodesUk,lalways have degree of two, whose number increases linearly with the length of the channel. Thus, the describing message passing algorithm has a complexity per iteration which is linear with the channel length. It is a significant complexity reduction compared to the optimal MAP symbol detection with exponential complexity in the number of channel length.

    3.4 Schedule

    Due to the existence of cycles in the FG, the schedule for the message passing cannot be unique[6]. Here, we employ two different schedules, which result in two different SISO equalizers. One is a parallel schedule inspired by flooding schedule in LDPC decoding whose latency does not depend on the symbol lengthK. The other is a serial schedule executed by the forward and backward recursion with latency linearly increasing with the symbol lengthK. Both schedules iterate only once before passing out the extrinsic messages due to more self-iterations can provide negligible gains[10]. For parallel schedule, the message computation sequence is as follows.

    ① Update allPAPP(xk) in parallel for allk.

    ④ Update allPAPP(xk) again and then calculate all extrinsic messagesPu(xk) for allk.

    For serial schedule, the message computation sequence is as follows.

    ③ Update all messagesPu(xk).

    Finally, the message updating schedule for the entire factor graph starts from the initialization of channel estimation based on pilot symbols. Then a parallel or serial schedule is executed just one self-iteration before sending the extrinsic messages to the decoder. The decoder uses standard belief propagation decoding algorithm to calculate the a posteriori probability of information bits and feeds back extrinsic information to the detector and channel estimator. The algorithm stops if a valid codeword is found by checking the code syndrome or a predefined iteration number is reached.

    4 Simulation results

    Computer simulations are conducted to evaluate the performance of the proposed algorithms for single-carrier coded transmission system. The BER performances of several schemes are compared. The first is pilot-based channel estimation using linear interpolation with no iteration. The second is a genie-aided receiver using the proposed detector with perfect knowledge of the channel. The third uses the proposed message passing algorithm for iterative channel estimation and detection with serial/parallel schedules. Moreover, the optimal performance bound, denoted by AWGN bound which corresponds to the system under AWGN channel without ISI, is also shown as a reference benchmark. The simulation uses a (3,6)-regular LDPC code with codeword length of 1920 and gray-mapping QPSK modulation. The channel length isL=3 with equal average power and the total energy are normalized to unity. A typical Doppler ratefDTs=0.005 is considered and each pilot symbol is periodically inserted in every 20 data symbols for the initialization of channel estimation. The length of moving average filter is selected asN=75. A maximum of 10 iterations is allowed. The results are averaged over Monte Carlo simulations after 1 000 independent bit errors are observed.

    Fig. 3 shows the BER performance of the proposed algorithm compared with other receiver schemes. As no feedback information from decoder is used to assist channel estimation and equalization, the pilot-based non-iterative receiving algorithm has a poor BER performance, when BER=10-4there is about 7.9 dB SNR loss compared to the optimal MAP detector. On the other hand, when the CSI is known at receiver, factor-graph-based joint iterative equalization and decoding algorithms can continually increase the estimation accuracy of symbol posterior probability at the equalizer by iteratively exchanging soft information of the symbols between equalizer node and decoder node in factor graph, and then significantly improve the BER performance of the decoder. As we can seen in Fig.3, the above-mentioned algorithms can achieve the BER performance close to the optimal MAP detection, in which the algorithms based on serial schedule and parallel schedule exist only 0.45 dB and 0.70 dB SNR loss respectively. However, due to low latency characteristics, the parallel schedule is more applicable in practical implementation. Moreover, the computational complexity of the iterative message passing algorithm can achieve only linearly to the channel memory length, which is a great reduction compared to the optimal MAP symbol detector with exponential complexity. When the CSI is unknown at receiver, the proposed iterative message passing algorithms for joint channel estimation, equalization and decoding could also obtain favorable performance with low complexity. Compared with the known CSI case, the algorithms based on serial schedule and parallel schedule exist 1.95 dB and 1.80 dB SNR loss respectively.

    Fig.3 BER performance of the proposed algorithm

    Fig. 4 shows the performance of channel estimation in terms of mean square error (MSE) versus SNR. The MMSE of the optimal Wiener filter is also given as a reference lower bound. As can be seen, the MSE of channel estimation decreases with the increase of SNR and the number of iteration. Only after first iteration, the MSE of the proposed algorithm is significantly lower than that of pilot-based algorithm. After 10 iterations of message passing, the MSE of the proposed algorithm gradually approaches the MMSE bound within high SNR region, as high reliability of symbol extrinsic information can be obtained from decoder feedback.

    Fig.4 MSE performance of channel estimation

    5 Conclusion

    In this paper, we have proposed a SISO detector for iteratively joint channel estimation, equalization and decoding over frequency-selective fading channel. The proposed detector is obtained by applying SPA to a suitable designed factor graph, which represents the factorization of the joint posterior probability distribution function of the transmitted symbols and the channel coefficients. Based on SPA, we derive the message computation rules and develop two different schedules for message updates. Simulation results show that, the proposed algorithms with both schedules can achieve a satisfactory BER performance after several iterations, while with a significant complexity reduction with respect to the optimal MAP detector.

    [1] Tse D, Viswanath P. Fundamentals of wireless communications [M]. Cambridge: Cambridge University Press, 2005.

    [2] Koetter R, Singer A C, Tuchler M. Turbo equalization [J]. IEEE Signal Processing Magazine, 2004, 21(1):67-80.

    [3] Valenti M C, Woerner B D. Iterative channel estimation and decoding of pilot symbol assisted turbo codes over flat-fading channels [J]. IEEE Journal on Selected Areas in Communications, 2001, 19(9): 1697-1705.

    [4] Su H J, Geraniotis E. Low-complexity joint channel estimation and decoding for pilot symbol-assisted modulation and multiple differential detection systems with correlated Rayleigh fading [J]. IEEE Transactions on Communication, 2002, 50(2): 249-261.

    [5] Wymeersch H. Iterative receiver design [M]. Cambridge: Cambridge University Press, 2007.

    [6] Kschischang F R, Frey B J, Loeliger H A. Factor graphs and the sum-product algorithm [J]. IEEE Transactions on Information Theory, 2001, 47(2): 498-519.

    [7] Colavolpe G, Germi G. Simple iterative detection schemes for ISI channels [C]∥International Symposium on Turbo Codes & Related Topics, Brest, France, 2003.

    [8] Lu B, Yue G S, Wang X D, et al. Factor-graph-based soft self-iterative equalizer for multipath channels [J]. EURASIP Journal on Wireless Communications and Networking, 2005, 2005(2): 187-196.

    [9] Drost R J, Singer A C. Factor-graph algorithms for equalization [J]. IEEE Transactions on Signal Processing, 2007, 55(5): 2052-2065.

    [10] Colavolpe G, Fertonani D, Piemontese A. SISO detection over linear channels with linear complexity in the number of interferers [J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(8): 1475-1485.

    [11] Etzlinger B, Haselmayr W, Springer A. Equalization algorithms for MIMO communication systems based on factor graphs [C]∥2011 IEEE International Conference on Communication, Kyoto, Japan, 2011.

    [12] Kaynak M N, Duman T M, Kurtas E M. Belief propagation over SISO/MIMO frequency selective channels [J]. IEEE Transaction on Wireless Communications, 2007, 6(6): 2001-2005.

    [13] Haselmayr W, Etzlinger B, Springer A. Factor-graph-based soft-input soft-output detection for frequency-selective MIMO channels [J]. IEEE Communication Letter, 2012, 16(10): 1624-1627.

    [14] Tan P H, Rasmussen L K. Belief propagation for coded multiuser detection [C]∥IEEE International Symposium on Information Theory, Seattle, the United States, 2006.

    [15] Aktas E. Iterative message passing for pilot-assisted multiuser detection in MC-CDMA systems [J]. IEEE Transaction on Communications, 2012, 60(11): 3353-3364.

    [16] Zhao H J, Wu N, Wang H, et al. Factor-graph-based iterative receiver design in the presence of strong phase noise[C]∥IEEE Vehicular Technology Conference Spring, Yokohama, Japan, 2012.

    [17] Zhao H J, Wu N, Wang H, et al. Particle swarm enhanced graph-based iterative receiver with phase noise and frequency offset [C]∥Wireless Communications and Signal Processing, Hangzhou, China, 2013.

    [18] Haykin S. Adaptive filter theory information and system science series[M]. Englewood Cliffs, NJ: Prentice-Hall, 1996.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004-0579.201524.0410

    TN 911 Document code: A Article ID: 1004- 0579(2015)04- 0494- 07

    Received 2014- 03- 28

    Supported by the National Natural Science Foundation of China(61201181);Specialized Research Fund for the Doctoral Program of Higher Education(20121101120020);the Co-innovation Laboratory of Aerospace Broadband Network Technology

    E-mail: wunan@bit.edu.cn

    猜你喜歡
    王華
    請你幫個忙
    請你幫個忙
    金山(2024年12期)2024-12-29 00:00:00
    旅游目的地全面關系流管理研究
    旅游學刊(2022年5期)2022-05-31 23:55:43
    勸退原配
    老媽的高招
    三月三(2017年11期)2018-01-09 18:58:41
    老媽的高招
    三月三(2017年11期)2018-01-09 02:48:44
    江蘇省僑辦主任王華:僑的力量推動著我
    華人時刊(2017年13期)2017-11-09 05:38:47
    王華主任隨江蘇新聞文化參訪團赴臺訪問圓滿成功
    華人時刊(2017年13期)2017-11-09 05:38:46
    從時尚攝影師到新農(nóng)民,15年走了一條回歸路
    王華主任會見韓國知識文化財團理事長辛圣恩一行
    華人時刊(2016年16期)2016-04-05 05:57:24
    国产成人av教育| 中文字幕久久专区| 精品一区二区三区av网在线观看| 日韩欧美在线乱码| 全区人妻精品视频| 中文字幕人成人乱码亚洲影| 视频区欧美日本亚洲| 制服丝袜大香蕉在线| 久久久久九九精品影院| 黄色片一级片一级黄色片| 亚洲人成伊人成综合网2020| 国产精品一区二区免费欧美| 超碰成人久久| 熟女电影av网| 亚洲片人在线观看| 老汉色av国产亚洲站长工具| 老鸭窝网址在线观看| 最近最新中文字幕大全免费视频| 久久精品影院6| 午夜成年电影在线免费观看| 中文字幕人妻丝袜一区二区| 身体一侧抽搐| 亚洲欧美日韩东京热| 丁香六月欧美| 国产高清三级在线| 99精品在免费线老司机午夜| 最近最新中文字幕大全电影3| 精品久久久久久成人av| 美女扒开内裤让男人捅视频| 国产精品 欧美亚洲| 国产 一区 欧美 日韩| 日韩大尺度精品在线看网址| 国产又黄又爽又无遮挡在线| 亚洲色图av天堂| av天堂在线播放| 美女午夜性视频免费| 亚洲狠狠婷婷综合久久图片| 国产亚洲精品久久久com| 亚洲第一欧美日韩一区二区三区| 亚洲 欧美一区二区三区| 亚洲专区字幕在线| 亚洲 国产 在线| 久久亚洲精品不卡| 成年人黄色毛片网站| 欧美日韩亚洲国产一区二区在线观看| 国产av麻豆久久久久久久| 老熟妇乱子伦视频在线观看| 午夜福利在线在线| 国产成年人精品一区二区| 国产成人精品久久二区二区91| 无人区码免费观看不卡| 看片在线看免费视频| 久久精品91蜜桃| 亚洲片人在线观看| 日本 欧美在线| 99热6这里只有精品| 啦啦啦观看免费观看视频高清| 久久精品亚洲精品国产色婷小说| 老司机在亚洲福利影院| 好男人电影高清在线观看| 国产视频一区二区在线看| 国产aⅴ精品一区二区三区波| 我的老师免费观看完整版| 亚洲av成人精品一区久久| 最近最新中文字幕大全电影3| 欧美最黄视频在线播放免费| 中文字幕高清在线视频| 亚洲欧美激情综合另类| 午夜免费激情av| 丝袜人妻中文字幕| 给我免费播放毛片高清在线观看| 俺也久久电影网| 淫秽高清视频在线观看| 丰满人妻一区二区三区视频av | 亚洲无线在线观看| 88av欧美| 国产三级黄色录像| 免费搜索国产男女视频| 午夜福利在线观看吧| tocl精华| av片东京热男人的天堂| 99久久成人亚洲精品观看| 观看免费一级毛片| 人人妻人人看人人澡| 老熟妇乱子伦视频在线观看| 国产精品久久久久久精品电影| 日本a在线网址| 中文字幕精品亚洲无线码一区| 一级毛片精品| 一区二区三区高清视频在线| 亚洲精品美女久久av网站| 给我免费播放毛片高清在线观看| 国产成人av激情在线播放| 亚洲午夜精品一区,二区,三区| 亚洲av成人不卡在线观看播放网| 极品教师在线免费播放| x7x7x7水蜜桃| 成人欧美大片| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品美女久久久久99蜜臀| 国产精品 国内视频| 99久国产av精品| 在线观看舔阴道视频| 1000部很黄的大片| 亚洲av免费在线观看| 色播亚洲综合网| 色视频www国产| 香蕉久久夜色| 男女午夜视频在线观看| 少妇裸体淫交视频免费看高清| 在线观看日韩欧美| 国产又黄又爽又无遮挡在线| 99视频精品全部免费 在线 | 蜜桃久久精品国产亚洲av| 欧美乱码精品一区二区三区| 男女午夜视频在线观看| 变态另类丝袜制服| a在线观看视频网站| 国产成人欧美在线观看| 不卡av一区二区三区| 欧美又色又爽又黄视频| 久久久久久大精品| 久久久国产成人精品二区| 欧美高清成人免费视频www| 欧美一区二区精品小视频在线| 国产免费av片在线观看野外av| 精品乱码久久久久久99久播| 欧美乱妇无乱码| 午夜福利成人在线免费观看| 欧美日韩精品网址| 色噜噜av男人的天堂激情| 最近视频中文字幕2019在线8| 中国美女看黄片| 色av中文字幕| 超碰成人久久| 欧美av亚洲av综合av国产av| 18美女黄网站色大片免费观看| 精品日产1卡2卡| 久久久久免费精品人妻一区二区| 脱女人内裤的视频| 久久中文字幕人妻熟女| 男女床上黄色一级片免费看| 最近视频中文字幕2019在线8| 桃色一区二区三区在线观看| 亚洲国产精品合色在线| 久久人人精品亚洲av| 波多野结衣高清无吗| 欧美日韩一级在线毛片| 长腿黑丝高跟| 成人特级av手机在线观看| 99国产精品一区二区蜜桃av| 欧美成狂野欧美在线观看| 精品日产1卡2卡| 亚洲在线自拍视频| 亚洲欧美精品综合一区二区三区| 国产一级毛片七仙女欲春2| 日韩 欧美 亚洲 中文字幕| 国产午夜精品久久久久久| 亚洲国产欧美一区二区综合| 国产精品亚洲av一区麻豆| 国产激情偷乱视频一区二区| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久久久久亚洲av鲁大| 亚洲av日韩精品久久久久久密| 精品一区二区三区四区五区乱码| 成人精品一区二区免费| 天天一区二区日本电影三级| av天堂在线播放| 美女大奶头视频| 免费看美女性在线毛片视频| 国内久久婷婷六月综合欲色啪| av天堂中文字幕网| 日本精品一区二区三区蜜桃| 麻豆国产av国片精品| 国产 一区 欧美 日韩| 日韩中文字幕欧美一区二区| 97超视频在线观看视频| 国产成人aa在线观看| 精品久久久久久久人妻蜜臀av| 久久久久久人人人人人| 天天添夜夜摸| 桃色一区二区三区在线观看| 中文亚洲av片在线观看爽| 欧美黄色片欧美黄色片| 欧美大码av| 亚洲av电影不卡..在线观看| 亚洲中文字幕一区二区三区有码在线看 | 真人做人爱边吃奶动态| 欧美一级a爱片免费观看看| 人人妻人人看人人澡| 国产成人精品久久二区二区免费| 亚洲av成人一区二区三| 女同久久另类99精品国产91| 免费看a级黄色片| 日韩欧美一区二区三区在线观看| 最近最新中文字幕大全免费视频| 真人一进一出gif抽搐免费| www.精华液| 国产欧美日韩精品一区二区| 国产精品乱码一区二三区的特点| 男人舔女人的私密视频| 国产精品香港三级国产av潘金莲| 麻豆国产97在线/欧美| 日日干狠狠操夜夜爽| 给我免费播放毛片高清在线观看| 国产激情偷乱视频一区二区| 亚洲乱码一区二区免费版| 啪啪无遮挡十八禁网站| e午夜精品久久久久久久| 又黄又爽又免费观看的视频| 久久精品夜夜夜夜夜久久蜜豆| 色精品久久人妻99蜜桃| 观看免费一级毛片| 男女午夜视频在线观看| 嫩草影院入口| 怎么达到女性高潮| 精品电影一区二区在线| av视频在线观看入口| 精品日产1卡2卡| h日本视频在线播放| 国产私拍福利视频在线观看| 国产精品一区二区三区四区久久| xxx96com| 日日夜夜操网爽| 国产亚洲精品久久久久久毛片| 亚洲熟妇熟女久久| www.熟女人妻精品国产| 亚洲美女黄片视频| 无人区码免费观看不卡| 人妻夜夜爽99麻豆av| 18禁美女被吸乳视频| 亚洲在线自拍视频| 美女午夜性视频免费| 后天国语完整版免费观看| 亚洲va日本ⅴa欧美va伊人久久| 老汉色av国产亚洲站长工具| 一本精品99久久精品77| 国产又色又爽无遮挡免费看| 可以在线观看的亚洲视频| 一二三四在线观看免费中文在| 欧美一区二区国产精品久久精品| 国产欧美日韩一区二区精品| 日韩高清综合在线| 成熟少妇高潮喷水视频| 每晚都被弄得嗷嗷叫到高潮| 欧美黄色片欧美黄色片| 两个人视频免费观看高清| 久久天躁狠狠躁夜夜2o2o| 欧美中文日本在线观看视频| 亚洲午夜理论影院| 2021天堂中文幕一二区在线观| or卡值多少钱| 在线免费观看不下载黄p国产 | 亚洲自偷自拍图片 自拍| 亚洲专区中文字幕在线| 成人特级av手机在线观看| 一级作爱视频免费观看| 白带黄色成豆腐渣| 极品教师在线免费播放| 中文字幕高清在线视频| 他把我摸到了高潮在线观看| 亚洲男人的天堂狠狠| 91字幕亚洲| 免费看十八禁软件| 国产毛片a区久久久久| 午夜福利免费观看在线| 国产探花在线观看一区二区| 国产精品,欧美在线| 亚洲精品456在线播放app | 久久久久久久久久黄片| 国产精品日韩av在线免费观看| 99久久无色码亚洲精品果冻| svipshipincom国产片| 国产精品一区二区三区四区免费观看 | 日本黄色片子视频| 免费看光身美女| 搡老岳熟女国产| www.www免费av| 欧美一级a爱片免费观看看| 不卡一级毛片| 午夜福利欧美成人| 久久午夜亚洲精品久久| 国产成+人综合+亚洲专区| 亚洲熟妇中文字幕五十中出| 级片在线观看| 久久精品夜夜夜夜夜久久蜜豆| e午夜精品久久久久久久| 一进一出抽搐gif免费好疼| 18禁裸乳无遮挡免费网站照片| 免费在线观看视频国产中文字幕亚洲| 久久香蕉国产精品| 免费观看精品视频网站| 免费高清视频大片| 国产高清三级在线| 丰满人妻一区二区三区视频av | 中文字幕久久专区| 天堂动漫精品| 制服人妻中文乱码| 18禁国产床啪视频网站| www.熟女人妻精品国产| 久久99热这里只有精品18| 又爽又黄无遮挡网站| 此物有八面人人有两片| 熟女人妻精品中文字幕| 99久久久亚洲精品蜜臀av| 亚洲精品久久国产高清桃花| 国产黄片美女视频| 色播亚洲综合网| 欧美绝顶高潮抽搐喷水| 一夜夜www| 欧美高清成人免费视频www| 九色成人免费人妻av| 欧美大码av| 亚洲欧美精品综合一区二区三区| 国产高清有码在线观看视频| 亚洲一区二区三区不卡视频| 精品国产乱码久久久久久男人| 色综合婷婷激情| 免费高清视频大片| 欧美最黄视频在线播放免费| 麻豆国产97在线/欧美| 天堂网av新在线| 91麻豆精品激情在线观看国产| 精品日产1卡2卡| 在线视频色国产色| 国产v大片淫在线免费观看| 此物有八面人人有两片| aaaaa片日本免费| 精品电影一区二区在线| 无人区码免费观看不卡| 婷婷精品国产亚洲av在线| 久久性视频一级片| 亚洲国产高清在线一区二区三| 免费看十八禁软件| 中文亚洲av片在线观看爽| 麻豆av在线久日| 欧美激情久久久久久爽电影| 国产精品久久久久久人妻精品电影| 国产精品99久久久久久久久| 少妇裸体淫交视频免费看高清| 99久久精品一区二区三区| 午夜免费成人在线视频| 欧美绝顶高潮抽搐喷水| 国产精品99久久99久久久不卡| 日韩 欧美 亚洲 中文字幕| 久久中文字幕一级| 国产aⅴ精品一区二区三区波| 免费看a级黄色片| 日本a在线网址| 成人av在线播放网站| 日日摸夜夜添夜夜添小说| 亚洲人成网站在线播放欧美日韩| 中文字幕人成人乱码亚洲影| tocl精华| 欧美精品啪啪一区二区三区| 男女床上黄色一级片免费看| 欧美极品一区二区三区四区| 亚洲精品在线美女| 欧美在线黄色| 99视频精品全部免费 在线 | 可以在线观看的亚洲视频| 亚洲自偷自拍图片 自拍| 黄色女人牲交| 精品熟女少妇八av免费久了| 两性午夜刺激爽爽歪歪视频在线观看| 色噜噜av男人的天堂激情| 欧美成狂野欧美在线观看| 亚洲欧美日韩东京热| 国产精品久久久久久精品电影| 精品无人区乱码1区二区| 精品福利观看| 露出奶头的视频| 国产成人啪精品午夜网站| 男人舔奶头视频| 观看美女的网站| 国产激情偷乱视频一区二区| 中文字幕人妻丝袜一区二区| 免费在线观看成人毛片| 国产亚洲精品久久久久久毛片| 99久久无色码亚洲精品果冻| 搞女人的毛片| 九九热线精品视视频播放| 成人欧美大片| 97超视频在线观看视频| 久久久久精品国产欧美久久久| 国产精品久久久av美女十八| 两性夫妻黄色片| 在线十欧美十亚洲十日本专区| 亚洲18禁久久av| 国产高清videossex| 午夜福利欧美成人| 成年免费大片在线观看| 久久国产精品影院| 日本 欧美在线| 欧美绝顶高潮抽搐喷水| 床上黄色一级片| 怎么达到女性高潮| 99久久精品热视频| 人妻久久中文字幕网| 日本免费一区二区三区高清不卡| 青草久久国产| 在线观看66精品国产| 亚洲av日韩精品久久久久久密| av黄色大香蕉| 99国产极品粉嫩在线观看| 别揉我奶头~嗯~啊~动态视频| 午夜福利在线观看免费完整高清在 | 91久久精品国产一区二区成人 | 久久久久久久久中文| 亚洲国产欧美人成| 国产av麻豆久久久久久久| 美女黄网站色视频| 天堂影院成人在线观看| 日本与韩国留学比较| 三级毛片av免费| 成人av一区二区三区在线看| 久久久久九九精品影院| 国产精品98久久久久久宅男小说| a级毛片a级免费在线| 国产aⅴ精品一区二区三区波| www.自偷自拍.com| 亚洲av熟女| 久久热在线av| 久久亚洲精品不卡| 后天国语完整版免费观看| 999精品在线视频| 天天躁日日操中文字幕| 欧美日韩瑟瑟在线播放| 偷拍熟女少妇极品色| 搡老熟女国产l中国老女人| or卡值多少钱| 精品国产乱子伦一区二区三区| 久久99热这里只有精品18| 欧美国产日韩亚洲一区| 亚洲欧美日韩无卡精品| 国产淫片久久久久久久久 | 国模一区二区三区四区视频 | 亚洲国产精品成人综合色| xxx96com| 亚洲,欧美精品.| 久久久久精品国产欧美久久久| www.自偷自拍.com| 女警被强在线播放| 日韩免费av在线播放| 欧美日韩福利视频一区二区| 一区二区三区高清视频在线| 精品熟女少妇八av免费久了| 亚洲 国产 在线| 国产麻豆成人av免费视频| 又粗又爽又猛毛片免费看| 可以在线观看的亚洲视频| 我的老师免费观看完整版| 亚洲人与动物交配视频| av视频在线观看入口| 人妻丰满熟妇av一区二区三区| 日韩 欧美 亚洲 中文字幕| 操出白浆在线播放| 国产成人福利小说| 两个人看的免费小视频| 国产高清激情床上av| 女人被狂操c到高潮| 婷婷精品国产亚洲av在线| 亚洲成人久久爱视频| 日韩欧美 国产精品| 一个人观看的视频www高清免费观看 | 欧美中文综合在线视频| 日韩成人在线观看一区二区三区| 最近在线观看免费完整版| 中文字幕久久专区| 国产精品国产高清国产av| 亚洲精品色激情综合| 国产精品永久免费网站| 在线观看一区二区三区| 欧美中文日本在线观看视频| 午夜免费成人在线视频| 国产成人aa在线观看| 每晚都被弄得嗷嗷叫到高潮| 欧美成狂野欧美在线观看| 三级男女做爰猛烈吃奶摸视频| 日本免费a在线| 欧美高清成人免费视频www| 亚洲精品美女久久久久99蜜臀| 国产综合懂色| 淫秽高清视频在线观看| 老司机在亚洲福利影院| 最近在线观看免费完整版| 午夜影院日韩av| 精品久久久久久久久久久久久| 亚洲精品国产精品久久久不卡| 熟妇人妻久久中文字幕3abv| 18美女黄网站色大片免费观看| 老熟妇仑乱视频hdxx| 精品久久蜜臀av无| 欧美在线黄色| 怎么达到女性高潮| 日本a在线网址| 亚洲电影在线观看av| 免费在线观看亚洲国产| 国产精品久久久久久精品电影| 99久久精品一区二区三区| 欧美成人性av电影在线观看| av在线蜜桃| www国产在线视频色| 亚洲,欧美精品.| 国产亚洲精品av在线| 免费搜索国产男女视频| ponron亚洲| 色av中文字幕| 国产成人福利小说| 又黄又爽又免费观看的视频| av女优亚洲男人天堂 | 一进一出抽搐动态| 久久精品夜夜夜夜夜久久蜜豆| 脱女人内裤的视频| 一夜夜www| 国产99白浆流出| 99久久精品国产亚洲精品| 精品国产三级普通话版| 99国产精品99久久久久| 国产精品 国内视频| 国产乱人视频| 校园春色视频在线观看| 女生性感内裤真人,穿戴方法视频| www日本在线高清视频| 后天国语完整版免费观看| 美女大奶头视频| 久久久精品大字幕| а√天堂www在线а√下载| 日本黄大片高清| 国产69精品久久久久777片 | 在线国产一区二区在线| 夜夜爽天天搞| 午夜福利高清视频| 蜜桃久久精品国产亚洲av| 国产三级黄色录像| 国产精品一区二区精品视频观看| 午夜激情欧美在线| 久久天堂一区二区三区四区| 香蕉久久夜色| 香蕉国产在线看| 日韩欧美精品v在线| 最近最新中文字幕大全电影3| 久久中文字幕一级| 动漫黄色视频在线观看| 女人被狂操c到高潮| 中文字幕人妻丝袜一区二区| 欧美精品啪啪一区二区三区| 亚洲人成电影免费在线| 久久精品国产亚洲av香蕉五月| 人人妻人人看人人澡| 一边摸一边抽搐一进一小说| 嫩草影视91久久| 国产精品久久电影中文字幕| 国产一区二区激情短视频| 婷婷精品国产亚洲av| 一进一出抽搐动态| 精品国产美女av久久久久小说| 91九色精品人成在线观看| 在线观看午夜福利视频| 久久久国产欧美日韩av| 国内精品久久久久精免费| 亚洲欧美日韩卡通动漫| 大型黄色视频在线免费观看| 国产久久久一区二区三区| or卡值多少钱| 精品国产亚洲在线| 免费看日本二区| 亚洲片人在线观看| 真实男女啪啪啪动态图| 精品不卡国产一区二区三区| 十八禁网站免费在线| 日本一本二区三区精品| 久久精品综合一区二区三区| 亚洲中文日韩欧美视频| 国产一区二区三区在线臀色熟女| 国产成+人综合+亚洲专区| 91久久精品国产一区二区成人 | 欧美另类亚洲清纯唯美| 少妇人妻一区二区三区视频| 亚洲成a人片在线一区二区| 亚洲美女黄片视频| 校园春色视频在线观看| 午夜免费观看网址| 国产精品电影一区二区三区| 久久中文字幕人妻熟女| 激情在线观看视频在线高清| 一边摸一边抽搐一进一小说| 免费在线观看影片大全网站| 热99re8久久精品国产| 91av网一区二区| 亚洲男人的天堂狠狠| 欧美日韩中文字幕国产精品一区二区三区| 黑人巨大精品欧美一区二区mp4| 国产精品亚洲av一区麻豆| 国产黄a三级三级三级人| 欧美不卡视频在线免费观看| 国产成人一区二区三区免费视频网站| 色吧在线观看| 搞女人的毛片| 黄色片一级片一级黄色片| 国产精品免费一区二区三区在线| 熟妇人妻久久中文字幕3abv| 日韩有码中文字幕| 免费av毛片视频| 国产成+人综合+亚洲专区| 在线观看日韩欧美| 精品国产美女av久久久久小说| 免费在线观看视频国产中文字幕亚洲| 亚洲成人久久爱视频| 国产精品,欧美在线| 亚洲va日本ⅴa欧美va伊人久久| 99久久国产精品久久久| 色吧在线观看| 亚洲午夜精品一区,二区,三区| 国产日本99.免费观看|