• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Factor-graph-based iterative channel estimation and signal detection algorithm over time-varying frequency-selective fading channels

    2015-04-22 02:38:54ZHAOHongjie趙宏杰WUNan武楠WANGHua王華LIZhixin李智信KUANGJingming匡鏡明
    關鍵詞:王華

    ZHAO Hong-jie(趙宏杰), WU Nan(武楠) , WANG Hua(王華),LI Zhi-xin(李智信), KUANG Jing-ming(匡鏡明)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Factor-graph-based iterative channel estimation and signal detection algorithm over time-varying frequency-selective fading channels

    ZHAO Hong-jie(趙宏杰), WU Nan(武楠), WANG Hua(王華),LI Zhi-xin(李智信), KUANG Jing-ming(匡鏡明)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    The problem of soft-input soft-output (SISO) detection for time-varying frequency-selective fading channels is considered. Based on a suitably-designed factor graph and the sum-product algorithm, a low-complexity iterative message passing scheme is proposed for joint channel estimation, equalization and decoding. Two kinds of schedules (parallel and serial) are adopted in message updates to produce two algorithms with different latency. The computational complexity per iteration of the proposed algorithms grows only linearly with the channel length, which is a significantly decrease compared to the optimal maximum a posteriori (MAP) detection with the exponential complexity. Computer simulations demonstrate the effectiveness of the proposed schemes in terms of bit error rate performance.

    factor graph; message passing; frequency-selective fading channel; soft-input soft-output (SISO) detection; turbo equalization

    In wireless communication systems, inter-symbol interference (ISI) results in unacceptable detection over frequency-selective fading channels. Thus the equalization strategies are necessary to compensate the ISI efficiently. The optimal equalizer can be implemented by the max a posteriori (MAP) algorithm, or the Viterbi and soft-output Viterbi algorithms[1]. However, these optimal equalizers suffer high complexity and depend on acquisition of the exact channel state information. Therefore, joint channel estimation and equalization algorithm is demanded for practical applications.

    In the last decade, turbo equalization[2]has been proven to be a near-optimal solution with reasonable complexity[3-4]. Recently, the iterative receivers have been redesigned by factor graphs and message passing algorithms for their low complexity[5-8]. Several new algorithms were developed for both unconstrained and constrained linear equalization[9]. Focusing on channels with known ISI, FDM and CDMA systems, some novel algorithms for SISO detection were presented over linear channels with reduced complexity[10]. Some other problems have also been benefited from message passing algorithms, for instance, SISO detection in MIMO systems[11-13], iterative multiuser detection in CDMA systems[14-15], and iterative receiver in strong phase noise channels[16-17], etc.

    In consideration of rapidly time variations of wireless channels due to high mobility and unavailability of CSI at the receiver, this paper proposes an iterative soft-in soft-output detection scheme by applying message passing algorithm on a suitable designed factor graph for joint channel estimation, equalization and decoding over frequency-selective fading channels. The computational complexity of the proposed detector increases only linearly with the channel memory length, which is a significant reduction compared with the optimal MAP detection.

    1 System model

    Consider an LDPC-coded singer-carrier communication system over a frequency-selective Rayleigh fading channel of lengthL. At the transmitter, information bit sequenceb{bk} is first encoded to produce the coded bit sequencec{ck}, denoted by encoding functionc=fc(b)∈C. The coded bits are mapped to symbol sequencex{xk} byM-PSK constellation A, denoted by mapping functionx=fx(c)∈A, and then transmitted over frequency-selective Rayleigh fading channel. At the receiver, assuming perfect carrier recovery and timing synchronization, the equivalent baseband received signal at time instantkis given by

    (1)

    (2)

    r=Hx+n

    (3)

    where H is a (K+L-1)×KToeplitz channel matrix with entries

    (4)

    Throughout this paper,knowledge of the channel matrix H and the statistics of the noise vectornare practically unknown and have to be estimated at receiver side.

    2 Factor graph representation

    The optimal decision rule that minimizes bit error rate (BER) follows the maximum a posteriori (MAP) criterion[1], given by

    (5)

    whereP(bi|r) denotes the a posteriori probability mass function (pmf) of theith information bitbigiven the received signal vector r. This can be obtained by marginalizing the joint posterior probability distribution functionp(b,c,x,H|r), which can be factorized as

    p(b,c,x,H|r)∝p(r|x,H)p(x|c)p(c|b)p(b)p(H)∝I[c=fc(b)]I[x=fx(c)]p(r|x,H)p(b)p(H)

    (6)

    whereI[c=fc(b)] andI[x=fx(c)] denote the code and mapping constraint indicator function, respectively.p(b) defines the a priori bit information which can be factorized easily according to the uniform i.i.d. assumption.

    The factorization ofp(b,c,x,H|r) leads to the factor graph representation shown in Fig.1, where the factor nodesp(r|x,H) andp(H) correspond to the equalizer and channel estimator, respectively. Applying sum-product algorithm (SPA) on the FG, we can obtain a suboptimal but low complexity iterative message passing algorithm since the graph is cyclic[6]. The equalizer uses the received signal vector, the channel state information and the a priori information from the decoder to compute extrinsic log-likelihoods of every transmitted symbol, which are then soft demapped and decoded. The SISO decoder compute extrinsic log-likelihood ratios (LLRs), which will be fed into the equalizer and channel estimator as a priori information after soft mapping. After several iterations of soft information exchange between the SISO decoder, SISO equalizer and the channel estimator, it is stopped when a maximum iteration number is reached. Then the estimates of transmitted information bits can be obtained by the channel decoder with hard decision.

    Fig.1 Factor graph of the factorization in Eq.(6)

    3 Proposed message passing algorithm

    3.1 Decoder and demapper

    (7)

    (8)

    (9)

    3.2 Channel estimator

    Since the channel taps are continuous random variables, the messages propagating on edges adjacent to the channel tap nodes are probability density functions (pdfs). The SPA applied for continuous random variables involves the integration of pdfs, which lead to intractable computations for practical implementation. Thus, we use parameterized canonical distributions[6]as the outgoing messages of the channel tap nodes. Specifically, the impulse at estimated value is selected to approximate the actual density of the channel tap, given by

    pu(hk)=δ(hk-k)

    (10)

    which further simplifies the message calculation of the equalizer nodes in next section. Then only the estimated valuekat time indexkneeds to be computed. The optimal linear minimum mean square error (LMMSE) estimate[16]of the complex channel tap can be obtained by

    (11)

    whereNis the length (assumed odd) of a finite-impulse response (FIR) filter and the filter coefficientsωi,jcan be obtained by solving the Wiener-Hopf equations[3]. Note that the optimal Wiener solution requires knowledge of the channel autocorrelation function and the matrix inverse calculation. If the normalized fade rate is slow (fdTs?1) and the filter lengthNis small enough (N?(fdTs)-1), we can approximate the filter coefficients to be equal as

    (12)

    (13)

    At first iteration, only pilot symbols are used to calculate the initial estimates of the channel taps and noise variance. In subsequent iterations, symbol estimates and pilot symbols are used together to obtain refined channel estimates.

    3.3 SISO detector

    The likelihood functionp(r|x,H) can be expressed as

    (14)

    (15)

    with the functions

    (16)

    (17)

    Fig.2 shows the detector section for three time instants of the corresponding factor graph in Fig. 1. The nodeUk,ldenotes the inter-symbol interference betweenxkandxk-l. Note that the marginalization cannot be exactly carried out by applying the SPA to the factor graph in Fig.2 as it contains cycles[6]. On the other hand, we can see that the cycles cannot be lower than six according to the factorization in Eq.(15). Therefore, in this case SPA can make a good approximation of the exact marginalization.

    Fig.2 Three equalizer sections of the factor graph for L=3

    (18)

    (19)

    (20)

    (21)

    (22)

    (23)

    Based on the factorization method in Eq.(15), we note that function nodesUk,lalways have degree of two, whose number increases linearly with the length of the channel. Thus, the describing message passing algorithm has a complexity per iteration which is linear with the channel length. It is a significant complexity reduction compared to the optimal MAP symbol detection with exponential complexity in the number of channel length.

    3.4 Schedule

    Due to the existence of cycles in the FG, the schedule for the message passing cannot be unique[6]. Here, we employ two different schedules, which result in two different SISO equalizers. One is a parallel schedule inspired by flooding schedule in LDPC decoding whose latency does not depend on the symbol lengthK. The other is a serial schedule executed by the forward and backward recursion with latency linearly increasing with the symbol lengthK. Both schedules iterate only once before passing out the extrinsic messages due to more self-iterations can provide negligible gains[10]. For parallel schedule, the message computation sequence is as follows.

    ① Update allPAPP(xk) in parallel for allk.

    ④ Update allPAPP(xk) again and then calculate all extrinsic messagesPu(xk) for allk.

    For serial schedule, the message computation sequence is as follows.

    ③ Update all messagesPu(xk).

    Finally, the message updating schedule for the entire factor graph starts from the initialization of channel estimation based on pilot symbols. Then a parallel or serial schedule is executed just one self-iteration before sending the extrinsic messages to the decoder. The decoder uses standard belief propagation decoding algorithm to calculate the a posteriori probability of information bits and feeds back extrinsic information to the detector and channel estimator. The algorithm stops if a valid codeword is found by checking the code syndrome or a predefined iteration number is reached.

    4 Simulation results

    Computer simulations are conducted to evaluate the performance of the proposed algorithms for single-carrier coded transmission system. The BER performances of several schemes are compared. The first is pilot-based channel estimation using linear interpolation with no iteration. The second is a genie-aided receiver using the proposed detector with perfect knowledge of the channel. The third uses the proposed message passing algorithm for iterative channel estimation and detection with serial/parallel schedules. Moreover, the optimal performance bound, denoted by AWGN bound which corresponds to the system under AWGN channel without ISI, is also shown as a reference benchmark. The simulation uses a (3,6)-regular LDPC code with codeword length of 1920 and gray-mapping QPSK modulation. The channel length isL=3 with equal average power and the total energy are normalized to unity. A typical Doppler ratefDTs=0.005 is considered and each pilot symbol is periodically inserted in every 20 data symbols for the initialization of channel estimation. The length of moving average filter is selected asN=75. A maximum of 10 iterations is allowed. The results are averaged over Monte Carlo simulations after 1 000 independent bit errors are observed.

    Fig. 3 shows the BER performance of the proposed algorithm compared with other receiver schemes. As no feedback information from decoder is used to assist channel estimation and equalization, the pilot-based non-iterative receiving algorithm has a poor BER performance, when BER=10-4there is about 7.9 dB SNR loss compared to the optimal MAP detector. On the other hand, when the CSI is known at receiver, factor-graph-based joint iterative equalization and decoding algorithms can continually increase the estimation accuracy of symbol posterior probability at the equalizer by iteratively exchanging soft information of the symbols between equalizer node and decoder node in factor graph, and then significantly improve the BER performance of the decoder. As we can seen in Fig.3, the above-mentioned algorithms can achieve the BER performance close to the optimal MAP detection, in which the algorithms based on serial schedule and parallel schedule exist only 0.45 dB and 0.70 dB SNR loss respectively. However, due to low latency characteristics, the parallel schedule is more applicable in practical implementation. Moreover, the computational complexity of the iterative message passing algorithm can achieve only linearly to the channel memory length, which is a great reduction compared to the optimal MAP symbol detector with exponential complexity. When the CSI is unknown at receiver, the proposed iterative message passing algorithms for joint channel estimation, equalization and decoding could also obtain favorable performance with low complexity. Compared with the known CSI case, the algorithms based on serial schedule and parallel schedule exist 1.95 dB and 1.80 dB SNR loss respectively.

    Fig.3 BER performance of the proposed algorithm

    Fig. 4 shows the performance of channel estimation in terms of mean square error (MSE) versus SNR. The MMSE of the optimal Wiener filter is also given as a reference lower bound. As can be seen, the MSE of channel estimation decreases with the increase of SNR and the number of iteration. Only after first iteration, the MSE of the proposed algorithm is significantly lower than that of pilot-based algorithm. After 10 iterations of message passing, the MSE of the proposed algorithm gradually approaches the MMSE bound within high SNR region, as high reliability of symbol extrinsic information can be obtained from decoder feedback.

    Fig.4 MSE performance of channel estimation

    5 Conclusion

    In this paper, we have proposed a SISO detector for iteratively joint channel estimation, equalization and decoding over frequency-selective fading channel. The proposed detector is obtained by applying SPA to a suitable designed factor graph, which represents the factorization of the joint posterior probability distribution function of the transmitted symbols and the channel coefficients. Based on SPA, we derive the message computation rules and develop two different schedules for message updates. Simulation results show that, the proposed algorithms with both schedules can achieve a satisfactory BER performance after several iterations, while with a significant complexity reduction with respect to the optimal MAP detector.

    [1] Tse D, Viswanath P. Fundamentals of wireless communications [M]. Cambridge: Cambridge University Press, 2005.

    [2] Koetter R, Singer A C, Tuchler M. Turbo equalization [J]. IEEE Signal Processing Magazine, 2004, 21(1):67-80.

    [3] Valenti M C, Woerner B D. Iterative channel estimation and decoding of pilot symbol assisted turbo codes over flat-fading channels [J]. IEEE Journal on Selected Areas in Communications, 2001, 19(9): 1697-1705.

    [4] Su H J, Geraniotis E. Low-complexity joint channel estimation and decoding for pilot symbol-assisted modulation and multiple differential detection systems with correlated Rayleigh fading [J]. IEEE Transactions on Communication, 2002, 50(2): 249-261.

    [5] Wymeersch H. Iterative receiver design [M]. Cambridge: Cambridge University Press, 2007.

    [6] Kschischang F R, Frey B J, Loeliger H A. Factor graphs and the sum-product algorithm [J]. IEEE Transactions on Information Theory, 2001, 47(2): 498-519.

    [7] Colavolpe G, Germi G. Simple iterative detection schemes for ISI channels [C]∥International Symposium on Turbo Codes & Related Topics, Brest, France, 2003.

    [8] Lu B, Yue G S, Wang X D, et al. Factor-graph-based soft self-iterative equalizer for multipath channels [J]. EURASIP Journal on Wireless Communications and Networking, 2005, 2005(2): 187-196.

    [9] Drost R J, Singer A C. Factor-graph algorithms for equalization [J]. IEEE Transactions on Signal Processing, 2007, 55(5): 2052-2065.

    [10] Colavolpe G, Fertonani D, Piemontese A. SISO detection over linear channels with linear complexity in the number of interferers [J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(8): 1475-1485.

    [11] Etzlinger B, Haselmayr W, Springer A. Equalization algorithms for MIMO communication systems based on factor graphs [C]∥2011 IEEE International Conference on Communication, Kyoto, Japan, 2011.

    [12] Kaynak M N, Duman T M, Kurtas E M. Belief propagation over SISO/MIMO frequency selective channels [J]. IEEE Transaction on Wireless Communications, 2007, 6(6): 2001-2005.

    [13] Haselmayr W, Etzlinger B, Springer A. Factor-graph-based soft-input soft-output detection for frequency-selective MIMO channels [J]. IEEE Communication Letter, 2012, 16(10): 1624-1627.

    [14] Tan P H, Rasmussen L K. Belief propagation for coded multiuser detection [C]∥IEEE International Symposium on Information Theory, Seattle, the United States, 2006.

    [15] Aktas E. Iterative message passing for pilot-assisted multiuser detection in MC-CDMA systems [J]. IEEE Transaction on Communications, 2012, 60(11): 3353-3364.

    [16] Zhao H J, Wu N, Wang H, et al. Factor-graph-based iterative receiver design in the presence of strong phase noise[C]∥IEEE Vehicular Technology Conference Spring, Yokohama, Japan, 2012.

    [17] Zhao H J, Wu N, Wang H, et al. Particle swarm enhanced graph-based iterative receiver with phase noise and frequency offset [C]∥Wireless Communications and Signal Processing, Hangzhou, China, 2013.

    [18] Haykin S. Adaptive filter theory information and system science series[M]. Englewood Cliffs, NJ: Prentice-Hall, 1996.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004-0579.201524.0410

    TN 911 Document code: A Article ID: 1004- 0579(2015)04- 0494- 07

    Received 2014- 03- 28

    Supported by the National Natural Science Foundation of China(61201181);Specialized Research Fund for the Doctoral Program of Higher Education(20121101120020);the Co-innovation Laboratory of Aerospace Broadband Network Technology

    E-mail: wunan@bit.edu.cn

    猜你喜歡
    王華
    請你幫個忙
    請你幫個忙
    金山(2024年12期)2024-12-29 00:00:00
    旅游目的地全面關系流管理研究
    旅游學刊(2022年5期)2022-05-31 23:55:43
    勸退原配
    老媽的高招
    三月三(2017年11期)2018-01-09 18:58:41
    老媽的高招
    三月三(2017年11期)2018-01-09 02:48:44
    江蘇省僑辦主任王華:僑的力量推動著我
    華人時刊(2017年13期)2017-11-09 05:38:47
    王華主任隨江蘇新聞文化參訪團赴臺訪問圓滿成功
    華人時刊(2017年13期)2017-11-09 05:38:46
    從時尚攝影師到新農(nóng)民,15年走了一條回歸路
    王華主任會見韓國知識文化財團理事長辛圣恩一行
    華人時刊(2016年16期)2016-04-05 05:57:24
    亚洲成人中文字幕在线播放| 久久这里有精品视频免费| 亚洲精品国产成人久久av| 国产成人91sexporn| av又黄又爽大尺度在线免费看 | 国产高潮美女av| 熟女电影av网| 99视频精品全部免费 在线| 黄色日韩在线| 永久免费av网站大全| 亚洲自拍偷在线| 麻豆一二三区av精品| 国产免费视频播放在线视频 | 51国产日韩欧美| 国产69精品久久久久777片| 天堂影院成人在线观看| 亚洲丝袜综合中文字幕| 亚洲欧美日韩东京热| 在线观看66精品国产| 午夜福利网站1000一区二区三区| 村上凉子中文字幕在线| 天堂√8在线中文| 亚洲高清免费不卡视频| 麻豆av噜噜一区二区三区| 十八禁国产超污无遮挡网站| 国产免费男女视频| 小说图片视频综合网站| 波多野结衣高清无吗| 亚洲自拍偷在线| 99久久中文字幕三级久久日本| 听说在线观看完整版免费高清| 97热精品久久久久久| 久久精品夜色国产| 99热这里只有精品一区| 国产免费又黄又爽又色| 国产成人a区在线观看| 夜夜爽夜夜爽视频| kizo精华| 国产精品一区二区在线观看99 | 亚洲成av人片在线播放无| 免费av观看视频| 大香蕉久久网| 精品熟女少妇av免费看| 男人舔奶头视频| 3wmmmm亚洲av在线观看| 国产亚洲91精品色在线| 亚洲欧美日韩卡通动漫| 国产成人aa在线观看| 亚洲天堂国产精品一区在线| 亚洲成av人片在线播放无| 国内精品一区二区在线观看| 99久久中文字幕三级久久日本| 偷拍熟女少妇极品色| 丝袜美腿在线中文| 水蜜桃什么品种好| 久久久久久久国产电影| 久久这里有精品视频免费| 国产亚洲精品av在线| 亚洲国产日韩欧美精品在线观看| 国产激情偷乱视频一区二区| 成人亚洲精品av一区二区| 精品久久久久久久末码| 欧美高清成人免费视频www| av线在线观看网站| 国产又色又爽无遮挡免| 91狼人影院| 天堂av国产一区二区熟女人妻| 欧美人与善性xxx| 国产精品.久久久| 国产成人精品久久久久久| 亚洲中文字幕日韩| 日韩成人伦理影院| 国产女主播在线喷水免费视频网站 | 国产真实伦视频高清在线观看| 亚洲欧洲国产日韩| 哪个播放器可以免费观看大片| 亚洲国产欧美在线一区| 欧美激情在线99| 日韩亚洲欧美综合| 特大巨黑吊av在线直播| 亚洲在线观看片| 三级男女做爰猛烈吃奶摸视频| 2021天堂中文幕一二区在线观| 蜜臀久久99精品久久宅男| 国产精品一区二区在线观看99 | 91aial.com中文字幕在线观看| eeuss影院久久| 国国产精品蜜臀av免费| 亚洲国产精品成人综合色| 国产老妇伦熟女老妇高清| 人妻少妇偷人精品九色| 男女那种视频在线观看| 亚洲无线观看免费| 欧美区成人在线视频| av在线蜜桃| 看非洲黑人一级黄片| 国产精品一区二区三区四区久久| 嫩草影院精品99| 国语对白做爰xxxⅹ性视频网站| 欧美3d第一页| 日韩欧美国产在线观看| 成人欧美大片| .国产精品久久| 免费看a级黄色片| 免费观看a级毛片全部| 亚洲精品国产成人久久av| 两个人视频免费观看高清| 建设人人有责人人尽责人人享有的 | 亚洲av免费高清在线观看| 欧美色视频一区免费| 91精品国产九色| 一级毛片aaaaaa免费看小| 日本黄色视频三级网站网址| 日韩av不卡免费在线播放| 午夜a级毛片| 国产精品三级大全| 国产亚洲av嫩草精品影院| 一级爰片在线观看| 久久久久久久久久久免费av| 91久久精品电影网| 少妇被粗大猛烈的视频| 少妇的逼好多水| 午夜精品在线福利| 极品教师在线视频| 麻豆一二三区av精品| 波野结衣二区三区在线| 久久精品人妻少妇| 亚洲18禁久久av| 日日摸夜夜添夜夜爱| 韩国av在线不卡| 国产在线一区二区三区精 | 你懂的网址亚洲精品在线观看 | 国内精品宾馆在线| 欧美成人精品欧美一级黄| 国产在线男女| av福利片在线观看| 99久久九九国产精品国产免费| 女人久久www免费人成看片 | 欧美成人免费av一区二区三区| 亚洲在线自拍视频| 国产精品一区二区三区四区免费观看| 欧美一区二区精品小视频在线| 婷婷六月久久综合丁香| 嫩草影院精品99| 久久久久九九精品影院| 精品无人区乱码1区二区| 日本三级黄在线观看| 天堂av国产一区二区熟女人妻| 黄色日韩在线| 人人妻人人澡欧美一区二区| 国产一区二区在线av高清观看| 卡戴珊不雅视频在线播放| 国产精品一区www在线观看| 国产真实乱freesex| 亚洲欧美精品专区久久| 麻豆精品久久久久久蜜桃| 丝袜美腿在线中文| 偷拍熟女少妇极品色| 淫秽高清视频在线观看| 九色成人免费人妻av| 日韩成人av中文字幕在线观看| 日韩 亚洲 欧美在线| 国产午夜精品论理片| 最新中文字幕久久久久| 色吧在线观看| 青春草国产在线视频| 成人高潮视频无遮挡免费网站| 搡女人真爽免费视频火全软件| 99久国产av精品国产电影| 欧美变态另类bdsm刘玥| 精品久久久久久电影网 | 国产精品野战在线观看| 精品国产三级普通话版| 日本一二三区视频观看| 一个人看视频在线观看www免费| 热99在线观看视频| 国产精品久久久久久精品电影小说 | 亚洲成人精品中文字幕电影| 国产精品嫩草影院av在线观看| 人人妻人人看人人澡| 97人妻精品一区二区三区麻豆| 一区二区三区乱码不卡18| 国产成人a区在线观看| 神马国产精品三级电影在线观看| 一区二区三区免费毛片| 日日摸夜夜添夜夜添av毛片| 午夜a级毛片| 久久久色成人| 少妇高潮的动态图| 久久久精品94久久精品| 国产 一区 欧美 日韩| 日韩人妻高清精品专区| 日韩欧美精品免费久久| 国产伦在线观看视频一区| 亚洲av成人精品一二三区| 国产精品久久久久久精品电影小说 | 亚洲av日韩在线播放| 男女国产视频网站| av黄色大香蕉| 国产午夜精品久久久久久一区二区三区| 两个人视频免费观看高清| 日本一本二区三区精品| 午夜a级毛片| 禁无遮挡网站| 亚洲天堂国产精品一区在线| 在线天堂最新版资源| 小说图片视频综合网站| 国产乱人偷精品视频| 99热这里只有是精品50| 三级国产精品欧美在线观看| 97在线视频观看| 久久精品国产99精品国产亚洲性色| 看免费成人av毛片| 国产黄片美女视频| 色网站视频免费| 国产精品一区二区三区四区免费观看| 亚洲丝袜综合中文字幕| 啦啦啦观看免费观看视频高清| 国产毛片a区久久久久| 日韩,欧美,国产一区二区三区 | 日日干狠狠操夜夜爽| 麻豆成人午夜福利视频| 国产单亲对白刺激| 成人一区二区视频在线观看| 特级一级黄色大片| 久久久久国产网址| 亚洲人成网站在线观看播放| 97超碰精品成人国产| 亚洲av日韩在线播放| 国产精品无大码| 尤物成人国产欧美一区二区三区| 久久草成人影院| 久久久久久久亚洲中文字幕| 成人一区二区视频在线观看| 精品酒店卫生间| 亚洲中文字幕日韩| 国产精品1区2区在线观看.| 亚洲国产精品合色在线| 黄片无遮挡物在线观看| 亚洲成人中文字幕在线播放| 99国产精品一区二区蜜桃av| 成人鲁丝片一二三区免费| 国产精品永久免费网站| 亚洲国产精品合色在线| 亚洲精品日韩av片在线观看| 天美传媒精品一区二区| 国产精品国产三级国产专区5o | 久久久久久大精品| 美女高潮的动态| 日韩,欧美,国产一区二区三区 | 国产午夜精品一二区理论片| 日韩欧美三级三区| 高清毛片免费看| 久久久亚洲精品成人影院| 性插视频无遮挡在线免费观看| 国产成人午夜福利电影在线观看| 国产国拍精品亚洲av在线观看| 亚洲av不卡在线观看| 欧美精品一区二区大全| 一二三四中文在线观看免费高清| av在线亚洲专区| АⅤ资源中文在线天堂| 国产 一区 欧美 日韩| 91av网一区二区| 亚洲国产色片| 日本-黄色视频高清免费观看| 一个人免费在线观看电影| 联通29元200g的流量卡| 国产成人免费观看mmmm| 久久久国产成人精品二区| 国产高潮美女av| 国模一区二区三区四区视频| www.av在线官网国产| 亚洲欧洲国产日韩| 丰满少妇做爰视频| 欧美xxxx性猛交bbbb| 国产黄片视频在线免费观看| 在现免费观看毛片| 中文精品一卡2卡3卡4更新| 免费观看性生交大片5| 国产精品久久久久久久久免| 午夜免费男女啪啪视频观看| 波多野结衣高清无吗| 99九九线精品视频在线观看视频| 又爽又黄无遮挡网站| 九草在线视频观看| 最近最新中文字幕免费大全7| 高清在线视频一区二区三区 | 青青草视频在线视频观看| 欧美97在线视频| 国内揄拍国产精品人妻在线| 91精品国产九色| 男人舔奶头视频| 日本欧美国产在线视频| 九九在线视频观看精品| 一区二区三区四区激情视频| 免费一级毛片在线播放高清视频| 精品午夜福利在线看| 亚洲图色成人| 黄片wwwwww| 午夜激情福利司机影院| 人妻夜夜爽99麻豆av| 男女视频在线观看网站免费| 亚洲国产精品合色在线| 精品免费久久久久久久清纯| 熟妇人妻久久中文字幕3abv| 国产一区二区在线av高清观看| 老女人水多毛片| 亚洲成人中文字幕在线播放| 超碰97精品在线观看| 日韩人妻高清精品专区| 乱系列少妇在线播放| 国产精品久久久久久久电影| 国产精品女同一区二区软件| 亚洲国产精品国产精品| 久久精品人妻少妇| 性插视频无遮挡在线免费观看| 国产成人精品一,二区| 精品人妻偷拍中文字幕| 日日干狠狠操夜夜爽| videos熟女内射| 欧美一区二区精品小视频在线| 九色成人免费人妻av| 69人妻影院| 国产精品av视频在线免费观看| 欧美日韩综合久久久久久| 人妻夜夜爽99麻豆av| 精品国产三级普通话版| 深夜a级毛片| av又黄又爽大尺度在线免费看 | 69人妻影院| 国产亚洲一区二区精品| 日韩欧美在线乱码| ponron亚洲| 亚洲国产欧美在线一区| 亚洲欧美清纯卡通| 看黄色毛片网站| 日本wwww免费看| 国产成人aa在线观看| 亚洲色图av天堂| 久久久久久国产a免费观看| 国产精品久久电影中文字幕| 我的老师免费观看完整版| 成人特级av手机在线观看| 特大巨黑吊av在线直播| 欧美日韩综合久久久久久| 国产一区二区亚洲精品在线观看| 蜜桃亚洲精品一区二区三区| 九九在线视频观看精品| 日韩强制内射视频| 亚洲精品一区蜜桃| 国产av在哪里看| 一级毛片我不卡| 中国美白少妇内射xxxbb| 两个人的视频大全免费| 国产免费福利视频在线观看| 男女边吃奶边做爰视频| 欧美成人免费av一区二区三区| 人妻夜夜爽99麻豆av| 免费大片18禁| 美女被艹到高潮喷水动态| 免费观看a级毛片全部| 18禁在线无遮挡免费观看视频| 久久精品国产亚洲av天美| 狠狠狠狠99中文字幕| 最近视频中文字幕2019在线8| 国产色爽女视频免费观看| 2022亚洲国产成人精品| 99国产精品一区二区蜜桃av| 午夜精品一区二区三区免费看| 日本免费一区二区三区高清不卡| 国产精品久久久久久av不卡| 可以在线观看毛片的网站| 婷婷色综合大香蕉| 午夜福利视频1000在线观看| 欧美+日韩+精品| 亚州av有码| 99热这里只有是精品在线观看| 国产成人精品久久久久久| 日韩高清综合在线| 熟妇人妻久久中文字幕3abv| АⅤ资源中文在线天堂| 国产精品野战在线观看| 国产精品精品国产色婷婷| 亚洲成av人片在线播放无| 国产精品爽爽va在线观看网站| 亚洲成av人片在线播放无| 中国国产av一级| 欧美人与善性xxx| 校园人妻丝袜中文字幕| 欧美不卡视频在线免费观看| 一区二区三区乱码不卡18| 精品国产露脸久久av麻豆 | 精品久久久久久久末码| 日本黄色视频三级网站网址| 一本久久精品| www.av在线官网国产| 一级毛片电影观看 | av.在线天堂| 91在线精品国自产拍蜜月| 成人二区视频| 精品酒店卫生间| 在线免费观看不下载黄p国产| 日韩 亚洲 欧美在线| 啦啦啦观看免费观看视频高清| 如何舔出高潮| 久久精品国产鲁丝片午夜精品| 国产 一区 欧美 日韩| 亚洲人成网站在线观看播放| 日韩,欧美,国产一区二区三区 | 国产精品无大码| 黄片wwwwww| 中文字幕熟女人妻在线| 午夜爱爱视频在线播放| 99久久精品一区二区三区| 亚洲丝袜综合中文字幕| 国产免费一级a男人的天堂| 草草在线视频免费看| 一区二区三区免费毛片| 亚洲精品乱码久久久v下载方式| 久久久久国产网址| 免费观看a级毛片全部| 亚洲av熟女| 亚洲av不卡在线观看| 欧美不卡视频在线免费观看| 欧美性感艳星| 国产精品乱码一区二三区的特点| 18禁在线无遮挡免费观看视频| 国产av码专区亚洲av| 波野结衣二区三区在线| 午夜精品在线福利| 男人舔奶头视频| 超碰97精品在线观看| 色噜噜av男人的天堂激情| 久久精品国产鲁丝片午夜精品| 五月伊人婷婷丁香| 国产在线一区二区三区精 | 国产精品久久久久久久久免| 九九久久精品国产亚洲av麻豆| 中文字幕人妻熟人妻熟丝袜美| 亚洲自偷自拍三级| 看黄色毛片网站| 中国国产av一级| 国产成人freesex在线| 男女视频在线观看网站免费| 日本免费在线观看一区| 国产精品一区www在线观看| 久久99精品国语久久久| 欧美成人精品欧美一级黄| 亚洲国产精品专区欧美| 精品久久久噜噜| 久久精品综合一区二区三区| 日韩国内少妇激情av| 亚洲国产精品成人综合色| 国产熟女欧美一区二区| 少妇熟女欧美另类| 九九热线精品视视频播放| 非洲黑人性xxxx精品又粗又长| 永久免费av网站大全| 免费观看人在逋| 免费人成在线观看视频色| 99久久精品热视频| 亚洲美女搞黄在线观看| 五月伊人婷婷丁香| 欧美3d第一页| 日产精品乱码卡一卡2卡三| 少妇熟女欧美另类| 两个人的视频大全免费| 美女cb高潮喷水在线观看| 一级黄色大片毛片| av卡一久久| 国产精品1区2区在线观看.| 卡戴珊不雅视频在线播放| 内射极品少妇av片p| 亚洲av电影在线观看一区二区三区 | 国产精品久久久久久久电影| 久久午夜福利片| 国产毛片a区久久久久| 校园人妻丝袜中文字幕| 亚洲国产日韩欧美精品在线观看| 亚洲精品色激情综合| 亚洲不卡免费看| 精品久久久久久久久亚洲| 99热全是精品| 国产爱豆传媒在线观看| 国产老妇伦熟女老妇高清| 精品国产露脸久久av麻豆 | 精品国产三级普通话版| 老司机福利观看| 91aial.com中文字幕在线观看| 午夜激情欧美在线| 22中文网久久字幕| 人妻少妇偷人精品九色| 亚洲欧美精品自产自拍| 国产人妻一区二区三区在| 日本五十路高清| 精品99又大又爽又粗少妇毛片| 免费不卡的大黄色大毛片视频在线观看 | 久久久欧美国产精品| 日本爱情动作片www.在线观看| 精品国产露脸久久av麻豆 | 久久精品久久精品一区二区三区| 亚洲在久久综合| 亚洲精品乱久久久久久| 国产乱来视频区| 日韩一区二区三区影片| 女的被弄到高潮叫床怎么办| 久久久久国产网址| 国产男人的电影天堂91| 一级黄片播放器| 内射极品少妇av片p| 丰满人妻一区二区三区视频av| 插阴视频在线观看视频| videos熟女内射| 日本五十路高清| av卡一久久| 黄色欧美视频在线观看| 成人三级黄色视频| 最后的刺客免费高清国语| 中文字幕av在线有码专区| 男人舔女人下体高潮全视频| 在现免费观看毛片| 久久精品国产亚洲av涩爱| 97人妻精品一区二区三区麻豆| 天天躁夜夜躁狠狠久久av| 1024手机看黄色片| 成人高潮视频无遮挡免费网站| 午夜亚洲福利在线播放| 建设人人有责人人尽责人人享有的 | 非洲黑人性xxxx精品又粗又长| 久久热精品热| 国产精品美女特级片免费视频播放器| 国产女主播在线喷水免费视频网站 | 欧美一区二区亚洲| 伦精品一区二区三区| 欧美性感艳星| 搞女人的毛片| 免费大片18禁| 亚洲,欧美,日韩| 欧美激情在线99| 女人久久www免费人成看片 | 国产av码专区亚洲av| 2021少妇久久久久久久久久久| 精品一区二区三区人妻视频| 亚洲最大成人手机在线| 国产精品综合久久久久久久免费| 亚洲成人久久爱视频| 蜜臀久久99精品久久宅男| 干丝袜人妻中文字幕| 亚洲国产精品sss在线观看| 又爽又黄无遮挡网站| 26uuu在线亚洲综合色| av黄色大香蕉| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 五月伊人婷婷丁香| 国产久久久一区二区三区| 久久久久久久久大av| 精品久久久噜噜| 少妇的逼好多水| 可以在线观看毛片的网站| 日本猛色少妇xxxxx猛交久久| 中文字幕av在线有码专区| 最近视频中文字幕2019在线8| 国产午夜精品一二区理论片| 深爱激情五月婷婷| 久久久久国产网址| 国产精品久久视频播放| 亚洲中文字幕一区二区三区有码在线看| 狂野欧美白嫩少妇大欣赏| 亚洲成人精品中文字幕电影| 亚洲av电影不卡..在线观看| 亚洲不卡免费看| 久久久久久伊人网av| 看片在线看免费视频| 我要看日韩黄色一级片| 欧美高清成人免费视频www| 青春草亚洲视频在线观看| 国产免费男女视频| 欧美一区二区亚洲| 亚洲在久久综合| 国产精品久久久久久av不卡| 国产成人freesex在线| 久久久久久九九精品二区国产| 国内精品宾馆在线| 美女脱内裤让男人舔精品视频| 国产精品熟女久久久久浪| 寂寞人妻少妇视频99o| 亚洲欧美一区二区三区国产| 人人妻人人澡欧美一区二区| 中文字幕亚洲精品专区| 免费av毛片视频| 一级毛片aaaaaa免费看小| 最近视频中文字幕2019在线8| 久久久久国产网址| 97热精品久久久久久| 亚洲精品aⅴ在线观看| 在线免费十八禁| 免费观看a级毛片全部| 国产在线男女| 国产在视频线精品| 五月伊人婷婷丁香| 午夜免费男女啪啪视频观看| 日韩欧美精品免费久久| 国产 一区精品| 可以在线观看毛片的网站| 成人无遮挡网站| 深夜a级毛片| 小蜜桃在线观看免费完整版高清| 亚洲欧美清纯卡通| 久久精品国产自在天天线| 91精品一卡2卡3卡4卡| 一本一本综合久久| 日韩制服骚丝袜av| 国产成人一区二区在线| 国产精品久久久久久精品电影小说 |