• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Factor-graph-based iterative channel estimation and signal detection algorithm over time-varying frequency-selective fading channels

    2015-04-22 02:38:54ZHAOHongjie趙宏杰WUNan武楠WANGHua王華LIZhixin李智信KUANGJingming匡鏡明
    關鍵詞:王華

    ZHAO Hong-jie(趙宏杰), WU Nan(武楠) , WANG Hua(王華),LI Zhi-xin(李智信), KUANG Jing-ming(匡鏡明)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Factor-graph-based iterative channel estimation and signal detection algorithm over time-varying frequency-selective fading channels

    ZHAO Hong-jie(趙宏杰), WU Nan(武楠), WANG Hua(王華),LI Zhi-xin(李智信), KUANG Jing-ming(匡鏡明)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    The problem of soft-input soft-output (SISO) detection for time-varying frequency-selective fading channels is considered. Based on a suitably-designed factor graph and the sum-product algorithm, a low-complexity iterative message passing scheme is proposed for joint channel estimation, equalization and decoding. Two kinds of schedules (parallel and serial) are adopted in message updates to produce two algorithms with different latency. The computational complexity per iteration of the proposed algorithms grows only linearly with the channel length, which is a significantly decrease compared to the optimal maximum a posteriori (MAP) detection with the exponential complexity. Computer simulations demonstrate the effectiveness of the proposed schemes in terms of bit error rate performance.

    factor graph; message passing; frequency-selective fading channel; soft-input soft-output (SISO) detection; turbo equalization

    In wireless communication systems, inter-symbol interference (ISI) results in unacceptable detection over frequency-selective fading channels. Thus the equalization strategies are necessary to compensate the ISI efficiently. The optimal equalizer can be implemented by the max a posteriori (MAP) algorithm, or the Viterbi and soft-output Viterbi algorithms[1]. However, these optimal equalizers suffer high complexity and depend on acquisition of the exact channel state information. Therefore, joint channel estimation and equalization algorithm is demanded for practical applications.

    In the last decade, turbo equalization[2]has been proven to be a near-optimal solution with reasonable complexity[3-4]. Recently, the iterative receivers have been redesigned by factor graphs and message passing algorithms for their low complexity[5-8]. Several new algorithms were developed for both unconstrained and constrained linear equalization[9]. Focusing on channels with known ISI, FDM and CDMA systems, some novel algorithms for SISO detection were presented over linear channels with reduced complexity[10]. Some other problems have also been benefited from message passing algorithms, for instance, SISO detection in MIMO systems[11-13], iterative multiuser detection in CDMA systems[14-15], and iterative receiver in strong phase noise channels[16-17], etc.

    In consideration of rapidly time variations of wireless channels due to high mobility and unavailability of CSI at the receiver, this paper proposes an iterative soft-in soft-output detection scheme by applying message passing algorithm on a suitable designed factor graph for joint channel estimation, equalization and decoding over frequency-selective fading channels. The computational complexity of the proposed detector increases only linearly with the channel memory length, which is a significant reduction compared with the optimal MAP detection.

    1 System model

    Consider an LDPC-coded singer-carrier communication system over a frequency-selective Rayleigh fading channel of lengthL. At the transmitter, information bit sequenceb{bk} is first encoded to produce the coded bit sequencec{ck}, denoted by encoding functionc=fc(b)∈C. The coded bits are mapped to symbol sequencex{xk} byM-PSK constellation A, denoted by mapping functionx=fx(c)∈A, and then transmitted over frequency-selective Rayleigh fading channel. At the receiver, assuming perfect carrier recovery and timing synchronization, the equivalent baseband received signal at time instantkis given by

    (1)

    (2)

    r=Hx+n

    (3)

    where H is a (K+L-1)×KToeplitz channel matrix with entries

    (4)

    Throughout this paper,knowledge of the channel matrix H and the statistics of the noise vectornare practically unknown and have to be estimated at receiver side.

    2 Factor graph representation

    The optimal decision rule that minimizes bit error rate (BER) follows the maximum a posteriori (MAP) criterion[1], given by

    (5)

    whereP(bi|r) denotes the a posteriori probability mass function (pmf) of theith information bitbigiven the received signal vector r. This can be obtained by marginalizing the joint posterior probability distribution functionp(b,c,x,H|r), which can be factorized as

    p(b,c,x,H|r)∝p(r|x,H)p(x|c)p(c|b)p(b)p(H)∝I[c=fc(b)]I[x=fx(c)]p(r|x,H)p(b)p(H)

    (6)

    whereI[c=fc(b)] andI[x=fx(c)] denote the code and mapping constraint indicator function, respectively.p(b) defines the a priori bit information which can be factorized easily according to the uniform i.i.d. assumption.

    The factorization ofp(b,c,x,H|r) leads to the factor graph representation shown in Fig.1, where the factor nodesp(r|x,H) andp(H) correspond to the equalizer and channel estimator, respectively. Applying sum-product algorithm (SPA) on the FG, we can obtain a suboptimal but low complexity iterative message passing algorithm since the graph is cyclic[6]. The equalizer uses the received signal vector, the channel state information and the a priori information from the decoder to compute extrinsic log-likelihoods of every transmitted symbol, which are then soft demapped and decoded. The SISO decoder compute extrinsic log-likelihood ratios (LLRs), which will be fed into the equalizer and channel estimator as a priori information after soft mapping. After several iterations of soft information exchange between the SISO decoder, SISO equalizer and the channel estimator, it is stopped when a maximum iteration number is reached. Then the estimates of transmitted information bits can be obtained by the channel decoder with hard decision.

    Fig.1 Factor graph of the factorization in Eq.(6)

    3 Proposed message passing algorithm

    3.1 Decoder and demapper

    (7)

    (8)

    (9)

    3.2 Channel estimator

    Since the channel taps are continuous random variables, the messages propagating on edges adjacent to the channel tap nodes are probability density functions (pdfs). The SPA applied for continuous random variables involves the integration of pdfs, which lead to intractable computations for practical implementation. Thus, we use parameterized canonical distributions[6]as the outgoing messages of the channel tap nodes. Specifically, the impulse at estimated value is selected to approximate the actual density of the channel tap, given by

    pu(hk)=δ(hk-k)

    (10)

    which further simplifies the message calculation of the equalizer nodes in next section. Then only the estimated valuekat time indexkneeds to be computed. The optimal linear minimum mean square error (LMMSE) estimate[16]of the complex channel tap can be obtained by

    (11)

    whereNis the length (assumed odd) of a finite-impulse response (FIR) filter and the filter coefficientsωi,jcan be obtained by solving the Wiener-Hopf equations[3]. Note that the optimal Wiener solution requires knowledge of the channel autocorrelation function and the matrix inverse calculation. If the normalized fade rate is slow (fdTs?1) and the filter lengthNis small enough (N?(fdTs)-1), we can approximate the filter coefficients to be equal as

    (12)

    (13)

    At first iteration, only pilot symbols are used to calculate the initial estimates of the channel taps and noise variance. In subsequent iterations, symbol estimates and pilot symbols are used together to obtain refined channel estimates.

    3.3 SISO detector

    The likelihood functionp(r|x,H) can be expressed as

    (14)

    (15)

    with the functions

    (16)

    (17)

    Fig.2 shows the detector section for three time instants of the corresponding factor graph in Fig. 1. The nodeUk,ldenotes the inter-symbol interference betweenxkandxk-l. Note that the marginalization cannot be exactly carried out by applying the SPA to the factor graph in Fig.2 as it contains cycles[6]. On the other hand, we can see that the cycles cannot be lower than six according to the factorization in Eq.(15). Therefore, in this case SPA can make a good approximation of the exact marginalization.

    Fig.2 Three equalizer sections of the factor graph for L=3

    (18)

    (19)

    (20)

    (21)

    (22)

    (23)

    Based on the factorization method in Eq.(15), we note that function nodesUk,lalways have degree of two, whose number increases linearly with the length of the channel. Thus, the describing message passing algorithm has a complexity per iteration which is linear with the channel length. It is a significant complexity reduction compared to the optimal MAP symbol detection with exponential complexity in the number of channel length.

    3.4 Schedule

    Due to the existence of cycles in the FG, the schedule for the message passing cannot be unique[6]. Here, we employ two different schedules, which result in two different SISO equalizers. One is a parallel schedule inspired by flooding schedule in LDPC decoding whose latency does not depend on the symbol lengthK. The other is a serial schedule executed by the forward and backward recursion with latency linearly increasing with the symbol lengthK. Both schedules iterate only once before passing out the extrinsic messages due to more self-iterations can provide negligible gains[10]. For parallel schedule, the message computation sequence is as follows.

    ① Update allPAPP(xk) in parallel for allk.

    ④ Update allPAPP(xk) again and then calculate all extrinsic messagesPu(xk) for allk.

    For serial schedule, the message computation sequence is as follows.

    ③ Update all messagesPu(xk).

    Finally, the message updating schedule for the entire factor graph starts from the initialization of channel estimation based on pilot symbols. Then a parallel or serial schedule is executed just one self-iteration before sending the extrinsic messages to the decoder. The decoder uses standard belief propagation decoding algorithm to calculate the a posteriori probability of information bits and feeds back extrinsic information to the detector and channel estimator. The algorithm stops if a valid codeword is found by checking the code syndrome or a predefined iteration number is reached.

    4 Simulation results

    Computer simulations are conducted to evaluate the performance of the proposed algorithms for single-carrier coded transmission system. The BER performances of several schemes are compared. The first is pilot-based channel estimation using linear interpolation with no iteration. The second is a genie-aided receiver using the proposed detector with perfect knowledge of the channel. The third uses the proposed message passing algorithm for iterative channel estimation and detection with serial/parallel schedules. Moreover, the optimal performance bound, denoted by AWGN bound which corresponds to the system under AWGN channel without ISI, is also shown as a reference benchmark. The simulation uses a (3,6)-regular LDPC code with codeword length of 1920 and gray-mapping QPSK modulation. The channel length isL=3 with equal average power and the total energy are normalized to unity. A typical Doppler ratefDTs=0.005 is considered and each pilot symbol is periodically inserted in every 20 data symbols for the initialization of channel estimation. The length of moving average filter is selected asN=75. A maximum of 10 iterations is allowed. The results are averaged over Monte Carlo simulations after 1 000 independent bit errors are observed.

    Fig. 3 shows the BER performance of the proposed algorithm compared with other receiver schemes. As no feedback information from decoder is used to assist channel estimation and equalization, the pilot-based non-iterative receiving algorithm has a poor BER performance, when BER=10-4there is about 7.9 dB SNR loss compared to the optimal MAP detector. On the other hand, when the CSI is known at receiver, factor-graph-based joint iterative equalization and decoding algorithms can continually increase the estimation accuracy of symbol posterior probability at the equalizer by iteratively exchanging soft information of the symbols between equalizer node and decoder node in factor graph, and then significantly improve the BER performance of the decoder. As we can seen in Fig.3, the above-mentioned algorithms can achieve the BER performance close to the optimal MAP detection, in which the algorithms based on serial schedule and parallel schedule exist only 0.45 dB and 0.70 dB SNR loss respectively. However, due to low latency characteristics, the parallel schedule is more applicable in practical implementation. Moreover, the computational complexity of the iterative message passing algorithm can achieve only linearly to the channel memory length, which is a great reduction compared to the optimal MAP symbol detector with exponential complexity. When the CSI is unknown at receiver, the proposed iterative message passing algorithms for joint channel estimation, equalization and decoding could also obtain favorable performance with low complexity. Compared with the known CSI case, the algorithms based on serial schedule and parallel schedule exist 1.95 dB and 1.80 dB SNR loss respectively.

    Fig.3 BER performance of the proposed algorithm

    Fig. 4 shows the performance of channel estimation in terms of mean square error (MSE) versus SNR. The MMSE of the optimal Wiener filter is also given as a reference lower bound. As can be seen, the MSE of channel estimation decreases with the increase of SNR and the number of iteration. Only after first iteration, the MSE of the proposed algorithm is significantly lower than that of pilot-based algorithm. After 10 iterations of message passing, the MSE of the proposed algorithm gradually approaches the MMSE bound within high SNR region, as high reliability of symbol extrinsic information can be obtained from decoder feedback.

    Fig.4 MSE performance of channel estimation

    5 Conclusion

    In this paper, we have proposed a SISO detector for iteratively joint channel estimation, equalization and decoding over frequency-selective fading channel. The proposed detector is obtained by applying SPA to a suitable designed factor graph, which represents the factorization of the joint posterior probability distribution function of the transmitted symbols and the channel coefficients. Based on SPA, we derive the message computation rules and develop two different schedules for message updates. Simulation results show that, the proposed algorithms with both schedules can achieve a satisfactory BER performance after several iterations, while with a significant complexity reduction with respect to the optimal MAP detector.

    [1] Tse D, Viswanath P. Fundamentals of wireless communications [M]. Cambridge: Cambridge University Press, 2005.

    [2] Koetter R, Singer A C, Tuchler M. Turbo equalization [J]. IEEE Signal Processing Magazine, 2004, 21(1):67-80.

    [3] Valenti M C, Woerner B D. Iterative channel estimation and decoding of pilot symbol assisted turbo codes over flat-fading channels [J]. IEEE Journal on Selected Areas in Communications, 2001, 19(9): 1697-1705.

    [4] Su H J, Geraniotis E. Low-complexity joint channel estimation and decoding for pilot symbol-assisted modulation and multiple differential detection systems with correlated Rayleigh fading [J]. IEEE Transactions on Communication, 2002, 50(2): 249-261.

    [5] Wymeersch H. Iterative receiver design [M]. Cambridge: Cambridge University Press, 2007.

    [6] Kschischang F R, Frey B J, Loeliger H A. Factor graphs and the sum-product algorithm [J]. IEEE Transactions on Information Theory, 2001, 47(2): 498-519.

    [7] Colavolpe G, Germi G. Simple iterative detection schemes for ISI channels [C]∥International Symposium on Turbo Codes & Related Topics, Brest, France, 2003.

    [8] Lu B, Yue G S, Wang X D, et al. Factor-graph-based soft self-iterative equalizer for multipath channels [J]. EURASIP Journal on Wireless Communications and Networking, 2005, 2005(2): 187-196.

    [9] Drost R J, Singer A C. Factor-graph algorithms for equalization [J]. IEEE Transactions on Signal Processing, 2007, 55(5): 2052-2065.

    [10] Colavolpe G, Fertonani D, Piemontese A. SISO detection over linear channels with linear complexity in the number of interferers [J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(8): 1475-1485.

    [11] Etzlinger B, Haselmayr W, Springer A. Equalization algorithms for MIMO communication systems based on factor graphs [C]∥2011 IEEE International Conference on Communication, Kyoto, Japan, 2011.

    [12] Kaynak M N, Duman T M, Kurtas E M. Belief propagation over SISO/MIMO frequency selective channels [J]. IEEE Transaction on Wireless Communications, 2007, 6(6): 2001-2005.

    [13] Haselmayr W, Etzlinger B, Springer A. Factor-graph-based soft-input soft-output detection for frequency-selective MIMO channels [J]. IEEE Communication Letter, 2012, 16(10): 1624-1627.

    [14] Tan P H, Rasmussen L K. Belief propagation for coded multiuser detection [C]∥IEEE International Symposium on Information Theory, Seattle, the United States, 2006.

    [15] Aktas E. Iterative message passing for pilot-assisted multiuser detection in MC-CDMA systems [J]. IEEE Transaction on Communications, 2012, 60(11): 3353-3364.

    [16] Zhao H J, Wu N, Wang H, et al. Factor-graph-based iterative receiver design in the presence of strong phase noise[C]∥IEEE Vehicular Technology Conference Spring, Yokohama, Japan, 2012.

    [17] Zhao H J, Wu N, Wang H, et al. Particle swarm enhanced graph-based iterative receiver with phase noise and frequency offset [C]∥Wireless Communications and Signal Processing, Hangzhou, China, 2013.

    [18] Haykin S. Adaptive filter theory information and system science series[M]. Englewood Cliffs, NJ: Prentice-Hall, 1996.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004-0579.201524.0410

    TN 911 Document code: A Article ID: 1004- 0579(2015)04- 0494- 07

    Received 2014- 03- 28

    Supported by the National Natural Science Foundation of China(61201181);Specialized Research Fund for the Doctoral Program of Higher Education(20121101120020);the Co-innovation Laboratory of Aerospace Broadband Network Technology

    E-mail: wunan@bit.edu.cn

    猜你喜歡
    王華
    請你幫個忙
    請你幫個忙
    金山(2024年12期)2024-12-29 00:00:00
    旅游目的地全面關系流管理研究
    旅游學刊(2022年5期)2022-05-31 23:55:43
    勸退原配
    老媽的高招
    三月三(2017年11期)2018-01-09 18:58:41
    老媽的高招
    三月三(2017年11期)2018-01-09 02:48:44
    江蘇省僑辦主任王華:僑的力量推動著我
    華人時刊(2017年13期)2017-11-09 05:38:47
    王華主任隨江蘇新聞文化參訪團赴臺訪問圓滿成功
    華人時刊(2017年13期)2017-11-09 05:38:46
    從時尚攝影師到新農(nóng)民,15年走了一條回歸路
    王華主任會見韓國知識文化財團理事長辛圣恩一行
    華人時刊(2016年16期)2016-04-05 05:57:24
    国产一区有黄有色的免费视频| 黄色欧美视频在线观看| 欧美97在线视频| 国产伦理片在线播放av一区| 亚洲av国产av综合av卡| 成人国产麻豆网| 亚州av有码| 国产精品精品国产色婷婷| 春色校园在线视频观看| 麻豆成人午夜福利视频| 久久精品国产鲁丝片午夜精品| 国产免费又黄又爽又色| a级一级毛片免费在线观看| 国产黄片美女视频| 免费播放大片免费观看视频在线观看| 久久韩国三级中文字幕| 国产美女午夜福利| 国产成人a∨麻豆精品| 男女边摸边吃奶| 男女免费视频国产| 国产精品一区二区在线观看99| 亚洲人成网站在线观看播放| 日韩 欧美 亚洲 中文字幕| 国产日韩欧美在线精品| 精品视频人人做人人爽| 80岁老熟妇乱子伦牲交| 成人午夜精彩视频在线观看| 精品人妻在线不人妻| 久久精品aⅴ一区二区三区四区| 一个人免费看片子| av欧美777| 少妇被粗大的猛进出69影院| 国产欧美日韩精品亚洲av| 国产精品一区二区在线观看99| 肉色欧美久久久久久久蜜桃| 成在线人永久免费视频| 成人亚洲欧美一区二区av| 狠狠精品人妻久久久久久综合| 欧美日韩av久久| 我要看黄色一级片免费的| 欧美国产精品va在线观看不卡| 亚洲国产欧美网| 好男人视频免费观看在线| 亚洲国产最新在线播放| 久久国产精品影院| 老熟女久久久| 久热这里只有精品99| 18禁观看日本| 亚洲欧美中文字幕日韩二区| 在线观看免费高清a一片| 啦啦啦在线免费观看视频4| 午夜福利视频精品| 高潮久久久久久久久久久不卡| 国产成人av激情在线播放| av不卡在线播放| 中文字幕亚洲精品专区| 国产精品一区二区在线观看99| 91国产中文字幕| 国产麻豆69| 精品久久蜜臀av无| 亚洲天堂av无毛| 亚洲精品成人av观看孕妇| 老司机影院成人| 一区二区三区激情视频| 亚洲熟女毛片儿| 激情视频va一区二区三区| 亚洲 国产 在线| 国产成人欧美| 嫩草影视91久久| 天天影视国产精品| 老汉色av国产亚洲站长工具| 中文字幕人妻丝袜制服| 99国产精品一区二区蜜桃av | 亚洲情色 制服丝袜| 亚洲精品久久午夜乱码| 丁香六月欧美| 日日爽夜夜爽网站| 一区二区三区乱码不卡18| 伊人久久大香线蕉亚洲五| 久久久国产精品麻豆| 免费在线观看黄色视频的| 欧美日韩视频高清一区二区三区二| 欧美精品啪啪一区二区三区 | 亚洲av日韩在线播放| 国产精品一区二区在线观看99| 叶爱在线成人免费视频播放| 久久精品国产亚洲av高清一级| 人体艺术视频欧美日本| 国产福利在线免费观看视频| 2018国产大陆天天弄谢| 一边摸一边做爽爽视频免费| 啦啦啦啦在线视频资源| 最近手机中文字幕大全| 18禁黄网站禁片午夜丰满| 国产一卡二卡三卡精品| 亚洲一区中文字幕在线| av一本久久久久| 大香蕉久久成人网| 九草在线视频观看| 国产精品国产av在线观看| 久久狼人影院| 欧美av亚洲av综合av国产av| 激情视频va一区二区三区| 午夜福利视频精品| 又粗又硬又长又爽又黄的视频| 一级,二级,三级黄色视频| 国产成人精品久久二区二区91| 日韩一本色道免费dvd| 国产97色在线日韩免费| 国产精品久久久久成人av| 免费在线观看影片大全网站 | 国产又爽黄色视频| videos熟女内射| 乱人伦中国视频| 欧美黑人精品巨大| 久久久久精品人妻al黑| 国产福利在线免费观看视频| 人人妻人人添人人爽欧美一区卜| 九色亚洲精品在线播放| 亚洲国产毛片av蜜桃av| 亚洲视频免费观看视频| 久久精品熟女亚洲av麻豆精品| 深夜精品福利| 成在线人永久免费视频| 亚洲一区二区三区欧美精品| 国产国语露脸激情在线看| 一边亲一边摸免费视频| 亚洲精品在线美女| 亚洲av日韩精品久久久久久密 | 日本wwww免费看| 精品一区二区三区av网在线观看 | 欧美 日韩 精品 国产| 国产精品99久久99久久久不卡| 亚洲中文字幕日韩| 91成人精品电影| 亚洲久久久国产精品| 亚洲av日韩在线播放| 在线观看免费日韩欧美大片| 亚洲国产欧美在线一区| 在现免费观看毛片| 免费在线观看完整版高清| 久9热在线精品视频| 精品高清国产在线一区| 久久久国产欧美日韩av| 超色免费av| 亚洲,一卡二卡三卡| 久久久国产欧美日韩av| 欧美成狂野欧美在线观看| 国产人伦9x9x在线观看| 美女国产高潮福利片在线看| 好男人电影高清在线观看| 免费少妇av软件| 两个人免费观看高清视频| 免费看不卡的av| 波野结衣二区三区在线| 亚洲七黄色美女视频| 成年人黄色毛片网站| 精品第一国产精品| 丁香六月天网| 母亲3免费完整高清在线观看| 国产精品一区二区在线不卡| 伊人久久大香线蕉亚洲五| 国产免费福利视频在线观看| 日日夜夜操网爽| av天堂在线播放| 黄频高清免费视频| 久久久久久久精品精品| 久久国产精品男人的天堂亚洲| 久久久久久久久久久久大奶| netflix在线观看网站| 少妇粗大呻吟视频| 国产精品九九99| 汤姆久久久久久久影院中文字幕| 久久久精品国产亚洲av高清涩受| 熟女少妇亚洲综合色aaa.| 青青草视频在线视频观看| 精品国产国语对白av| 久久久久网色| 亚洲伊人色综图| 19禁男女啪啪无遮挡网站| 99久久精品国产亚洲精品| a级毛片黄视频| 久久亚洲国产成人精品v| 国产一区二区在线观看av| 亚洲精品日本国产第一区| 在线精品无人区一区二区三| 2018国产大陆天天弄谢| 每晚都被弄得嗷嗷叫到高潮| 天天操日日干夜夜撸| av国产精品久久久久影院| 国产成人系列免费观看| 午夜av观看不卡| 丰满迷人的少妇在线观看| 精品福利观看| 悠悠久久av| 国产一区有黄有色的免费视频| 日韩 欧美 亚洲 中文字幕| av有码第一页| 嫁个100分男人电影在线观看 | 亚洲精品在线美女| cao死你这个sao货| 久久精品久久精品一区二区三区| 亚洲精品国产av成人精品| 中文精品一卡2卡3卡4更新| 黄色毛片三级朝国网站| 一级黄色大片毛片| 亚洲第一av免费看| 久久精品国产亚洲av高清一级| 免费在线观看黄色视频的| 亚洲精品久久午夜乱码| 国产高清国产精品国产三级| 女人爽到高潮嗷嗷叫在线视频| 老司机靠b影院| www.999成人在线观看| 国产成人欧美在线观看 | 伊人亚洲综合成人网| 国产1区2区3区精品| 午夜福利一区二区在线看| 国产成人一区二区三区免费视频网站 | 久久国产精品影院| 亚洲七黄色美女视频| 免费在线观看日本一区| 日韩视频在线欧美| 欧美日韩福利视频一区二区| 久久久精品区二区三区| 纵有疾风起免费观看全集完整版| 精品卡一卡二卡四卡免费| avwww免费| 精品福利永久在线观看| 高清欧美精品videossex| 男女床上黄色一级片免费看| 亚洲欧美一区二区三区黑人| 午夜91福利影院| 欧美在线黄色| 日韩制服骚丝袜av| 国产无遮挡羞羞视频在线观看| 成年美女黄网站色视频大全免费| 国产一区二区 视频在线| 十八禁高潮呻吟视频| 这个男人来自地球电影免费观看| 美女国产高潮福利片在线看| 大陆偷拍与自拍| 在线观看国产h片| 午夜影院在线不卡| 亚洲av成人精品一二三区| 曰老女人黄片| 色网站视频免费| 青春草亚洲视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 香蕉国产在线看| 曰老女人黄片| 日本a在线网址| 真人做人爱边吃奶动态| 捣出白浆h1v1| 亚洲av电影在线观看一区二区三区| 国产亚洲精品第一综合不卡| 久久久精品国产亚洲av高清涩受| 欧美日韩亚洲高清精品| 亚洲人成电影观看| 日日夜夜操网爽| 考比视频在线观看| 色综合欧美亚洲国产小说| 欧美日韩亚洲高清精品| 午夜av观看不卡| 日韩 亚洲 欧美在线| 久久女婷五月综合色啪小说| av一本久久久久| 国产一区有黄有色的免费视频| 精品熟女少妇八av免费久了| 国产视频一区二区在线看| 国产有黄有色有爽视频| av国产久精品久网站免费入址| 日韩 欧美 亚洲 中文字幕| 久久久精品国产亚洲av高清涩受| 久久久久久人人人人人| 成人手机av| 欧美精品亚洲一区二区| 精品免费久久久久久久清纯 | 久久精品国产亚洲av高清一级| 91精品国产国语对白视频| 亚洲国产精品999| 国产精品亚洲av一区麻豆| 另类精品久久| 亚洲av国产av综合av卡| 国产黄色视频一区二区在线观看| 国产精品久久久久久人妻精品电影 | 精品国产乱码久久久久久小说| a 毛片基地| 欧美激情高清一区二区三区| 欧美日韩视频高清一区二区三区二| 午夜免费观看性视频| 99久久精品国产亚洲精品| 欧美成人精品欧美一级黄| 这个男人来自地球电影免费观看| 一级a爱视频在线免费观看| 国产精品av久久久久免费| 我的亚洲天堂| 99国产精品免费福利视频| 2018国产大陆天天弄谢| 男女无遮挡免费网站观看| 女人精品久久久久毛片| 新久久久久国产一级毛片| 国产熟女午夜一区二区三区| 国产成人欧美| 欧美人与性动交α欧美精品济南到| 一边摸一边抽搐一进一出视频| 99国产综合亚洲精品| 高潮久久久久久久久久久不卡| 亚洲情色 制服丝袜| 搡老岳熟女国产| 亚洲伊人久久精品综合| 美女视频免费永久观看网站| 成人黄色视频免费在线看| 国产精品免费视频内射| 母亲3免费完整高清在线观看| 超碰成人久久| 亚洲国产精品一区二区三区在线| 日本欧美国产在线视频| 久久99一区二区三区| 无限看片的www在线观看| 亚洲人成77777在线视频| 午夜免费鲁丝| 国产欧美日韩精品亚洲av| 精品第一国产精品| 国产91精品成人一区二区三区 | 大码成人一级视频| 天天影视国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 精品亚洲成a人片在线观看| 一区二区av电影网| 三上悠亚av全集在线观看| 国产精品偷伦视频观看了| 亚洲五月色婷婷综合| 精品免费久久久久久久清纯 | 青草久久国产| 蜜桃国产av成人99| 美女主播在线视频| 国产爽快片一区二区三区| 如日韩欧美国产精品一区二区三区| 亚洲欧美一区二区三区国产| 亚洲黑人精品在线| 美女国产高潮福利片在线看| 电影成人av| 日本欧美国产在线视频| 欧美在线一区亚洲| www日本在线高清视频| 夫妻性生交免费视频一级片| 欧美乱码精品一区二区三区| 久久中文字幕一级| 不卡av一区二区三区| 国产av精品麻豆| 99国产精品99久久久久| 国产高清不卡午夜福利| 夜夜骑夜夜射夜夜干| 亚洲人成77777在线视频| 丝袜美足系列| 国产成人精品在线电影| av电影中文网址| 久久人妻福利社区极品人妻图片 | 亚洲一区二区三区欧美精品| 亚洲三区欧美一区| 久久精品亚洲av国产电影网| 美女视频免费永久观看网站| 免费在线观看黄色视频的| 午夜精品国产一区二区电影| 欧美人与性动交α欧美精品济南到| 亚洲精品国产区一区二| 在线观看免费午夜福利视频| 乱人伦中国视频| 极品人妻少妇av视频| 韩国精品一区二区三区| 日韩制服骚丝袜av| 天天躁狠狠躁夜夜躁狠狠躁| 日韩av免费高清视频| av在线app专区| 欧美精品一区二区大全| 一本大道久久a久久精品| 久久人妻福利社区极品人妻图片 | 一级,二级,三级黄色视频| 午夜激情av网站| 视频区欧美日本亚洲| 黑人猛操日本美女一级片| 精品国产一区二区三区四区第35| 日韩制服骚丝袜av| 欧美亚洲日本最大视频资源| 久久99精品国语久久久| 欧美日韩黄片免| 免费高清在线观看视频在线观看| 久久久精品区二区三区| 欧美日韩福利视频一区二区| 日本五十路高清| 日本vs欧美在线观看视频| 精品亚洲成a人片在线观看| 亚洲精品乱久久久久久| 国产精品香港三级国产av潘金莲 | 19禁男女啪啪无遮挡网站| 中文字幕av电影在线播放| 视频区欧美日本亚洲| 精品卡一卡二卡四卡免费| 人体艺术视频欧美日本| 中文乱码字字幕精品一区二区三区| 欧美在线一区亚洲| 亚洲成人免费电影在线观看 | 国产亚洲精品第一综合不卡| 午夜激情久久久久久久| 国产又色又爽无遮挡免| 丰满迷人的少妇在线观看| 黄片小视频在线播放| 欧美日韩视频高清一区二区三区二| 捣出白浆h1v1| 久久精品国产综合久久久| 黑丝袜美女国产一区| 我要看黄色一级片免费的| 高清黄色对白视频在线免费看| 黄色视频在线播放观看不卡| 18在线观看网站| 婷婷色av中文字幕| 亚洲国产av新网站| 免费少妇av软件| 国产亚洲午夜精品一区二区久久| 国产一卡二卡三卡精品| 国精品久久久久久国模美| 国产成人精品在线电影| 在现免费观看毛片| 丝袜人妻中文字幕| 国产高清视频在线播放一区 | 国语对白做爰xxxⅹ性视频网站| 欧美xxⅹ黑人| 国产精品99久久99久久久不卡| 亚洲人成电影观看| 久久久久久人人人人人| 久久久精品国产亚洲av高清涩受| 亚洲少妇的诱惑av| 自拍欧美九色日韩亚洲蝌蚪91| 欧美在线黄色| 免费av中文字幕在线| 国产精品香港三级国产av潘金莲 | 国产成人一区二区在线| 黄色怎么调成土黄色| 男女床上黄色一级片免费看| 国产1区2区3区精品| 国产一区二区激情短视频 | 麻豆乱淫一区二区| 成在线人永久免费视频| 成人三级做爰电影| 七月丁香在线播放| 少妇 在线观看| 成人亚洲精品一区在线观看| 成年女人毛片免费观看观看9 | 欧美在线黄色| 人人妻人人澡人人看| 久久久久久久国产电影| 日本vs欧美在线观看视频| 在线观看一区二区三区激情| 熟女少妇亚洲综合色aaa.| 少妇被粗大的猛进出69影院| 我的亚洲天堂| 久久女婷五月综合色啪小说| 久久精品亚洲熟妇少妇任你| 亚洲精品久久久久久婷婷小说| 狂野欧美激情性bbbbbb| 久久99精品国语久久久| 婷婷成人精品国产| 久久久精品国产亚洲av高清涩受| 少妇精品久久久久久久| 亚洲国产中文字幕在线视频| 亚洲成人国产一区在线观看 | 赤兔流量卡办理| 成人国语在线视频| 日韩中文字幕欧美一区二区 | 99国产精品99久久久久| 欧美老熟妇乱子伦牲交| 久久久精品94久久精品| 国产欧美日韩一区二区三 | 国产一区二区三区综合在线观看| 日本猛色少妇xxxxx猛交久久| 国产xxxxx性猛交| 国产成人免费观看mmmm| 欧美日韩亚洲高清精品| 久久精品成人免费网站| 超碰成人久久| 国产av精品麻豆| 美女福利国产在线| 十八禁网站网址无遮挡| 欧美精品av麻豆av| 国产主播在线观看一区二区 | 亚洲第一av免费看| 成年女人毛片免费观看观看9 | 精品国产一区二区久久| 日韩电影二区| 成人18禁高潮啪啪吃奶动态图| 啦啦啦 在线观看视频| 亚洲欧美一区二区三区久久| 中国美女看黄片| 18禁观看日本| 亚洲国产中文字幕在线视频| 19禁男女啪啪无遮挡网站| av不卡在线播放| 免费高清在线观看视频在线观看| 亚洲伊人色综图| 夫妻午夜视频| 女性生殖器流出的白浆| 亚洲欧美中文字幕日韩二区| 婷婷色综合大香蕉| 一个人免费看片子| 亚洲情色 制服丝袜| 欧美日韩综合久久久久久| 一二三四在线观看免费中文在| 最新的欧美精品一区二区| 好男人电影高清在线观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲激情五月婷婷啪啪| 伊人久久大香线蕉亚洲五| 一级片'在线观看视频| 久久亚洲国产成人精品v| 99九九在线精品视频| 男女边摸边吃奶| 欧美+亚洲+日韩+国产| 亚洲综合色网址| 一二三四社区在线视频社区8| 高清欧美精品videossex| 在线观看免费日韩欧美大片| 精品亚洲成国产av| 久久国产精品人妻蜜桃| 欧美激情高清一区二区三区| 国产日韩欧美视频二区| 日本一区二区免费在线视频| 欧美在线黄色| 日日爽夜夜爽网站| 男的添女的下面高潮视频| 纯流量卡能插随身wifi吗| 高清av免费在线| 99国产精品免费福利视频| 超碰成人久久| 久9热在线精品视频| 国产真人三级小视频在线观看| 精品第一国产精品| 免费女性裸体啪啪无遮挡网站| 啦啦啦啦在线视频资源| 精品久久蜜臀av无| 日韩,欧美,国产一区二区三区| www日本在线高清视频| 欧美日韩视频精品一区| 少妇精品久久久久久久| 精品少妇久久久久久888优播| 久久精品国产亚洲av高清一级| 老汉色∧v一级毛片| 亚洲成国产人片在线观看| 免费在线观看完整版高清| 一本大道久久a久久精品| 日本av免费视频播放| 丝袜喷水一区| xxxhd国产人妻xxx| cao死你这个sao货| 好男人电影高清在线观看| 男女高潮啪啪啪动态图| 国产免费现黄频在线看| 97人妻天天添夜夜摸| 精品国产乱码久久久久久小说| h视频一区二区三区| 亚洲色图综合在线观看| 满18在线观看网站| 91字幕亚洲| 美女扒开内裤让男人捅视频| 男女床上黄色一级片免费看| 亚洲精品日本国产第一区| 国产欧美日韩综合在线一区二区| 欧美变态另类bdsm刘玥| 精品久久久精品久久久| 制服诱惑二区| 午夜福利乱码中文字幕| 亚洲国产欧美网| 亚洲五月婷婷丁香| 巨乳人妻的诱惑在线观看| 亚洲精品av麻豆狂野| 日韩一本色道免费dvd| av在线app专区| 青青草视频在线视频观看| 在线看a的网站| 亚洲 国产 在线| 久久午夜综合久久蜜桃| 亚洲欧美精品自产自拍| 欧美 日韩 精品 国产| 欧美少妇被猛烈插入视频| 人体艺术视频欧美日本| 国产一级毛片在线| 国产精品欧美亚洲77777| 人人妻人人澡人人爽人人夜夜| 久热爱精品视频在线9| 首页视频小说图片口味搜索 | 久久精品亚洲熟妇少妇任你| 99热国产这里只有精品6| 国产又色又爽无遮挡免| 老司机深夜福利视频在线观看 | 热re99久久国产66热| 大香蕉久久成人网| 男人添女人高潮全过程视频| 久久 成人 亚洲| 亚洲人成电影观看| 久久国产精品男人的天堂亚洲| 少妇猛男粗大的猛烈进出视频| 欧美亚洲 丝袜 人妻 在线| av在线老鸭窝| 看免费av毛片| 亚洲精品日韩在线中文字幕| videos熟女内射| 日日夜夜操网爽| 国产精品国产三级专区第一集| 免费少妇av软件| 99久久综合免费| 亚洲五月婷婷丁香| 久久精品熟女亚洲av麻豆精品| av国产久精品久网站免费入址| 亚洲色图 男人天堂 中文字幕| 日韩欧美一区视频在线观看|