• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel structures and mechanical properties of Zr2N:Ab initio description under high pressures*

    2021-01-21 02:13:34MinruWen文敏儒XingXie謝興ZhixunXie謝植勛HuafengDong董華鋒XinZhang張欣FugenWu吳福根andChongYuWang王崇愚
    Chinese Physics B 2021年1期
    關(guān)鍵詞:張欣

    Minru Wen(文敏儒), Xing Xie(謝興), Zhixun Xie(謝植勛), Huafeng Dong(董華鋒),?, Xin Zhang(張欣),Fugen Wu(吳福根), and Chong-Yu Wang(王崇愚)

    1School of Physics and Optoelectronic Engineering,Guangdong University of Technology,Guangzhou 510006,China

    2School of Materials and Energy,Guangdong University of Technology,Guangzhou 510006,China

    3Department of Physics,Tsinghua University,Beijing 100084,China

    Keywords: phase transition,phonon dispersion,Zr2N,first-principles calculations

    1. Introduction

    As key materials for cutting coatings, super wearresistance, and thermal barrier coatings, group IVB transition metal nitrides (TMNs; TM=Ti, Zr, and Hf) have been widely used in mold-making industries,automobile manufacturing, and aerospace industries owing to their high melting point, excellent chemical stability, corrosion resistance, and metallic conductivity.[1–4]In the TMNs,the well-known stable phase is the stoichiometric B1-TMN compound with a rocksalt structure(space group Fmm). However,the TMNs may display a variety of compositions and phases featuring both cation and nitrogen enrichment.[5–8]Owing to the improvement of high-temperature and high-pressure experimental conditions, novel TMNs such as Th3P4-Zr3N4[9]and I4/mcm-TiN2[10]have been experimentally synthesized and exhibit excellent mechanical properties. With metalloid vacancies displaying long- or short-range order, or both, most TMNs(TMNx,for x=0–1)exist on the metal-rich side(i.e.,x<0.5)of the phase diagram.[5–7]However, compared to transition metal (TM) sub-nitrides, more research has focused on stoichiometric TMNs and nitrogen-rich TMNs. Consequently,an investigation of novel stable crystal structures for metal-rich TMNs under high pressure is essential for the development of practical applications.

    Numerous studies exist on the phase stability, electronic structure,and mechanical properties of Ti-N,[11–17]Zr-N,[11–16,18–20]and Hf-N[12–16,18,21]systems. Recent studies using the evolutionary algorithm/search algorithm and density functional theory(DFT)have investigated the stable structures and possible stoichiometries of the TMN[15–17,20,21]systems. Yu et al.[17]explored the stable structures and possible stoichiometries of the Ti-N system at the pressures of 0 GPa, 20 GPa, and 60 GPa and found the new ground structures Ti3N2, Ti4N3, and Ti6N5at atmospheric pressure and two novel stable phases Cmcm-Ti2N and I4/mcm-TiN2at high pressures (synthesized by Bhadram et al. using the laser-heated diamond anvil cell technique at 73 GPa and 2400 K[10]).Weinberger et al.[15]investigated candidate stable structures of the group IVB and group VB TMNs at ambient pressure and demonstrated that the stable phase of Ti2N and Zr2N is the tetragonal P42/mnm phase, while Hf2N is more energetically favorable in the orthorhombic Pnnm phase. Research by Yu et al.[20]revealed that Fmm-ZrN, P42/mnm-Zr2N,C2/m-Zr4N3,C2/m-Zr6N5,C2/m-Zr8N7,P-Zr15N16,P-Zr7N8, and C2/m-Zr4N5are ground-state structures at 0 GPa and low temperatures. Zhang et al.[21]studied the pressure-composition phase diagram for the Hf-N system under 0–60 GPa and revealed new candidate phases with a Hf:N ratio of 6:1,3:1,and 3:2 at zero pressure.Zirconium as well as Ti and Hf are group IVB TMs whose nitrides display similar phase transitions,chemical bonding,and elasticity. Unlike many studies for titanium and hafnium nitrides, the investigations of novel structural phases of high-pressure zirconium nitrides are limited. Specifically, no theoretical study has yet focused on new crystal structures of Zr-rich nitrides under high pressures.

    Considering this background, the present research focuses on novel crystal configurations of zirconium sub-nitride Zr2N at 0–200 GPa by combining evolutionary searches and first-principles calculations. By calculating the elastic constants and phonon spectra,the mechanical and dynamical stabilities for all candidate structures are evaluated. Additionally,the electronic and mechanical properties of the crystal phases are systematically analyzed to reveal the potential applications of the binary zirconium heminitrides.

    2. Computational methods

    To identify all potential novel Zr2N crystal structures,the evolutionary algorithm method implemented in the USPEX code[22–24]with variable cell number (up to 30 atoms)is performed at pressures of 0 GPa,30 GPa,60 GPa,90 GPa,120 GPa,150 GPa,and 200 GPa. We set the number of structures in the population to be 100,thus producing at random the first generation of structures. The 50 structures in the subsequent generations are produced by heredity(40%),soft mutation(20%),transmutation(20%),and randomness(20%).

    The structural relaxations (i.e., optimization of lattice shape, volume, and atomic positions) and energies of every structure along with all calculations of the properties of interest are executed in the VASP code[25]based on DFT.[26,27]The projector augmented-wave method[28]is adopted for the ionelectron interactions,and the generalized gradient approximation of Perdew et al.[29]is used for the exchange-correlation function. Electrons in the 4s24p64d25s2and 2s22p3orbitals are considered as valence electrons for Zr and N, respectively. The plane-wave kinetic energy cutoff is set to 600 eV.Monkhorst-Pack[30]k-meshes with a resolution of 2π×0.04 ?A are adopted to characterize the energy integration in the Brillouin zone. The criteria for the force on the atoms are set at 0.01 eV/?A for ion self-consistency, while the energy convergence of the electronic self-consistency is set to be 10-5eV per atom.

    Using a 2×2×2 supercell, the phonon dispersion relations are achieved in the framework of density functional perturbation theory[31,32]as implemented in the PHONOPY package[33]as well as the VASP code. The elastic constants are calculated by the strain–stress method,[34]and the elastic moduli (i.e., bulk modulus B, shear modulus G, and Young’s modulus E)as well as Poisson’s ratio ν,are obtained under the Voigt–Reuss–Hill approximation.[35–37]Employing Chen’s model,[38]the theoretical Vickers hardness values are estimated using

    where κ =G/B is the Pugh ratio. The directional dependence of Young’s modulus is also calculated to reveal the anisotropy of all potential Zr2N phases.

    3. Results and discussion

    Fig. 1. Schematic crystal structures of potential Zr2N for (a) P42/mnm, (b) Pnnm, (c) Cmcm, (d) P4/nmm, (e) I4/mcm, (f) P21/m,(g)Pm1,and(h)C2/m phases at 0 GPa. The schematic shows the N atoms(gray circles)in the centers of the gray polyhedrals and the Zr atoms(green circles).

    As displayed in Fig. 1, although the Cmcm, P4/nmm,and P21/m phases belong to different crystal systems and have different symmetries, they demonstrate similar characters wherein all N atoms are octahedrally coordinated by six Zr atoms and the NZr6octahedrons arrange along a uniform direction. In fact,the Cmcm,P4/nmm,and P21/m phases are versions of the rocksalt B1-TiN(space group Fmm,No.225)with ordered N-vacancies. Likewise,vacancy-ordered phases have also been reported for group IVB TMNs[17,21]and carbides.[39,40]In the Pm1 and C2/m phases, N atoms are also centered in the octahedron(composed of Zr atoms)interstices, though NZr6octahedrons arrange along different orientations. There are 12 atoms in a unit cell of the anti-rutile structure of the I4/mcm phase,of which the metal Zr and nonmetal N atoms occupy the Wyckoff 8h and 4a positions, respectively. Each N atom is coordinated by eight Zr atoms,forming a decahedron.This crystal structure naturally reminds us of the I4/mcm-TiN2phase belonging to the same space group,where the metal atoms and nitrogen atoms in I4/mcm-TiN2and I4/mcm-Zr2N phases occupy the opposite Wyckoff positions.However,unlike the short NN dumbbell bond length of I4/mcm-ZrN2,which is as short as 1.424 ?A at 1 atm,[16]the Zr–Zr bond length of I4/mcm-Zr2N is as long as 2.981 ?A at ambient pressure. It can therefore be predicted that the mechanical strength and hardness of I4/mcm-Zr2N will be significantly less than those of I4/mcm-ZrN2.

    To ascertain the thermodynamic stability of the predicted Zr2N configurations, we obtain the formation enthalpies per atom ΔH using

    where H(Zr2N),H(Zr),and H(N2)are the enthalpies per formula unit of Zr2N, P63/mcm-Zr, and α-N2, respectively, at a specific pressure. Our determined formation enthalpies of all Zr2N candidate phases at 0 GPa are summarized in Table 1.It can be seen that P42/mnm-Zr2N is the most stable phase of zirconium heminitride at atmospheric pressure with the formation enthalpy calculated to be-1.2914 eV per atom,which agrees well with the result of-1.249 eV/atom from Ref. [21].As a distorted version of ε-Zr2N(see Figs.1(a)and 1(b)),we note that the ΔH of the Pnnm phase is only slightly higher than that of P42/mnm-Zr2N.As shown in Table 1,the I4/mcm phase exhibits the highest formation enthalpy among the eight phases, indicating that I4/mcm Zr2N is the least energetically favorable phase for zirconium heminitride at 0 GPa.

    Table 1. Structural parameters(lattice constants and atomic coordinates)and formation enthalpies ΔH of the candidate phases of Zr2N at 0 GPa,along with other DFT-predicted values.

    To further investigate the phase transition of Zr2N at high pressure, the enthalpies of these candidate configurations are calculated as a function of pressure up to 200 GPa. Figure 2 plots the calculated enthalpy(relative to the Cmcm phase)per atom as a function of pressure for all candidate phases and the inset shows a detail of the enthalpy-pressure curves for the 3–17 GPa pressure range. As demonstrated in Fig.2,the diverse crossings between different structures in the pressure range of 0–200 GPa indicate the existence of various structural phase transformations for Zr2N under pressure. The P42/mnm-Zr2N transforms to Pnnm-Zr2N at approximately 6.5 GPa, whereupon Pnnm-Zr2N transforms to Cmcm-Zr2N at 16.3 GPa.This is different from the scenario of Ti2N and Hf2N. Specifically,the stable crystal structure of titanium heminitride at the ambient pressure (i.e., P42/mnm-Ti2N) transforms directly to Cmcm-Ti2N at 20.8 GPa.[17]In terms of hafnium heminitride,the orthorhombic Pnnm-Hf2N phase,which is the most stable configuration at atmospheric pressure, transforms to Cmcm-Hf2N at 12.5 GPa.[21]According to Fig.2,though the Cmcm-Zr2N is initially the most energetically favorable when the pressure exceeds 16.3 GPa, other phases become more energetically favorable as the pressure increases further. For example,the P4/nmm-Zr2N phase exhibits a lower enthalpy than Cmcm-Zr2N at 55.2 GPa, as does the P21/m-Zr2N phase at 65.0 GPa, where the P4/nmm-Zr2N phase possesses the lowest enthalpy from 55.2 GPa to 144.4 GPa. When the pressure further increases, the P4/nmm and P21/m phases both transform to the I4/mcm configuration at pressures of 122.8 GPa and 144.4 GPa, respectively. This signifies that the I4/mcm-Zr2N phase is the most energetically-favored structure in the 144.4–200 GPa pressure range. The enthalpies of the Pm1 and C2/m phases are higher than those of the Pnnm phase during the entire studied pressure range,but these phases possess a lower enthalpy than the P42/mnm phase when the pressure exceeds 34.5 GPa and 40.3 GPa,respectively.

    Fig. 2. Calculated enthalpy curves as a function of pressure for the different phases of Zr2N,with reference to the Cmcm phase. Inset: Detail of the enthalpy–pressure curves in the 3–17 GPa pressure range.

    Fig. 3. Phonon dispersion curves for (a) P42/mnm, (b) Pnnm, (c) Cmcm, (d) P4/nmm, (e) I4/mcm, (f) P21/m, (g) Pm1, and (h)C2/m phases at 0 GPa,respectively.

    Next,the dynamical and mechanical stabilities of the candidate Zr2N structures are investigated using the phonon spectra and elastic constants.The calculated phonon frequencies of the five novel structures(P4/nmm,I4/mcm,P21/m,Pm1,and C2/m)and the P42/mnm,Pnnm,and Cmcm phases of Zr2N at atmospheric pressure are plotted in Fig. 3. Clearly, there are no imaginary frequencies for all predicted phases at 0 GPa,signifying that these configurations are all dynamically stable.The calculated phonon dispersion curves of P42/mnm-Zr2N in this study are consistent with previous DFT results.[20]In addition to ambient pressure,we also study the phonon stability of all structures under high pressure. Soft phonons are found in ε-Zr2N,P4/nmm-Zr2N,and C2/m-Zr2N with an initial negative slope at the Γ point(related to crystal instability under a homogeneous deformation)for pressures of 20 GPa,200 GPa,and 120 GPa,respectively. This suggests the existence of mechanical instability in ε-Zr2N,P4/nmm-Zr2N,and C2/m-Zr2N at these corresponding pressures.[41]The Cmcm,I4/mcm,and P21/m phases,however,maintain their phonon stability above 200 GPa, while the Pnnm and Pm1 configurations hold dynamic stability up to 200 GPa and 160 GPa,respectively.

    The elastic constants were obtained using the strainstress method and are summarized in Table 2. The P42/mnm,P4/nmm,and I4/mcm structures belong to the tetragonal crystal system (Laue class of 4/mmm) and have six independent elastic constants. The mechanical stability criteria of the tetragonal crystal are given as[42–44]

    The Pnnm- and Cmcm-Zr2N are both orthorhombic crystal systems with nine independent elastic constants. The mechanical stability criteria for an orthorhombic class are[45]

    Table 2. Calculated elastic constants(Cij),elastic moduli(i.e.,bulk modulus BH,shear modulus GH,and Young’s modulus E),B/G ratio,Poisson’s ratio(v),and Vickers hardness(Hv)of the Zr2N compounds at zero pressure,along with other DFT calculated values. Ci j,BH,GH,E,and Hv are in GPa,B/G,and v are dimensionless.

    The constants C11,C22, and C33reflect the resistance of the crystal to normal strain in the[100],[010],and[001]directions,respectively. As mentioned above,the Cmcm,P4/nmm,and P21/m phases are versions of the cubic B1-TiN possessing ordered nitrogen vacancies.As shown in Table 2,P21/m-Zr2N possesses the lowest C11among the eight predicted structures.This is because the N-vacancies of the P21/m phase are distributed in the(100)plane and the least-dense atomic arrangement is in the [100] direction (see Fig. 1). Similarly, the Nvacancies of the P4/nmm phase are distributed in the (001)plane and the atomic compactness in the[001]direction is the worst (shown in Fig. 1). The P4/nmm-Zr2N phase possesses the lowest C33value among the eight candidate structures.Conversely, the Cmcm,C2/m, and P42/mnm phases respectively exhibit the highestC11,C22,andC33values.We note that our calculated elastic constants(except C11)of P42/mnm-Zr2N are consistent with the results of Yu et al.,[20]and our calculated C11of ε-Zr2N agrees well with the result of Ref. [48].

    The elastic moduli (i.e., bulk modulus BH, shear modulus GH,and Young’s modulus E),B/G ratio,Poisson’s ratio v,and Vickers hardness Hvof the Zr2N compounds at zero pressure are further studied by the methods mentioned in Secion 2 and are summarized in Table 2. Clearly, ε-Zr2N exhibits the largest bulk,shear,and Young’s moduli among the Zr2N compounds, which indicates that ε-Zr2N has the best resistance to volume change and shear shape deformation, and the best stiffness. Notably, the Pnnm phase, which is a distorted version of the ε-Zr2N phase,has similar but lower elastic moduli compared with those of the ε phase. The P4/nmm-Zr2N phase exhibits the smallest BHvalue,while I4/mcm-Zr2N possesses the smallest GHand E values.

    The B/G ratios (proposed by Pugh[49]) of all structures except the Cmcm phase are larger than 1.75, implying that the P42/mnm, Pnnm, P4/nmm, I4/mcm, P21/m, Pm1, and

    C2/m phases belong to ductile materials, where the I4/mcm phase is the most ductile among these configurations. In contrast,Cmcm-Zr2N possesses the smallest B/G ratio and Poisson’s ratio v,which is the most brittle phase among the Zr2N compounds.Intriguingly,owing to its brittleness,Cmcm-Zr2N exhibits the highest Vickers hardness (12.9 GPa), though its shear modulus is lower than that of ε-Zr2N. Contrarily, the I4/mcm phase has the lowest hardness as small as 2.1 GPa at ambient pressure. Note here that the I4/mcm phase has the lowest shear modulus,Young’s modulus,and hardness among the studied structures,where its abnormal and relatively higher bulk modulus primarily originates from its large mass density.

    Moreover, we investigate the directional dependence of Young’s modulus for all predicted Zr2N phases (see Fig. 4).Although the eight candidate configurations possess identical chemical composition ratios, their mechanical properties exhibit considerable differences. Young’s modulus of the Pm1 phase displays the most isotropic features among the Zr2N compounds because its three-dimensional Young’s modulus diagram shape is the closest to a sphere. Looking at the diagram shapes in Fig.4 and the degree of their deviation from spherical,the P21/m-Zr2N phase exhibits the most anisotropic features, followed by the Pnnm and I4/mcm phases. The anisotropy of the P21/m-Zr2N arises from the high C33and C22values and the low C23value,resulting in a large Young’s modulus in the y- and z-axis directions and a small E in the diagonal directions of the y–z plane. The anisotropy of the Pnnm and I4/mcm phases is mainly owing to their relatively low C11and C22values and high C12value,resulting in a small Young’s modulus in the x-and y-axis directions and a large E in the diagonal directions of the x–y plane.

    To understand the electronic properties and bonding features of these zirconium heminitrides, we further study the density of states (DOS) of each system. Figure 5 shows the s- and p-orbital partial DOS of N, the d-orbital partial DOS of Zr, and the total DOS for all Zr2N phases. Notably, all Zr2N compounds are metallic owing to the finite DOS at the Fermi level,which are dominated by the 4d orbitals of the zirconium atoms (see Fig. 5). Owing to the contribution of the 2s orbitals of the N atoms, all studied configurations exhibit a deep valence band below -12 eV. Similar to the scenario reported in the Tin+1Nn(n=1,2,3,and 5)structures,[17]interactions exist here between Zr and N atoms. According to Fig. 5, these interactions originate from the hybridization of the N-2p states and Zr-4d states in the energy region of-7 eV to -2.5 eV. We note that the interaction between Zr and N in the Cmcm phases exhibits greater hybridization than that in the P4/nmm and P21/m structures. This suggests that Cmcm-Zr2N will possess better mechanical strength and deformation resistance than the P4/nmm and P21/m phases, which is consistent with the calculated results of the elastic moduli in Table 2. Unlike the strong covalent N–N bonding nature in the I4/mcm-type TM pernitrides, weaker interactions are exhibited by the covalent-like Zr–N bond and metallic Zr–Zr bond in the I4/mcm-Zr2N phase. Consequently,compared with I4/mcm-type TM pernitrides,the I4/mcm-type TM heminitrides possess reduced mechanical strength and hardness.For example,compared with the values exhibited by I4/mcm-Zr2N, the I4/mcm-ZrN2structure exhibits larger calculated bulk modulus (1.7×), shear modulus (3.4×), Young’s modulus(3.1×),and hardness(12.3×).[16]

    Fig.4. Directional dependence of Young’s modulus(in GPa)of(a)P42/mnm,(b)Pnnm,(c)Cmcm,(d)P4/nmm,(e)I4/mcm,(f)P21/m,(g)Pm1,and(h)C2/m phases at 0 GPa.

    Fig.5. Projected density of states(DOS)of Zr2N compounds at ambient pressure,showing the partial DOS of the N 2s(red line)and N 2p(blue line)orbitals,the Zr 4d orbital(green line),and the total DOS(black line).

    4. Conclusion

    In summary, the pressure-dependent phase diagram of zirconium heminitride is investigated using ab initio evolutionary algorithm methods. Five novel high-pressure phases(i.e., P4/nmm, I4/mcm, P21/m, Pm1, and C2/m) of Zr2N are predicted in the present study. As the pressure increases from 0 GPa to 200 GPa,Zr2N moves sequentially through the phases as P42/mnm→Pnnm →Cmcm →P4/nmm→I4/mcm at the corresponding transition pressures of 6.5 GPa,16.3 GPa,55.2 GPa,and 144.4 GPa,respectively.The calculated phonon spectra reveal that all candidate Zr2N structures are dynamically stable at ambient pressure. According to the calculated elastic constants, all predicted Zr2N configurations are expected to be mechanically stable at atmospheric pressure.Although the eight candidate configurations possess identical chemical composition ratios, their mechanical properties exhibit considerable differences. Excepting the Cmcm phase,the Zr2N structures are ductile materials,among which the I4/mcm phase is the most ductile configuration. At atmospheric pressure, the Vickers hardness of the Zr2N compounds is ordered as Cmcm >P42/mnm >C2/m >P4/nmm >Pm1 >Pnnm >P21/m >I4/mcm. The calculated electronic structures demonstrate that the high mechanical strength and hardness of the Cmcm phase originate from the strong hybridization of the N-2p states and Zr-4d states, while the weaker interactions between the Zr and N atoms are likely responsible for the weaker mechanical behaviors of I4/mcm-Zr2N. These results provide important additional insight into the structureproperty relationships of TM heminitrides and the development of practical applications for Zr2N.

    Acknowledgment

    We thank Sara Maccagnano-Zacher, PhD, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

    猜你喜歡
    張欣
    《卯兔之年》
    《保護(hù)生態(tài)》
    《城》
    Boron at tera-Pascal pressures
    平面向量線(xiàn)性運(yùn)算的轉(zhuǎn)化思想的應(yīng)用
    隨筆四則
    作品(2020年4期)2020-05-11 06:21:45
    Dynamical stable-jump-stable-jump picture in a non-periodically driven quantum relativistic kicked rotor system?
    自作多情
    張欣現(xiàn)代重彩作品欣賞
    Estimating the clutch transmitting torque during HEV mode-switch based on the Kalman filter
    久久这里只有精品19| 我的亚洲天堂| 性少妇av在线| 亚洲人成电影免费在线| 18在线观看网站| 中亚洲国语对白在线视频| 18禁美女被吸乳视频| 成年人午夜在线观看视频| 99久久国产精品久久久| 成人亚洲精品一区在线观看| 宅男免费午夜| 在线观看一区二区三区激情| 中文字幕制服av| 日本vs欧美在线观看视频| www.999成人在线观看| 国产91精品成人一区二区三区 | 老司机影院毛片| 久久久久精品人妻al黑| 国产欧美日韩精品亚洲av| 久久中文看片网| 亚洲精品一二三| 午夜福利乱码中文字幕| 欧美黑人精品巨大| 国产又色又爽无遮挡免费看| 成年动漫av网址| 少妇精品久久久久久久| 波多野结衣av一区二区av| 波多野结衣av一区二区av| 国产一区有黄有色的免费视频| 男女午夜视频在线观看| 国产欧美日韩一区二区三区在线| 悠悠久久av| 国产高清视频在线播放一区| 不卡一级毛片| 免费在线观看影片大全网站| 麻豆乱淫一区二区| 亚洲欧美激情在线| 日本黄色视频三级网站网址 | 亚洲专区国产一区二区| 9热在线视频观看99| 欧美精品啪啪一区二区三区| 老熟妇乱子伦视频在线观看| 亚洲一区中文字幕在线| 午夜激情av网站| 久久久精品区二区三区| 老汉色∧v一级毛片| 欧美+亚洲+日韩+国产| 嫩草影视91久久| 国产日韩欧美亚洲二区| 国产在线一区二区三区精| 在线观看一区二区三区激情| 欧美在线黄色| 久久国产精品男人的天堂亚洲| 美女午夜性视频免费| 精品视频人人做人人爽| 国产av一区二区精品久久| avwww免费| 久久毛片免费看一区二区三区| 黄片小视频在线播放| 十八禁网站免费在线| 国产在线视频一区二区| 19禁男女啪啪无遮挡网站| 90打野战视频偷拍视频| 99国产综合亚洲精品| 最近最新中文字幕大全免费视频| 欧美精品一区二区大全| 久久免费观看电影| 最近最新免费中文字幕在线| 午夜福利在线观看吧| 国产精品偷伦视频观看了| 国产av又大| 久久这里只有精品19| 久久久久视频综合| 一级片'在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 黄色怎么调成土黄色| 两性夫妻黄色片| 欧美黄色片欧美黄色片| 国产伦理片在线播放av一区| 美女高潮喷水抽搐中文字幕| 日韩熟女老妇一区二区性免费视频| 国产伦人伦偷精品视频| 亚洲av日韩精品久久久久久密| 露出奶头的视频| av超薄肉色丝袜交足视频| 99精品久久久久人妻精品| 狂野欧美激情性xxxx| 欧美黄色淫秽网站| 少妇的丰满在线观看| 2018国产大陆天天弄谢| 黑人欧美特级aaaaaa片| 国产99久久九九免费精品| 女人爽到高潮嗷嗷叫在线视频| 午夜激情av网站| 999久久久国产精品视频| 超碰97精品在线观看| 亚洲精品成人av观看孕妇| 亚洲三区欧美一区| 国产高清视频在线播放一区| 日韩成人在线观看一区二区三区| 久热这里只有精品99| 亚洲成人国产一区在线观看| 亚洲精品美女久久久久99蜜臀| 一个人免费在线观看的高清视频| 满18在线观看网站| 日韩熟女老妇一区二区性免费视频| 丝袜美腿诱惑在线| 最新的欧美精品一区二区| 免费观看a级毛片全部| 在线观看免费午夜福利视频| 一本色道久久久久久精品综合| 久久人妻av系列| 精品国产国语对白av| 国产精品一区二区精品视频观看| 黄色 视频免费看| 在线观看人妻少妇| √禁漫天堂资源中文www| 午夜老司机福利片| www.精华液| 国产精品一区二区在线不卡| 在线观看免费高清a一片| 老司机深夜福利视频在线观看| 国产老妇伦熟女老妇高清| 纯流量卡能插随身wifi吗| 日本欧美视频一区| 欧美激情 高清一区二区三区| 99re6热这里在线精品视频| 国产男女超爽视频在线观看| 亚洲av第一区精品v没综合| 欧美亚洲 丝袜 人妻 在线| 精品久久久久久电影网| 高清av免费在线| 久久青草综合色| 一本大道久久a久久精品| 在线观看免费视频日本深夜| 十八禁高潮呻吟视频| 男女床上黄色一级片免费看| 精品免费久久久久久久清纯 | 亚洲av日韩在线播放| 亚洲人成电影观看| 日韩有码中文字幕| 日韩中文字幕视频在线看片| 黑人欧美特级aaaaaa片| 精品卡一卡二卡四卡免费| 欧美日韩精品网址| 亚洲国产欧美日韩在线播放| 亚洲美女黄片视频| kizo精华| 俄罗斯特黄特色一大片| 久久久久国内视频| 国产区一区二久久| 欧美久久黑人一区二区| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美日韩另类电影网站| 久久婷婷成人综合色麻豆| 国产又爽黄色视频| 欧美日本中文国产一区发布| 亚洲av第一区精品v没综合| 欧美乱妇无乱码| 国产成人欧美在线观看 | 亚洲天堂av无毛| 国产区一区二久久| 91老司机精品| a级毛片黄视频| 天天躁夜夜躁狠狠躁躁| 波多野结衣av一区二区av| 亚洲第一青青草原| 视频区欧美日本亚洲| 久久免费观看电影| 亚洲伊人久久精品综合| 两个人看的免费小视频| 国产aⅴ精品一区二区三区波| 亚洲国产欧美网| 美女国产高潮福利片在线看| 999久久久国产精品视频| 国产不卡一卡二| 人人妻人人澡人人爽人人夜夜| 一级片免费观看大全| 一区二区av电影网| 婷婷丁香在线五月| 真人做人爱边吃奶动态| 手机成人av网站| 成人国产一区最新在线观看| 久久毛片免费看一区二区三区| 国产精品av久久久久免费| 别揉我奶头~嗯~啊~动态视频| 亚洲国产av新网站| av天堂久久9| 99九九在线精品视频| 国产亚洲一区二区精品| 亚洲第一av免费看| 午夜福利在线免费观看网站| 日韩大码丰满熟妇| 国产成人一区二区三区免费视频网站| 老司机福利观看| 亚洲色图综合在线观看| 亚洲va日本ⅴa欧美va伊人久久| 大型黄色视频在线免费观看| 在线永久观看黄色视频| 国产伦人伦偷精品视频| 汤姆久久久久久久影院中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 男女免费视频国产| 操出白浆在线播放| 国产成人av激情在线播放| 欧美日韩精品网址| 国产男靠女视频免费网站| 久久久久精品人妻al黑| 高清毛片免费观看视频网站 | 国产精品1区2区在线观看. | 欧美国产精品va在线观看不卡| 欧美日韩精品网址| 亚洲专区中文字幕在线| 一区二区日韩欧美中文字幕| 国产男女超爽视频在线观看| 国产精品成人在线| 91麻豆av在线| 王馨瑶露胸无遮挡在线观看| 黄网站色视频无遮挡免费观看| 国产在线观看jvid| 一二三四社区在线视频社区8| 51午夜福利影视在线观看| 美女主播在线视频| 国产亚洲午夜精品一区二区久久| 在线观看舔阴道视频| 另类精品久久| 午夜福利一区二区在线看| 肉色欧美久久久久久久蜜桃| 精品国产一区二区久久| 50天的宝宝边吃奶边哭怎么回事| 侵犯人妻中文字幕一二三四区| av线在线观看网站| 欧美激情极品国产一区二区三区| 国产精品成人在线| 精品第一国产精品| 下体分泌物呈黄色| 免费黄频网站在线观看国产| 亚洲性夜色夜夜综合| 操美女的视频在线观看| 王馨瑶露胸无遮挡在线观看| 狠狠精品人妻久久久久久综合| 精品少妇黑人巨大在线播放| 欧美日韩成人在线一区二区| 成人国产av品久久久| 妹子高潮喷水视频| 人妻 亚洲 视频| 男女下面插进去视频免费观看| 亚洲成国产人片在线观看| 国产精品电影一区二区三区 | 女同久久另类99精品国产91| 亚洲国产毛片av蜜桃av| 女人久久www免费人成看片| 国产欧美日韩综合在线一区二区| 制服人妻中文乱码| 亚洲欧美日韩另类电影网站| h视频一区二区三区| 黄色视频,在线免费观看| 国产欧美日韩综合在线一区二区| 一级毛片女人18水好多| 亚洲精品中文字幕在线视频| 欧美老熟妇乱子伦牲交| 啪啪无遮挡十八禁网站| 久久久国产一区二区| 欧美 亚洲 国产 日韩一| 欧美av亚洲av综合av国产av| 亚洲av日韩精品久久久久久密| 欧美成狂野欧美在线观看| 国产在线精品亚洲第一网站| 9热在线视频观看99| 黄网站色视频无遮挡免费观看| 国产不卡一卡二| 最近最新免费中文字幕在线| 午夜激情久久久久久久| 高清欧美精品videossex| 无遮挡黄片免费观看| 国产一区二区三区在线臀色熟女 | av天堂在线播放| 天天添夜夜摸| 一本色道久久久久久精品综合| 亚洲专区字幕在线| 免费少妇av软件| 亚洲av第一区精品v没综合| 久久精品国产99精品国产亚洲性色 | 丝袜在线中文字幕| 91麻豆精品激情在线观看国产 | 好男人电影高清在线观看| 日本黄色日本黄色录像| 欧美精品一区二区免费开放| 在线播放国产精品三级| 老熟妇乱子伦视频在线观看| 国产不卡一卡二| 久久亚洲真实| 久久国产亚洲av麻豆专区| 亚洲欧美一区二区三区久久| 黄色 视频免费看| 精品少妇黑人巨大在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 精品第一国产精品| 国产精品一区二区精品视频观看| 巨乳人妻的诱惑在线观看| 免费女性裸体啪啪无遮挡网站| 国产97色在线日韩免费| 久久精品亚洲熟妇少妇任你| 日本欧美视频一区| 麻豆av在线久日| 人人澡人人妻人| 妹子高潮喷水视频| 欧美日本中文国产一区发布| 18禁黄网站禁片午夜丰满| 色播在线永久视频| 新久久久久国产一级毛片| 亚洲视频免费观看视频| 亚洲熟妇熟女久久| 波多野结衣一区麻豆| 黑人欧美特级aaaaaa片| 老汉色∧v一级毛片| 大香蕉久久网| 国产成人一区二区三区免费视频网站| 午夜日韩欧美国产| 国产野战对白在线观看| 狠狠狠狠99中文字幕| 亚洲精品国产一区二区精华液| 亚洲欧美精品综合一区二区三区| 精品人妻在线不人妻| a在线观看视频网站| av天堂久久9| 妹子高潮喷水视频| 国产精品九九99| 两人在一起打扑克的视频| 成年人午夜在线观看视频| 成年动漫av网址| 国产精品偷伦视频观看了| 国产成人av激情在线播放| 91字幕亚洲| 免费观看人在逋| 大片电影免费在线观看免费| 亚洲欧美日韩另类电影网站| 国产精品免费一区二区三区在线 | 免费在线观看完整版高清| 制服诱惑二区| 亚洲欧洲精品一区二区精品久久久| 99国产精品99久久久久| 亚洲欧洲精品一区二区精品久久久| 国产精品秋霞免费鲁丝片| 欧美+亚洲+日韩+国产| 久久这里只有精品19| 国产又色又爽无遮挡免费看| 51午夜福利影视在线观看| 国产激情久久老熟女| 在线观看66精品国产| 一进一出好大好爽视频| tocl精华| 国产成+人综合+亚洲专区| 国产免费av片在线观看野外av| tocl精华| 美国免费a级毛片| 欧美变态另类bdsm刘玥| 国产色视频综合| 在线观看免费高清a一片| 在线观看一区二区三区激情| 中亚洲国语对白在线视频| 久久99热这里只频精品6学生| 十八禁高潮呻吟视频| 高清黄色对白视频在线免费看| 最新美女视频免费是黄的| 国产男靠女视频免费网站| 久久精品91无色码中文字幕| 国产成人av激情在线播放| 日韩欧美国产一区二区入口| 大型av网站在线播放| 国产成人av激情在线播放| 亚洲伊人色综图| 亚洲国产欧美一区二区综合| 一级毛片女人18水好多| 少妇精品久久久久久久| 久久精品亚洲av国产电影网| 一区二区三区国产精品乱码| 国产真人三级小视频在线观看| 99riav亚洲国产免费| 青青草视频在线视频观看| 亚洲美女黄片视频| 久久久久国内视频| 少妇猛男粗大的猛烈进出视频| 精品一区二区三卡| 亚洲五月婷婷丁香| 99国产精品99久久久久| 国产精品久久久av美女十八| 成人手机av| 一本久久精品| 国产不卡av网站在线观看| 国产一区二区在线观看av| 麻豆成人av在线观看| 日韩视频一区二区在线观看| 欧美精品av麻豆av| 久久久久久久大尺度免费视频| 亚洲精品中文字幕一二三四区 | 日韩成人在线观看一区二区三区| 亚洲黑人精品在线| 高潮久久久久久久久久久不卡| 精品亚洲乱码少妇综合久久| 日韩人妻精品一区2区三区| 亚洲精品久久午夜乱码| 亚洲国产毛片av蜜桃av| 99国产综合亚洲精品| 久久人妻av系列| 亚洲国产毛片av蜜桃av| 桃红色精品国产亚洲av| 亚洲欧美一区二区三区久久| av视频免费观看在线观看| 精品国产一区二区久久| 色老头精品视频在线观看| 成年人免费黄色播放视频| 成人三级做爰电影| 欧美日韩黄片免| 天堂中文最新版在线下载| 成人18禁高潮啪啪吃奶动态图| 久久久国产欧美日韩av| 久久久久国内视频| 无限看片的www在线观看| 91麻豆精品激情在线观看国产 | 国产野战对白在线观看| 国产精品成人在线| 成年版毛片免费区| 国产三级黄色录像| 一级片'在线观看视频| 精品国产超薄肉色丝袜足j| 国内毛片毛片毛片毛片毛片| 国产日韩一区二区三区精品不卡| 日韩成人在线观看一区二区三区| 久久香蕉激情| 老司机深夜福利视频在线观看| 91精品三级在线观看| 国产区一区二久久| 一级毛片精品| 日韩欧美一区视频在线观看| 免费不卡黄色视频| 久久久精品区二区三区| 高清黄色对白视频在线免费看| 啦啦啦视频在线资源免费观看| 国产精品久久久人人做人人爽| 日本vs欧美在线观看视频| 另类精品久久| 露出奶头的视频| 国产精品一区二区在线不卡| 久久久国产欧美日韩av| 午夜精品久久久久久毛片777| 欧美 亚洲 国产 日韩一| 女人久久www免费人成看片| 搡老乐熟女国产| 亚洲国产毛片av蜜桃av| 免费观看a级毛片全部| 变态另类成人亚洲欧美熟女 | 欧美精品人与动牲交sv欧美| 在线观看免费高清a一片| 日韩欧美三级三区| 国产激情久久老熟女| 乱人伦中国视频| 国产成人影院久久av| 成年人午夜在线观看视频| 黄色视频不卡| 高清在线国产一区| 亚洲国产毛片av蜜桃av| 免费在线观看黄色视频的| 午夜激情av网站| 黄色视频,在线免费观看| xxxhd国产人妻xxx| 久久精品国产亚洲av香蕉五月 | 最新在线观看一区二区三区| 精品国产亚洲在线| 亚洲精华国产精华精| 两性午夜刺激爽爽歪歪视频在线观看 | 女人高潮潮喷娇喘18禁视频| 久久九九热精品免费| 曰老女人黄片| 国产免费现黄频在线看| 天堂8中文在线网| 80岁老熟妇乱子伦牲交| 操美女的视频在线观看| 国产成人欧美| 高清毛片免费观看视频网站 | 亚洲,欧美精品.| 亚洲免费av在线视频| 亚洲欧美精品综合一区二区三区| 久久中文字幕一级| 国精品久久久久久国模美| 欧美黑人欧美精品刺激| 久久久久精品国产欧美久久久| 亚洲国产看品久久| 操美女的视频在线观看| 在线观看www视频免费| 欧美精品一区二区大全| 亚洲欧美一区二区三区久久| 亚洲av日韩精品久久久久久密| 欧美精品av麻豆av| 日韩精品免费视频一区二区三区| 国产成人欧美在线观看 | 午夜精品国产一区二区电影| 国产精品偷伦视频观看了| 又紧又爽又黄一区二区| 纵有疾风起免费观看全集完整版| 午夜福利影视在线免费观看| 亚洲性夜色夜夜综合| 成人精品一区二区免费| 国产在线免费精品| www.熟女人妻精品国产| 精品亚洲成国产av| 国产成人免费观看mmmm| 好男人电影高清在线观看| tocl精华| 不卡一级毛片| 如日韩欧美国产精品一区二区三区| 建设人人有责人人尽责人人享有的| av超薄肉色丝袜交足视频| 757午夜福利合集在线观看| 大陆偷拍与自拍| netflix在线观看网站| 欧美日韩中文字幕国产精品一区二区三区 | 久久青草综合色| 午夜福利,免费看| 欧美精品av麻豆av| 精品人妻在线不人妻| 久久久国产一区二区| 久久精品国产a三级三级三级| 黄色片一级片一级黄色片| 久久久久久久大尺度免费视频| 国产欧美日韩一区二区精品| 成人特级黄色片久久久久久久 | 久久久久精品国产欧美久久久| 在线观看免费视频网站a站| 久久久久国产一级毛片高清牌| 少妇精品久久久久久久| 两人在一起打扑克的视频| 国产亚洲精品第一综合不卡| 精品久久久久久电影网| 人人妻,人人澡人人爽秒播| 国产成人av教育| 亚洲专区中文字幕在线| bbb黄色大片| 亚洲伊人色综图| 精品一区二区三区四区五区乱码| 成人国产一区最新在线观看| 日本一区二区免费在线视频| 12—13女人毛片做爰片一| 一区在线观看完整版| 国产成人欧美| 69精品国产乱码久久久| 在线亚洲精品国产二区图片欧美| 99热国产这里只有精品6| 男人舔女人的私密视频| 久久香蕉激情| 国产一区二区三区视频了| 久久久国产成人免费| 三上悠亚av全集在线观看| 久9热在线精品视频| 久久久久久久大尺度免费视频| 亚洲天堂av无毛| 大型黄色视频在线免费观看| 亚洲人成伊人成综合网2020| 97在线人人人人妻| 桃花免费在线播放| 波多野结衣av一区二区av| 亚洲成a人片在线一区二区| 亚洲伊人色综图| 久久久久久亚洲精品国产蜜桃av| 99国产极品粉嫩在线观看| 一本色道久久久久久精品综合| 国产真人三级小视频在线观看| 国产亚洲欧美精品永久| 欧美在线黄色| 亚洲国产中文字幕在线视频| 亚洲视频免费观看视频| 两个人看的免费小视频| www.999成人在线观看| 久久国产精品人妻蜜桃| 国产欧美日韩精品亚洲av| 99精品在免费线老司机午夜| 黄色视频不卡| 久久国产亚洲av麻豆专区| 国产一区二区激情短视频| 一级毛片精品| 国产av精品麻豆| 欧美 亚洲 国产 日韩一| 在线看a的网站| 少妇 在线观看| 日本av免费视频播放| 少妇粗大呻吟视频| 亚洲人成伊人成综合网2020| 午夜福利视频在线观看免费| 午夜激情久久久久久久| 久久久精品免费免费高清| 亚洲avbb在线观看| 他把我摸到了高潮在线观看 | 国产淫语在线视频| 免费av中文字幕在线| 国产精品国产av在线观看| av天堂久久9| 十八禁网站免费在线| 一区二区三区国产精品乱码| 五月开心婷婷网| 午夜91福利影院| 欧美日韩亚洲综合一区二区三区_| 国产亚洲精品一区二区www | 久久99一区二区三区| 亚洲欧美日韩另类电影网站| 欧美成狂野欧美在线观看| 蜜桃国产av成人99| 黄色片一级片一级黄色片| 午夜福利视频在线观看免费| 国产亚洲欧美精品永久| 热99久久久久精品小说推荐| 最新美女视频免费是黄的| 宅男免费午夜| 亚洲精品av麻豆狂野| 国内毛片毛片毛片毛片毛片| 欧美日韩精品网址|