• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In-port-plug transmission line design of the ITER plasma position reflectometer

    2020-06-28 06:15:58MARTNEZFERNNDEZCAPPASIMONETTOESTRADADELALUNAandBLANCO
    Plasma Science and Technology 2020年6期

    J MARTíNEZ-FERNáNDEZ , á CAPPA, A SIMONETTO, T ESTRADA ,E DE LA LUNA and E J BLANCO

    1 Laboratorio Nacional de Fusión. CIEMAT, Avda Complutense 40. Madrid 28040, Spain

    2 CNR-ISTP, via Cozzi 53, 20125 Milano, Italy

    Abstract This work describes the microwave design of the transmission line housed in the in-port-plug region of the ITER plasma position reflectometer(PPR).The design of the components of the inport-plug reflectometers (located in equatorial port-plug 10 (EPP10) and in upper-port-plug 01(UPP01))is presented.Using a 3D ray tracing code,the spatial position and optimum orientation angles of each set of emission and detection antennas were determined.A feasible path was then created from the obtained antenna positions and orientations to the primary vacuum window.Oversized tall waveguides were chosen to reduce ohmic losses. Due to space constraints in the ITER crowded environment, bends in oversized waveguides were unavoidable, and thus mode conversion was produced. To keep mode conversion losses at bay, hyperbolic secant curvature bends had to be used whenever possible. However, E-plane bends in tall waveguides proved to be especially critical, making it necessary to employ other approaches when higher bending angles were needed. Mode conversion results were obtained by evaluating the mode coupling equations. Ohmic losses have also been computed and their results compared with commercial simulators, obtaining a perfect agreement.

    Keywords: reflectometry, microwave technology, ITER diagnostic(Some figures may appear in colour only in the online journal)

    1. Introduction

    The ITER plasma position reflectometer (PPR) diagnostic system is designed to provide information related to the edge electron density profile, at four defined locations distributed both poloidally and toroidally in the ITER vacuum vessel,known as gap 3, gap 4, gap 5 and gap 6, operating in the 15–75 GHz frequency range in O-mode.The antennas of gaps 4 and 6 are installed in-vessel,viewing the plasma through cutouts in the blanket modules, while those of gaps 3 and 5 are installed inside the port plugs EPP10 and UPP01,respectively,viewing the plasma through apertures in the diagnostic first wall. This document describes the work leading to the design of the waveguides connecting the gap 3 and 5 antennas to their correspondent interfaces in the primary vacuum window.Design and analysis of the transmission lines from the primary window (ex-vessel) are already presented in [1], while their structural analysis can be found in [2].

    2. Antenna placement and orientation

    Starting from two selected ITER baseline scenarios(15 MA/5.3 T/ D-T and 7.5 /2.65 T/4He), the TRUBA code [3] has been used to perform ray tracing simulations for each frequency,which allows us to determine the optimum launching direction angles (?, φ) for which the wave radiated by the emission antenna is reflected towards the center of the detection antenna,thus maximizing the wave coupling.As an example, figure 1 shows a projection of the simulated rays in the poloidal plane of the device(left panel)for gap 5 antennas with optimum launching angles at 75 GHz for the 15 MA scenario. For each frequency and scenario, the beam orientation is such that the rays reflected by the O-mode cut-off layer (red solid curve) are traced back until they reach the center of the detection antenna. In the right panel, the intersection of the reflected rays with the plane perpendicular to the launching direction and containing the center of both antenna mouths is shown together with a representation of the antennas’ apertures. The launching antenna direction angles are given in each panel’s upper left corner.

    Figure 1.Side view (left) of ray tracing results at 75 GHz and for the 15 MA scenario and intersection of reflected rays with the detection antenna plane(right).The calculation has been performed using 8×8=64 rays.Frequency dependent optimum launching angles(? and φ)ensure that the central part of the reflected beam reaches the detection antenna.

    Table 1.Far field distances in the principal planes of a 44 mm×44 mm horn compared with traveling distances provided by ray tracing.

    Figure 2.Power coupling(system gain)for the 15 MA scenario with gap 5 antennas.Low frequencies always show worse power coupling due to stronger beam diffraction.

    As a result of these simulations, a matching set of optimum launching angles were found,depending on the scenario,the frequency and the antenna pair. Taking into account that the antennas would be fixed, the computed angles which produce direct reflection would move from the antennas’physical launching angles.Therefore,a global optimization was carried out to get the best physical orientation angles (?optand φopt)and antenna dimensions. The objective of this optimization is to maximize the detected power in the worst case, namely the frequency and scenario combination with the worst coupling.In order to compute this coupling, radiation patterns of the antennas should be considered to account for the power drop out of the antenna maximum radiation direction. To alleviate the computational effort and make the global optimization possible, analytical expressions for the radiation pattern of symmetrical horns have been used together with the Friis transmission equation to get the power coupling [4] when the plasma is not present. These expressions require that the far field conditions are met [4], namely that the wave travelling distance is higher than the one at which the fields from an antenna are considered at far field. Table 1 compares the far field distances in the principal planes of the chosen 44 mm×44 mm horns with the wave traveling distances obtained by the ray tracing simulations for each angle and scenario.For these chosen antennas,only the gap 3 antennas in the 15 MA scenario at high frequency do not fulfill the far field condition(and even then maximum error can be delimited and taken into account). For all the remaining cases, the condition is fulfilled, and the analytical approximation is therefore valid for obtaining the power coupling between antennas. After the final optimum orientation angles are obtained,power coupling can be obtained for each scenario. As an example, figure 2 presents the power coupling of the system for the 15 MA scenario in the gap 5 antennas.

    Figure 3.Ohmic losses in a 0.62 m long 2 mm×12 mm E-plane bend.The left panel shows the theoretical results compared with a full wave simulation (HFSS), while the right panel compares the downtapered (2 mm×12 mm) bend with the regular one (20 mm×12 mm) using canonical theory.

    Two-dimensional full wave simulations using a finite difference time domain (FDTD) code were performed afterwards to obtain the complex wave amplitudes and phases at the detection antenna end. Performing the spectrogram of these data allows us then to obtain the time delay of the signal, which is then used to reconstruct the plasma density profile. This sort of synthetic diagnostic is used to get an estimation of the error in the determination of the position of the last closed flux surface in both static and turbulent plasmas [5].

    3. Transmission line

    Once the launching/receiving antennas have been designed and their positions and orientations have been decided, the waveguides carrying the signal must be specified. Rectangular oversized 20 mm×12 mm waveguides have been used for the transmission of the signal.In addition to the oversized dimensions of the waveguide, the TE01mode is chosen in what is called a ‘tall’ waveguide configuration in order to reduce ohmic losses. It is important to note that due to this mode choice, the cut-off frequency depends on the narrow wall dimension instead of the broad one as in the case of the fundamental TE10mode.

    One possibility that allows us to get rid of mode coupling at the bends at the cost of additional ohmic losses is downtapering of the waveguide.In particular,wherever the E-plane bends’ performance is unacceptable, the 20 mm×12 mm waveguide can be downtapered into a 2 mm ×12 mm waveguide.In an E-plane bend,power from the TE01mode can be coupled to any of the TEn1/TMn1degenerate mode pairs with n odd,being the TE11/TM11the one with the largest coupling coefficient. By performing a downtaper in the broad dimension of the waveguide, the TE11and TM11modes (degenerate) are at cut-off, and are therefore not degrading performance due to mode conversion. As the narrow dimension is not altered, the cut-off frequency of the operating(TE01) mode is the same, hence allowing normal operation,albeit the reduced dimensions provoke an increase in ohmic losses. Figure 3 shows in the left panel the ohmic losses of a 0.62 m long 2 mm×12 mm downtapered E-plane bend with a 13.17° bending angle and a minimum radius of curvature of 310.88 mm, both calculated analytically using perturbation theory, assuming a straight waveguide of the same length propagating a canonical TE01mode[9],and simulated with a full wave simulation (high frequency structure simulator(HFSS)). For illustrative purposes, it is convenient to highlight that this bend is the S-bend from the downtapered branch of gap 3 routing,which will be described in section 5.Additionally, in the right panel, a comparison using perturbation theory between the same bend using the original 20 mm×12 mm waveguide and the 2 mm ×12 mm one is presented. As the figure shows, despite not being completely rigorous, calculations using the straight waveguide approximation present negligible differences with full wave simulations.Moreover,the comparison between both downtapered and regular waveguides shows that approximately 1 dB loss difference can be obtained in a 0.62 m long bend.

    Figure 4.Transmission due to mode conversion in a 200 mm long 2 mm×12 mm to 20 mm×12 mm parabolic uptaper. High frequency spikes may be artefacts of the finite element calculation.

    Additionally, an uptaper should be added to the system in order to regain the correct 20 mm×12 mm dimensions. Mode conversion does occur both in the down and uptapers, although it is easier to cope with that in the case of E-plane bends. For instance, figure 4 depicts the mode conversion of a 200 mm length 2 mm×12 mm to 20 mm×12 mm parabolic taper [10]. Although no special optimization was performed on it, very low mode conversion is obtained, therefore making this solution a feasible one.

    4. Gap 5 routing

    The gap 5 reflectometer involves the use of two pairs of antennas with slightly different launching angles in order to cover different scenarios. Both routings (upper/lower antennas)are very similar,and only the upper antenna pair routing will be shown here. Due to the large distances involved, the whole routing of this gap can be carried out using hyperbolic secant curvature bends, even in the case of E-plane turns.Bending angles could be kept low enough with sufficiently large radii of curvature for acceptable mode conversion losses. Figure 5 shows an image of the final routing from the antennas (from the left) to the primary window (in the lower right corner of the figure) in the upper left image. Additionally,the integrated losses due to mode coupling are shown in the upper right image and the ohmic losses in the lower left one,leading to the total integrated losses that are shown in the lower right panel.

    5. Gap 3 routing

    In the case of gap 3, available space for the antennas is not on the axis of the port, thus making it necessary to perform some bending to run parallel to the axis. This fact, added to the reduced distance from the antennas to the primary window and the angle between the antennas,made it impossible to design E-plane bends with an acceptable performance.To minimize mode coupling,it was decided to make the design so that one of the branches was straight (in terms of horizontal bending),therefore increasing the horizontal bending in the other one, thus provoking even more mode coupling.To overcome this hindrance, it was decided to perform a downtaper to a 2 mm×12 mm waveguide (just adjusting the final dimensions of the antenna mouth) and then an uptaper to regain 20 mm×12 mm, as described before.Figure 6 shows in the upper left image the computer aided design representation of this solution and the mode conversion losses in the upper right image. It is important to highlight that as there is no noticeable mode conversion in the 2 mm×12 mm E-plane bends and it is negligible in the H-plane bends, these integrated mode conversion losses are dominated by mode conversion in the 200 mm length uptaper from 2 mm ×12 mm to 20 mm×12 mm, as a comparison with figure 4 reveals. Ohmic losses have also been depicted in the lower left image, splitting results into the losses due to the 2 mm×12 mm waveguide branch and the ones from the 20 mm×12 mm branch for comparison purposes. Finally, the lower right panel shows the total integrated losses when considering ohmic and mode conversion altogether.

    6. Conclusions

    Figure 5.Gap 5 final routing(upper left)and its mode conversion losses along routing(upper right),ohmic losses along routing considering iron’s resistivity (lower left) and overall integrated losses (lower right).

    Figure 6.Gap 3 final routing(upper left)and its mode conversion losses along routing(upper right),ohmic losses along routing considering iron’s resistivity (lower left) and overall integrated losses (lower right).

    Both the routings and their performance results for gap 5 and gap 3 of the ITER PPR reflectometer have been presented. In both cases 20 mm×12 mm rectangular oversized waveguides have been used to carry the signal using the TE01mode in order to minimize ohmic losses. Hyperbolic secant curvature bends have been used for the bending needs of the routing and have proven the best solution for H-plane bends. In case of E-plane bends, the degradation of performance has forced us to keep bending angles low, and whenever this was not possible, downtapering to a 2 mm×12 mm waveguide has proven to be a valid solution to get rid of mode conversion at the cost of extra ohmic loses. Nevertheless, ohmic losses have also been calculated and simulated, and acceptable results have been obtained.

    Acknowledgments

    This work has been partially funded by the Ministerio de Ciencia, Innovacion y Universidades of Spain under project FIS2017-88892-P, and by Fusion for Energy under Specific Grant Agreement F4E-FPA-375-SG05. This publication reflects only the views of the author, and Fusion for Energy cannot be held responsible for any use which may be made of the information contained therein.

    ORCID iDs

    J MARTíNEZ-FERNáNDEZ https://orcid.org/0000-0002-5583-8420

    T ESTRADA https://orcid.org/0000-0001-6205-2656

    国产黄片美女视频| 琪琪午夜伦伦电影理论片6080| 亚洲美女视频黄频| av欧美777| 久久精品夜夜夜夜夜久久蜜豆| 91麻豆精品激情在线观看国产| 久久精品国产清高在天天线| 麻豆成人午夜福利视频| 别揉我奶头~嗯~啊~动态视频| 日韩有码中文字幕| 日本黄色片子视频| 免费av观看视频| 人妻夜夜爽99麻豆av| 他把我摸到了高潮在线观看| 免费搜索国产男女视频| 久久久久国内视频| 久久天躁狠狠躁夜夜2o2o| 亚洲国产色片| 欧美大码av| 免费无遮挡裸体视频| 此物有八面人人有两片| 国产真人三级小视频在线观看| 免费电影在线观看免费观看| 久久6这里有精品| 在线看三级毛片| 男女那种视频在线观看| 欧美区成人在线视频| 美女免费视频网站| 狠狠狠狠99中文字幕| 午夜福利在线观看吧| 女人被狂操c到高潮| 亚洲国产欧美网| 亚洲人成网站在线播放欧美日韩| 日韩欧美一区二区三区在线观看| 嫩草影院入口| 久久久久精品国产欧美久久久| 在线观看舔阴道视频| 婷婷亚洲欧美| 国产精品98久久久久久宅男小说| 韩国av一区二区三区四区| 国产探花极品一区二区| 国产中年淑女户外野战色| 又爽又黄无遮挡网站| svipshipincom国产片| 精品国内亚洲2022精品成人| 国产午夜精品论理片| 变态另类成人亚洲欧美熟女| 亚洲专区中文字幕在线| 久久精品国产自在天天线| 日本精品一区二区三区蜜桃| 极品教师在线免费播放| 欧美成人a在线观看| 黄色片一级片一级黄色片| svipshipincom国产片| 欧美一级a爱片免费观看看| 真人做人爱边吃奶动态| 不卡一级毛片| 老汉色av国产亚洲站长工具| 热99re8久久精品国产| 国产欧美日韩精品一区二区| 亚洲精品一区av在线观看| 淫秽高清视频在线观看| 久久久国产成人精品二区| 国产亚洲精品一区二区www| 波多野结衣高清无吗| 嫩草影院精品99| aaaaa片日本免费| 9191精品国产免费久久| 日本与韩国留学比较| 黄色视频,在线免费观看| 精品无人区乱码1区二区| 国产精品野战在线观看| 免费看a级黄色片| 美女黄网站色视频| 国产黄色小视频在线观看| 中亚洲国语对白在线视频| 狂野欧美白嫩少妇大欣赏| 国产激情偷乱视频一区二区| 久久精品亚洲精品国产色婷小说| 亚洲专区国产一区二区| 又紧又爽又黄一区二区| 麻豆成人av在线观看| 99久久久亚洲精品蜜臀av| 亚洲av成人av| 免费在线观看亚洲国产| 国产熟女xx| 久久久久亚洲av毛片大全| 国产国拍精品亚洲av在线观看 | 啦啦啦免费观看视频1| 欧美性感艳星| 亚洲国产中文字幕在线视频| 全区人妻精品视频| 麻豆国产97在线/欧美| 在线观看日韩欧美| 一级毛片高清免费大全| 全区人妻精品视频| 美女被艹到高潮喷水动态| 午夜视频国产福利| 国内精品一区二区在线观看| 色综合亚洲欧美另类图片| 成人无遮挡网站| av黄色大香蕉| 成年女人看的毛片在线观看| 日本五十路高清| 无遮挡黄片免费观看| a级毛片a级免费在线| 男女下面进入的视频免费午夜| 国产真人三级小视频在线观看| 国产黄a三级三级三级人| 老汉色av国产亚洲站长工具| 欧美在线一区亚洲| 国产精品久久视频播放| 别揉我奶头~嗯~啊~动态视频| 91麻豆av在线| 国产精品野战在线观看| 在线天堂最新版资源| 亚洲自拍偷在线| 中文字幕人妻丝袜一区二区| 69人妻影院| 成人性生交大片免费视频hd| 又爽又黄无遮挡网站| 麻豆一二三区av精品| av在线蜜桃| 精品国产三级普通话版| 嫩草影院精品99| 精品欧美国产一区二区三| 国产69精品久久久久777片| 国产在线精品亚洲第一网站| 欧美日韩瑟瑟在线播放| 成人特级黄色片久久久久久久| 国产精品一区二区三区四区久久| 国产中年淑女户外野战色| 9191精品国产免费久久| 一区二区三区高清视频在线| 一个人免费在线观看的高清视频| 特大巨黑吊av在线直播| 国产午夜福利久久久久久| 国产一区二区在线av高清观看| 亚洲人成伊人成综合网2020| 两性午夜刺激爽爽歪歪视频在线观看| 国产高潮美女av| or卡值多少钱| 黄色丝袜av网址大全| 亚洲成人免费电影在线观看| 床上黄色一级片| 老司机午夜十八禁免费视频| av福利片在线观看| 床上黄色一级片| 黄色视频,在线免费观看| 国产精品美女特级片免费视频播放器| 人妻丰满熟妇av一区二区三区| 麻豆久久精品国产亚洲av| 欧美一区二区国产精品久久精品| 99在线视频只有这里精品首页| 国产在线精品亚洲第一网站| 91av网一区二区| 国产伦人伦偷精品视频| 亚洲五月婷婷丁香| 校园春色视频在线观看| 无人区码免费观看不卡| 亚洲精品粉嫩美女一区| 午夜福利在线观看吧| 国产成人aa在线观看| 国产一区二区亚洲精品在线观看| 母亲3免费完整高清在线观看| 高清在线国产一区| 午夜视频国产福利| 日韩中文字幕欧美一区二区| 亚洲第一电影网av| netflix在线观看网站| 国产黄片美女视频| 搡女人真爽免费视频火全软件 | 亚洲无线观看免费| 此物有八面人人有两片| 女生性感内裤真人,穿戴方法视频| 日韩高清综合在线| 亚洲av电影不卡..在线观看| 国产亚洲精品av在线| 欧美又色又爽又黄视频| 亚洲国产欧洲综合997久久,| 成人无遮挡网站| 色尼玛亚洲综合影院| 日韩国内少妇激情av| 最好的美女福利视频网| 国产精品日韩av在线免费观看| 好男人在线观看高清免费视频| 国产精品 欧美亚洲| h日本视频在线播放| 国内揄拍国产精品人妻在线| 岛国在线免费视频观看| 美女高潮的动态| 伊人久久精品亚洲午夜| 免费看a级黄色片| 亚洲av日韩精品久久久久久密| 欧美乱妇无乱码| 精品久久久久久成人av| 亚洲天堂国产精品一区在线| 亚洲色图av天堂| 亚洲精品日韩av片在线观看 | aaaaa片日本免费| 中文字幕久久专区| 国产高潮美女av| 国产精品一区二区三区四区久久| 久久久久九九精品影院| 久久伊人香网站| 看片在线看免费视频| 国产老妇女一区| 国产午夜精品久久久久久一区二区三区 | 天堂影院成人在线观看| 久久人妻av系列| 国产视频一区二区在线看| 草草在线视频免费看| 欧美黑人巨大hd| 亚洲av电影不卡..在线观看| 久久精品国产亚洲av涩爱 | 国产亚洲精品一区二区www| 国产精品影院久久| 亚洲国产欧美人成| 成人性生交大片免费视频hd| 精品久久久久久久人妻蜜臀av| 亚洲精品一区av在线观看| 舔av片在线| 精品午夜福利视频在线观看一区| 免费在线观看影片大全网站| 夜夜爽天天搞| 国产亚洲精品一区二区www| 亚洲av美国av| 精品99又大又爽又粗少妇毛片 | 男人的好看免费观看在线视频| 国产aⅴ精品一区二区三区波| 亚洲av成人不卡在线观看播放网| 午夜精品在线福利| 国产激情偷乱视频一区二区| 国产精品免费一区二区三区在线| 99热6这里只有精品| 久久国产精品影院| 国产私拍福利视频在线观看| 日本一二三区视频观看| 国产成人av教育| 淫妇啪啪啪对白视频| 成人高潮视频无遮挡免费网站| 99国产极品粉嫩在线观看| 天天添夜夜摸| 国产日本99.免费观看| 中文资源天堂在线| 亚洲国产精品999在线| 精品免费久久久久久久清纯| 精品日产1卡2卡| 免费看光身美女| 久久这里只有精品中国| 18禁在线播放成人免费| 亚洲男人的天堂狠狠| 又黄又爽又免费观看的视频| 国产一区在线观看成人免费| а√天堂www在线а√下载| 老司机午夜福利在线观看视频| 变态另类成人亚洲欧美熟女| 99国产精品一区二区蜜桃av| 熟妇人妻久久中文字幕3abv| 久久久久久久午夜电影| 尤物成人国产欧美一区二区三区| 不卡一级毛片| 国产乱人伦免费视频| 亚洲精品亚洲一区二区| 19禁男女啪啪无遮挡网站| 操出白浆在线播放| 伊人久久精品亚洲午夜| 18禁在线播放成人免费| 看黄色毛片网站| 久久精品国产清高在天天线| svipshipincom国产片| 麻豆久久精品国产亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 久久精品亚洲精品国产色婷小说| 国产精品久久久久久亚洲av鲁大| 欧美日韩中文字幕国产精品一区二区三区| 日韩高清综合在线| 国产 一区 欧美 日韩| 窝窝影院91人妻| 中文字幕av成人在线电影| 亚洲av成人av| 一级作爱视频免费观看| 小蜜桃在线观看免费完整版高清| 国产午夜精品久久久久久一区二区三区 | 久久久久国产精品人妻aⅴ院| 国产免费av片在线观看野外av| 久久久久九九精品影院| 国产av麻豆久久久久久久| 色在线成人网| www.www免费av| 国产精品一区二区免费欧美| 午夜福利在线在线| 91在线精品国自产拍蜜月 | 岛国视频午夜一区免费看| 精品久久久久久久末码| 制服人妻中文乱码| 亚洲中文字幕日韩| 免费高清视频大片| 国产精品久久视频播放| 老司机在亚洲福利影院| 91久久精品国产一区二区成人 | 国产一区二区亚洲精品在线观看| 免费在线观看日本一区| 欧美黄色片欧美黄色片| 亚洲人成网站在线播| 九九在线视频观看精品| 日本精品一区二区三区蜜桃| 丝袜美腿在线中文| 在线播放国产精品三级| 老汉色∧v一级毛片| 亚洲精品国产精品久久久不卡| 又爽又黄无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 深夜精品福利| 三级毛片av免费| 两性午夜刺激爽爽歪歪视频在线观看| 国内揄拍国产精品人妻在线| 日韩亚洲欧美综合| 在线国产一区二区在线| 久久久久亚洲av毛片大全| 免费看美女性在线毛片视频| 日韩欧美在线二视频| 12—13女人毛片做爰片一| 免费看美女性在线毛片视频| 尤物成人国产欧美一区二区三区| 国内少妇人妻偷人精品xxx网站| 51午夜福利影视在线观看| 欧美国产日韩亚洲一区| 12—13女人毛片做爰片一| 日本免费a在线| 午夜久久久久精精品| 国产精品影院久久| 午夜福利在线观看吧| 少妇的逼水好多| 草草在线视频免费看| 亚洲人成伊人成综合网2020| 变态另类成人亚洲欧美熟女| 中文字幕熟女人妻在线| 又爽又黄无遮挡网站| 国语自产精品视频在线第100页| 久久久久久久久久黄片| 欧美色欧美亚洲另类二区| 不卡一级毛片| 日韩欧美国产一区二区入口| 在线观看免费视频日本深夜| 国产精品久久久久久精品电影| 禁无遮挡网站| 成人永久免费在线观看视频| 国产免费av片在线观看野外av| 18禁黄网站禁片午夜丰满| 亚洲色图av天堂| 色综合站精品国产| 成年免费大片在线观看| 亚洲精品在线美女| 天美传媒精品一区二区| 亚洲av不卡在线观看| 国产精品久久久久久久电影 | 91麻豆av在线| 精品人妻偷拍中文字幕| x7x7x7水蜜桃| 日韩欧美精品v在线| 欧美黄色淫秽网站| 日韩成人在线观看一区二区三区| 亚洲成a人片在线一区二区| 一区二区三区高清视频在线| 亚洲av电影在线进入| 久久草成人影院| 久久香蕉精品热| 88av欧美| 国内精品久久久久久久电影| 激情在线观看视频在线高清| 欧美日韩乱码在线| 国产精品电影一区二区三区| 亚洲av成人不卡在线观看播放网| 少妇人妻精品综合一区二区 | 亚洲精品456在线播放app | 亚洲最大成人手机在线| 窝窝影院91人妻| 日韩成人在线观看一区二区三区| 桃红色精品国产亚洲av| 欧美日韩国产亚洲二区| 男人舔女人下体高潮全视频| 色播亚洲综合网| 精品国内亚洲2022精品成人| 精品久久久久久,| 久久九九热精品免费| 欧美高清成人免费视频www| 国产免费av片在线观看野外av| 国产成人影院久久av| 亚洲在线自拍视频| 国产精品影院久久| 久久性视频一级片| 久久久久国产精品人妻aⅴ院| 亚洲av日韩精品久久久久久密| 99久久成人亚洲精品观看| 久久欧美精品欧美久久欧美| 午夜福利免费观看在线| 一级毛片女人18水好多| av天堂中文字幕网| 久久精品影院6| 国产又黄又爽又无遮挡在线| 他把我摸到了高潮在线观看| 久久久精品大字幕| 90打野战视频偷拍视频| 99国产精品一区二区三区| 91久久精品国产一区二区成人 | 欧美性猛交╳xxx乱大交人| 国产精品亚洲美女久久久| 一夜夜www| 免费看光身美女| 免费搜索国产男女视频| 国产午夜精品论理片| 97人妻精品一区二区三区麻豆| 亚洲电影在线观看av| 丰满乱子伦码专区| 色视频www国产| 亚洲精品在线美女| 欧美在线一区亚洲| 人人妻人人看人人澡| 国产不卡一卡二| 美女 人体艺术 gogo| 老熟妇乱子伦视频在线观看| 亚洲狠狠婷婷综合久久图片| 最新美女视频免费是黄的| 亚洲国产精品sss在线观看| 熟女人妻精品中文字幕| 亚洲 欧美 日韩 在线 免费| 欧美zozozo另类| 在线a可以看的网站| 成年人黄色毛片网站| 精品电影一区二区在线| 色视频www国产| eeuss影院久久| 国产精品久久电影中文字幕| 99精品欧美一区二区三区四区| 级片在线观看| 国产三级黄色录像| 亚洲成av人片在线播放无| 日日干狠狠操夜夜爽| 免费看光身美女| 欧美xxxx黑人xx丫x性爽| 日本黄大片高清| 精品无人区乱码1区二区| 美女大奶头视频| 国内久久婷婷六月综合欲色啪| xxxwww97欧美| 免费无遮挡裸体视频| 九九热线精品视视频播放| 国内精品久久久久精免费| 99久久精品热视频| 免费看日本二区| 97碰自拍视频| 十八禁人妻一区二区| 精品福利观看| 岛国在线免费视频观看| 国产成+人综合+亚洲专区| 国产一区二区在线av高清观看| 亚洲欧美日韩高清在线视频| 国产伦精品一区二区三区视频9 | 日韩免费av在线播放| 国产精品美女特级片免费视频播放器| 亚洲国产精品999在线| 日韩欧美在线二视频| 男女床上黄色一级片免费看| 欧美日本视频| 99国产精品一区二区蜜桃av| 欧美日韩黄片免| 免费在线观看成人毛片| 久久这里只有精品中国| 99精品在免费线老司机午夜| 嫩草影院精品99| 手机成人av网站| a在线观看视频网站| 成人特级黄色片久久久久久久| 18禁黄网站禁片午夜丰满| 97人妻精品一区二区三区麻豆| 国产av一区在线观看免费| 美女黄网站色视频| 亚洲午夜理论影院| 97超视频在线观看视频| 九色国产91popny在线| 中文字幕人妻熟人妻熟丝袜美 | 午夜免费激情av| 一个人看视频在线观看www免费 | 美女被艹到高潮喷水动态| 美女黄网站色视频| 国内久久婷婷六月综合欲色啪| 少妇丰满av| 国产免费av片在线观看野外av| 黄色片一级片一级黄色片| 熟女电影av网| 亚洲精品久久国产高清桃花| 岛国在线观看网站| 深爱激情五月婷婷| 国产在线精品亚洲第一网站| 亚洲美女视频黄频| 欧美中文综合在线视频| 一区二区三区高清视频在线| 亚洲av免费高清在线观看| 日韩中文字幕欧美一区二区| 99riav亚洲国产免费| 国产老妇女一区| 国产成人影院久久av| 午夜两性在线视频| 男人的好看免费观看在线视频| 精品国产超薄肉色丝袜足j| 日本一二三区视频观看| 国产精品亚洲一级av第二区| 99热6这里只有精品| 搡女人真爽免费视频火全软件 | 国产av在哪里看| 久久伊人香网站| 琪琪午夜伦伦电影理论片6080| 久久久久国产精品人妻aⅴ院| 男人和女人高潮做爰伦理| 亚洲精品亚洲一区二区| 国产久久久一区二区三区| 亚洲av成人av| 亚洲国产精品合色在线| 99精品久久久久人妻精品| 欧美大码av| 国产精品久久久久久精品电影| 中文字幕人妻熟人妻熟丝袜美 | 一本综合久久免费| 最近最新免费中文字幕在线| 精品一区二区三区人妻视频| 色综合欧美亚洲国产小说| 国产真人三级小视频在线观看| 亚洲精品456在线播放app | 99精品在免费线老司机午夜| 天堂动漫精品| 欧美中文综合在线视频| 国产真人三级小视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 3wmmmm亚洲av在线观看| 人妻久久中文字幕网| avwww免费| www.熟女人妻精品国产| 亚洲,欧美精品.| www.熟女人妻精品国产| 岛国视频午夜一区免费看| 99精品在免费线老司机午夜| 久久精品综合一区二区三区| netflix在线观看网站| 日本免费a在线| 亚洲色图av天堂| 午夜老司机福利剧场| 午夜两性在线视频| 真人一进一出gif抽搐免费| 欧美又色又爽又黄视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 99在线人妻在线中文字幕| 久久久久国产精品人妻aⅴ院| 成人av在线播放网站| 精品国产三级普通话版| 免费av观看视频| 高清毛片免费观看视频网站| 精品久久久久久,| 人妻丰满熟妇av一区二区三区| 日日干狠狠操夜夜爽| 国产高清视频在线播放一区| 日韩欧美在线二视频| 亚洲无线在线观看| 九九在线视频观看精品| 欧美中文日本在线观看视频| 亚洲熟妇熟女久久| 少妇高潮的动态图| 久久伊人香网站| 97超视频在线观看视频| 日日摸夜夜添夜夜添小说| 欧美一区二区亚洲| 亚洲专区国产一区二区| 夜夜夜夜夜久久久久| 中文字幕人妻丝袜一区二区| 国产精品国产高清国产av| 三级毛片av免费| 18禁国产床啪视频网站| 亚洲一区二区三区不卡视频| 午夜福利视频1000在线观看| 啦啦啦免费观看视频1| 天堂av国产一区二区熟女人妻| 欧美黑人巨大hd| 亚洲精品亚洲一区二区| 中出人妻视频一区二区| 久久精品夜夜夜夜夜久久蜜豆| 天天添夜夜摸| a级一级毛片免费在线观看| 少妇裸体淫交视频免费看高清| 国产毛片a区久久久久| 中亚洲国语对白在线视频| 999久久久精品免费观看国产| 日韩亚洲欧美综合| 在线观看av片永久免费下载| 桃色一区二区三区在线观看| 在线视频色国产色| 国产成人欧美在线观看| 久久精品夜夜夜夜夜久久蜜豆| www.熟女人妻精品国产| 一二三四社区在线视频社区8| 91在线观看av| av视频在线观看入口| 久久精品91蜜桃| 在线看三级毛片| 国产主播在线观看一区二区| 人妻丰满熟妇av一区二区三区| 最近视频中文字幕2019在线8| 老熟妇乱子伦视频在线观看| 国产日本99.免费观看| 长腿黑丝高跟| 三级男女做爰猛烈吃奶摸视频| 蜜桃亚洲精品一区二区三区| 亚洲精品粉嫩美女一区| 国产精品亚洲一级av第二区| 精品午夜福利视频在线观看一区| or卡值多少钱|